mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
docs: Update quickstart page to structure things a little more for the novices (#1873)
# What does this PR do? Another doc enhancement for https://github.com/meta-llama/llama-stack/issues/1818 Summary of changes: - `docs/source/distributions/configuration.md` - Updated dropdown title to include a more user-friendly description. - `docs/_static/css/my_theme.css` - Added styling for `<h3>` elements to set a normal font weight. - `docs/source/distributions/starting_llama_stack_server.md` - Changed section headers from bold text to proper markdown headers (e.g., `##`). - Improved descriptions for starting Llama Stack server using different methods (library, container, conda, Kubernetes). - Enhanced clarity and structure by converting instructions into markdown headers and improved formatting. - `docs/source/getting_started/index.md` - Major restructuring of the "Quick Start" guide: - Added new introductory section for Llama Stack and its capabilities. - Reorganized steps into clearer subsections with proper markdown headers. - Replaced dropdowns with tabbed content for OS-specific instructions. - Added detailed steps for setting up and running the Llama Stack server and client. - Introduced new sections for running basic inference and building agents. - Enhanced readability and visual structure with emojis, admonitions, and examples. - `docs/source/providers/index.md` - Updated the list of LLM inference providers to include "Ollama." - Expanded the list of vector databases to include "SQLite-Vec." Let me know if you need further details! ## Test Plan Renders locally, included screenshot. # Documentation For https://github.com/meta-llama/llama-stack/issues/1818 <img width="1332" alt="Screenshot 2025-04-09 at 11 07 12 AM" src="https://github.com/user-attachments/assets/c106efb9-076c-4059-a4e0-a30fa738585b" /> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
edd9aaac3b
commit
49955a06b1
7 changed files with 633 additions and 429 deletions
3
docs/_static/css/my_theme.css
vendored
3
docs/_static/css/my_theme.css
vendored
|
@ -17,6 +17,9 @@
|
|||
display: none;
|
||||
}
|
||||
|
||||
h3 {
|
||||
font-weight: normal;
|
||||
}
|
||||
html[data-theme="dark"] .rst-content div[class^="highlight"] {
|
||||
background-color: #0b0b0b;
|
||||
}
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
The Llama Stack runtime configuration is specified as a YAML file. Here is a simplified version of an example configuration file for the Ollama distribution:
|
||||
|
||||
```{dropdown} Sample Configuration File
|
||||
```{dropdown} 👋 Click here for a Sample Configuration File
|
||||
|
||||
```yaml
|
||||
version: 2
|
||||
|
|
|
@ -2,22 +2,22 @@
|
|||
|
||||
You can run a Llama Stack server in one of the following ways:
|
||||
|
||||
**As a Library**:
|
||||
## As a Library:
|
||||
|
||||
This is the simplest way to get started. Using Llama Stack as a library means you do not need to start a server. This is especially useful when you are not running inference locally and relying on an external inference service (eg. fireworks, together, groq, etc.) See [Using Llama Stack as a Library](importing_as_library)
|
||||
|
||||
|
||||
**Container**:
|
||||
## Container:
|
||||
|
||||
Another simple way to start interacting with Llama Stack is to just spin up a container (via Docker or Podman) which is pre-built with all the providers you need. We provide a number of pre-built images so you can start a Llama Stack server instantly. You can also build your own custom container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](selection) for more details.
|
||||
|
||||
|
||||
**Conda**:
|
||||
## Conda:
|
||||
|
||||
If you have a custom or an advanced setup or you are developing on Llama Stack you can also build a custom Llama Stack server. Using `llama stack build` and `llama stack run` you can build/run a custom Llama Stack server containing the exact combination of providers you wish. We have also provided various templates to make getting started easier. See [Building a Custom Distribution](building_distro) for more details.
|
||||
|
||||
|
||||
**Kubernetes**:
|
||||
## Kubernetes:
|
||||
|
||||
If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](kubernetes_deployment) for more details.
|
||||
|
||||
|
|
545
docs/source/getting_started/detailed_tutorial.md
Normal file
545
docs/source/getting_started/detailed_tutorial.md
Normal file
|
@ -0,0 +1,545 @@
|
|||
# Detailed Tutorial
|
||||
|
||||
In this guide, we'll walk through how you can use the Llama Stack (server and client SDK) to test a simple agent.
|
||||
A Llama Stack agent is a simple integrated system that can perform tasks by combining a Llama model for reasoning with
|
||||
tools (e.g., RAG, web search, code execution, etc.) for taking actions.
|
||||
In Llama Stack, we provide a server exposing multiple APIs. These APIs are backed by implementations from different providers.
|
||||
|
||||
Llama Stack is a stateful service with REST APIs to support seamless transition of AI applications across different environments. The server can be run in a variety of ways, including as a standalone binary, Docker container, or hosted service. You can build and test using a local server first and deploy to a hosted endpoint for production.
|
||||
|
||||
In this guide, we'll walk through how to build a RAG agent locally using Llama Stack with [Ollama](https://ollama.com/)
|
||||
as the inference [provider](../providers/index.md#inference) for a Llama Model.
|
||||
|
||||
## Step 1: Installation and Setup
|
||||
|
||||
Install Ollama by following the instructions on the [Ollama website](https://ollama.com/download), then
|
||||
download Llama 3.2 3B model, and then start the Ollama service.
|
||||
```bash
|
||||
ollama pull llama3.2:3b
|
||||
ollama run llama3.2:3b --keepalive 60m
|
||||
```
|
||||
|
||||
Install [uv](https://docs.astral.sh/uv/) to setup your virtual environment
|
||||
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} macOS and Linux
|
||||
Use `curl` to download the script and execute it with `sh`:
|
||||
```console
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Windows
|
||||
Use `irm` to download the script and execute it with `iex`:
|
||||
|
||||
```console
|
||||
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
||||
```
|
||||
:::
|
||||
::::
|
||||
|
||||
Setup your virtual environment.
|
||||
|
||||
```bash
|
||||
uv venv --python 3.10
|
||||
source .venv/bin/activate
|
||||
```
|
||||
## Step 2: Run Llama Stack
|
||||
Llama Stack is a server that exposes multiple APIs, you connect with it using the Llama Stack client SDK.
|
||||
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} Using `venv`
|
||||
You can use Python to build and run the Llama Stack server, which is useful for testing and development.
|
||||
|
||||
Llama Stack uses a [YAML configuration file](../distributions/configuration.md) to specify the stack setup,
|
||||
which defines the providers and their settings.
|
||||
Now let's build and run the Llama Stack config for Ollama.
|
||||
|
||||
```bash
|
||||
INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type venv --run
|
||||
```
|
||||
:::
|
||||
:::{tab-item} Using `conda`
|
||||
You can use Python to build and run the Llama Stack server, which is useful for testing and development.
|
||||
|
||||
Llama Stack uses a [YAML configuration file](../distributions/configuration.md) to specify the stack setup,
|
||||
which defines the providers and their settings.
|
||||
Now let's build and run the Llama Stack config for Ollama.
|
||||
|
||||
```bash
|
||||
INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type conda --run
|
||||
```
|
||||
:::
|
||||
:::{tab-item} Using a Container
|
||||
You can use a container image to run the Llama Stack server. We provide several container images for the server
|
||||
component that works with different inference providers out of the box. For this guide, we will use
|
||||
`llamastack/distribution-ollama` as the container image. If you'd like to build your own image or customize the
|
||||
configurations, please check out [this guide](../references/index.md).
|
||||
|
||||
First lets setup some environment variables and create a local directory to mount into the container’s file system.
|
||||
```bash
|
||||
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
|
||||
export LLAMA_STACK_PORT=8321
|
||||
mkdir -p ~/.llama
|
||||
```
|
||||
Then start the server using the container tool of your choice. For example, if you are running Docker you can use the
|
||||
following command:
|
||||
```bash
|
||||
docker run -it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-ollama \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env OLLAMA_URL=http://host.docker.internal:11434
|
||||
```
|
||||
Note to start the container with Podman, you can do the same but replace `docker` at the start of the command with
|
||||
`podman`. If you are using `podman` older than `4.7.0`, please also replace `host.docker.internal` in the `OLLAMA_URL`
|
||||
with `host.containers.internal`.
|
||||
|
||||
The configuration YAML for the Ollama distribution is available at `distributions/ollama/run.yaml`.
|
||||
|
||||
```{tip}
|
||||
|
||||
Docker containers run in their own isolated network namespaces on Linux. To allow the container to communicate with services running on the host via `localhost`, you need `--network=host`. This makes the container use the host’s network directly so it can connect to Ollama running on `localhost:11434`.
|
||||
|
||||
Linux users having issues running the above command should instead try the following:
|
||||
```bash
|
||||
docker run -it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
--network=host \
|
||||
llamastack/distribution-ollama \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env OLLAMA_URL=http://localhost:11434
|
||||
```
|
||||
:::
|
||||
::::
|
||||
You will see output like below:
|
||||
```
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
Now you can use the Llama Stack client to run inference and build agents!
|
||||
|
||||
You can reuse the server setup or use the [Llama Stack Client](https://github.com/meta-llama/llama-stack-client-python/).
|
||||
Note that the client package is already included in the `llama-stack` package.
|
||||
|
||||
## Step 3: Run Client CLI
|
||||
|
||||
Open a new terminal and navigate to the same directory you started the server from. Then set up a new or activate your
|
||||
existing server virtual environment.
|
||||
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} Reuse Server `venv`
|
||||
```bash
|
||||
# The client is included in the llama-stack package so we just activate the server venv
|
||||
source .venv/bin/activate
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Install with `venv`
|
||||
```bash
|
||||
uv venv client --python 3.10
|
||||
source client/bin/activate
|
||||
pip install llama-stack-client
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Install with `conda`
|
||||
```bash
|
||||
yes | conda create -n stack-client python=3.10
|
||||
conda activate stack-client
|
||||
pip install llama-stack-client
|
||||
```
|
||||
:::
|
||||
::::
|
||||
|
||||
Now let's use the `llama-stack-client` [CLI](../references/llama_stack_client_cli_reference.md) to check the
|
||||
connectivity to the server.
|
||||
|
||||
```bash
|
||||
llama-stack-client configure --endpoint http://localhost:8321 --api-key none
|
||||
```
|
||||
You will see the below:
|
||||
```
|
||||
Done! You can now use the Llama Stack Client CLI with endpoint http://localhost:8321
|
||||
```
|
||||
|
||||
#### iii. List Available Models
|
||||
List the models
|
||||
```
|
||||
llama-stack-client models list
|
||||
Available Models
|
||||
|
||||
┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
|
||||
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
|
||||
┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
|
||||
│ embedding │ all-MiniLM-L6-v2 │ all-minilm:latest │ {'embedding_dimension': 384.0} │ ollama │
|
||||
├─────────────────┼─────────────────────────────────────┼─────────────────────────────────────┼───────────────────────────────────────────┼─────────────────┤
|
||||
│ llm │ llama3.2:3b │ llama3.2:3b │ │ ollama │
|
||||
└─────────────────┴─────────────────────────────────────┴─────────────────────────────────────┴───────────────────────────────────────────┴─────────────────┘
|
||||
|
||||
Total models: 2
|
||||
|
||||
```
|
||||
|
||||
## Step 4: Run the Demos
|
||||
|
||||
Note that these demos show the [Python Client SDK](../references/python_sdk_reference/index.md).
|
||||
Other SDKs are also available, please refer to the [Client SDK](../index.md#client-sdks) list for the complete options.
|
||||
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} Basic Inference with the CLI
|
||||
You can test basic Llama inference completion using the CLI.
|
||||
|
||||
```bash
|
||||
llama-stack-client inference chat-completion --message "tell me a joke"
|
||||
```
|
||||
Sample output:
|
||||
```python
|
||||
ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content="Here's one:\n\nWhat do you call a fake noodle?\n\nAn impasta!",
|
||||
role="assistant",
|
||||
stop_reason="end_of_turn",
|
||||
tool_calls=[],
|
||||
),
|
||||
logprobs=None,
|
||||
metrics=[
|
||||
Metric(metric="prompt_tokens", value=14.0, unit=None),
|
||||
Metric(metric="completion_tokens", value=27.0, unit=None),
|
||||
Metric(metric="total_tokens", value=41.0, unit=None),
|
||||
],
|
||||
)
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Basic Inference with a Script
|
||||
Alternatively, you can run inference using the Llama Stack client SDK.
|
||||
|
||||
### i. Create the Script
|
||||
Create a file `inference.py` and add the following code:
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:8321")
|
||||
|
||||
# List available models
|
||||
models = client.models.list()
|
||||
|
||||
# Select the first LLM
|
||||
llm = next(m for m in models if m.model_type == "llm")
|
||||
model_id = llm.identifier
|
||||
|
||||
print("Model:", model_id)
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
model_id=model_id,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Write a haiku about coding"},
|
||||
],
|
||||
)
|
||||
print(response.completion_message.content)
|
||||
```
|
||||
|
||||
### ii. Run the Script
|
||||
Let's run the script using `uv`
|
||||
```bash
|
||||
uv run python inference.py
|
||||
```
|
||||
Which will output:
|
||||
```
|
||||
Model: llama3.2:3b
|
||||
Here is a haiku about coding:
|
||||
|
||||
Lines of code unfold
|
||||
Logic flows through digital night
|
||||
Beauty in the bits
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Build a Simple Agent
|
||||
Now we can move beyond simple inference and build an agent that can perform tasks using the Llama Stack server.
|
||||
### i. Create the Script
|
||||
Create a file `agent.py` and add the following code:
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client import Agent, AgentEventLogger
|
||||
from rich.pretty import pprint
|
||||
import uuid
|
||||
|
||||
client = LlamaStackClient(base_url=f"http://localhost:8321")
|
||||
|
||||
models = client.models.list()
|
||||
llm = next(m for m in models if m.model_type == "llm")
|
||||
model_id = llm.identifier
|
||||
|
||||
agent = Agent(client, model=model_id, instructions="You are a helpful assistant.")
|
||||
|
||||
s_id = agent.create_session(session_name=f"s{uuid.uuid4().hex}")
|
||||
|
||||
print("Non-streaming ...")
|
||||
response = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "Who are you?"}],
|
||||
session_id=s_id,
|
||||
stream=False,
|
||||
)
|
||||
print("agent>", response.output_message.content)
|
||||
|
||||
print("Streaming ...")
|
||||
stream = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "Who are you?"}], session_id=s_id, stream=True
|
||||
)
|
||||
for event in stream:
|
||||
pprint(event)
|
||||
|
||||
print("Streaming with print helper...")
|
||||
stream = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "Who are you?"}], session_id=s_id, stream=True
|
||||
)
|
||||
for event in AgentEventLogger().log(stream):
|
||||
event.print()
|
||||
```
|
||||
### ii. Run the Script
|
||||
Let's run the script using `uv`
|
||||
```bash
|
||||
uv run python agent.py
|
||||
```
|
||||
|
||||
```{dropdown} 👋 Click here to see the sample output
|
||||
Non-streaming ...
|
||||
agent> I'm an artificial intelligence designed to assist and communicate with users like you. I don't have a personal identity, but I'm here to provide information, answer questions, and help with tasks to the best of my abilities.
|
||||
|
||||
I can be used for a wide range of purposes, such as:
|
||||
|
||||
* Providing definitions and explanations
|
||||
* Offering suggestions and ideas
|
||||
* Helping with language translation
|
||||
* Assisting with writing and proofreading
|
||||
* Generating text or responses to questions
|
||||
* Playing simple games or chatting about topics of interest
|
||||
|
||||
I'm constantly learning and improving my abilities, so feel free to ask me anything, and I'll do my best to help!
|
||||
|
||||
Streaming ...
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseStepStartPayload(
|
||||
│ │ │ event_type='step_start',
|
||||
│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ step_type='inference',
|
||||
│ │ │ metadata={}
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseStepProgressPayload(
|
||||
│ │ │ delta=TextDelta(text='As', type='text'),
|
||||
│ │ │ event_type='step_progress',
|
||||
│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ step_type='inference'
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseStepProgressPayload(
|
||||
│ │ │ delta=TextDelta(text=' a', type='text'),
|
||||
│ │ │ event_type='step_progress',
|
||||
│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ step_type='inference'
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
...
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseStepCompletePayload(
|
||||
│ │ │ event_type='step_complete',
|
||||
│ │ │ step_details=InferenceStep(
|
||||
│ │ │ │ api_model_response=CompletionMessage(
|
||||
│ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?',
|
||||
│ │ │ │ │ role='assistant',
|
||||
│ │ │ │ │ stop_reason='end_of_turn',
|
||||
│ │ │ │ │ tool_calls=[]
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ │ step_type='inference',
|
||||
│ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca',
|
||||
│ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 716174, tzinfo=TzInfo(UTC)),
|
||||
│ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28823, tzinfo=TzInfo(UTC))
|
||||
│ │ │ ),
|
||||
│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ step_type='inference'
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseTurnCompletePayload(
|
||||
│ │ │ event_type='turn_complete',
|
||||
│ │ │ turn=Turn(
|
||||
│ │ │ │ input_messages=[UserMessage(content='Who are you?', role='user', context=None)],
|
||||
│ │ │ │ output_message=CompletionMessage(
|
||||
│ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?',
|
||||
│ │ │ │ │ role='assistant',
|
||||
│ │ │ │ │ stop_reason='end_of_turn',
|
||||
│ │ │ │ │ tool_calls=[]
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ session_id='abd4afea-4324-43f4-9513-cfe3970d92e8',
|
||||
│ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28722, tzinfo=TzInfo(UTC)),
|
||||
│ │ │ │ steps=[
|
||||
│ │ │ │ │ InferenceStep(
|
||||
│ │ │ │ │ │ api_model_response=CompletionMessage(
|
||||
│ │ │ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?',
|
||||
│ │ │ │ │ │ │ role='assistant',
|
||||
│ │ │ │ │ │ │ stop_reason='end_of_turn',
|
||||
│ │ │ │ │ │ │ tool_calls=[]
|
||||
│ │ │ │ │ │ ),
|
||||
│ │ │ │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ │ │ │ step_type='inference',
|
||||
│ │ │ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca',
|
||||
│ │ │ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 716174, tzinfo=TzInfo(UTC)),
|
||||
│ │ │ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28823, tzinfo=TzInfo(UTC))
|
||||
│ │ │ │ │ )
|
||||
│ │ │ │ ],
|
||||
│ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca',
|
||||
│ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 727364, tzinfo=TzInfo(UTC)),
|
||||
│ │ │ │ output_attachments=[]
|
||||
│ │ │ )
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
|
||||
|
||||
Streaming with print helper...
|
||||
inference> Déjà vu!
|
||||
|
||||
As I mentioned earlier, I'm an artificial intelligence language model. I don't have a personal identity or consciousness like humans do. I exist solely to process and respond to text-based inputs, providing information and assistance on a wide range of topics.
|
||||
|
||||
I'm a computer program designed to simulate human-like conversations, using natural language processing (NLP) and machine learning algorithms to understand and generate responses. My purpose is to help users like you with their questions, provide information, and engage in conversation.
|
||||
|
||||
Think of me as a virtual companion, a helpful tool designed to make your interactions more efficient and enjoyable. I don't have personal opinions, emotions, or biases, but I'm here to provide accurate and informative responses to the best of my abilities.
|
||||
|
||||
So, who am I? I'm just a computer program designed to help you!
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Build a RAG Agent
|
||||
|
||||
For our last demo, we can build a RAG agent that can answer questions about the Torchtune project using the documents
|
||||
in a vector database.
|
||||
### i. Create the Script
|
||||
Create a file `rag_agent.py` and add the following code:
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client import Agent, AgentEventLogger
|
||||
from llama_stack_client.types import Document
|
||||
import uuid
|
||||
from termcolor import cprint
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:8321")
|
||||
|
||||
# Create a vector database instance
|
||||
embed_lm = next(m for m in client.models.list() if m.model_type == "embedding")
|
||||
embedding_model = embed_lm.identifier
|
||||
vector_db_id = f"v{uuid.uuid4().hex}"
|
||||
client.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model,
|
||||
)
|
||||
|
||||
# Create Documents
|
||||
urls = [
|
||||
"memory_optimizations.rst",
|
||||
"chat.rst",
|
||||
"llama3.rst",
|
||||
"datasets.rst",
|
||||
"qat_finetune.rst",
|
||||
"lora_finetune.rst",
|
||||
]
|
||||
documents = [
|
||||
Document(
|
||||
document_id=f"num-{i}",
|
||||
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
|
||||
mime_type="text/plain",
|
||||
metadata={},
|
||||
)
|
||||
for i, url in enumerate(urls)
|
||||
]
|
||||
|
||||
# Insert documents
|
||||
client.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=vector_db_id,
|
||||
chunk_size_in_tokens=512,
|
||||
)
|
||||
|
||||
# Get the model being served
|
||||
llm = next(m for m in client.models.list() if m.model_type == "llm")
|
||||
model = llm.identifier
|
||||
|
||||
# Create the RAG agent
|
||||
rag_agent = Agent(
|
||||
client,
|
||||
model=model,
|
||||
instructions="You are a helpful assistant. Use the RAG tool to answer questions as needed.",
|
||||
tools=[
|
||||
{
|
||||
"name": "builtin::rag/knowledge_search",
|
||||
"args": {"vector_db_ids": [vector_db_id]},
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
session_id = rag_agent.create_session(session_name=f"s{uuid.uuid4().hex}")
|
||||
|
||||
turns = ["what is torchtune", "tell me about dora"]
|
||||
|
||||
for t in turns:
|
||||
print("user>", t)
|
||||
stream = rag_agent.create_turn(
|
||||
messages=[{"role": "user", "content": t}], session_id=session_id, stream=True
|
||||
)
|
||||
for event in AgentEventLogger().log(stream):
|
||||
event.print()
|
||||
```
|
||||
### ii. Run the Script
|
||||
Let's run the script using `uv`
|
||||
```bash
|
||||
uv run python rag_agent.py
|
||||
```
|
||||
|
||||
```{dropdown} 👋 Click here to see the sample output
|
||||
user> what is torchtune
|
||||
inference> [knowledge_search(query='TorchTune')]
|
||||
tool_execution> Tool:knowledge_search Args:{'query': 'TorchTune'}
|
||||
tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text='Result 1:\nDocument_id:num-1\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. ..., type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')]
|
||||
inference> Here is a high-level overview of the text:
|
||||
|
||||
**LoRA Finetuning with PyTorch Tune**
|
||||
|
||||
PyTorch Tune provides a recipe for LoRA (Low-Rank Adaptation) finetuning, which is a technique to adapt pre-trained models to new tasks. The recipe uses the `lora_finetune_distributed` command.
|
||||
...
|
||||
Overall, DORA is a powerful reinforcement learning algorithm that can learn complex tasks from human demonstrations. However, it requires careful consideration of the challenges and limitations to achieve optimal results.
|
||||
```
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
## You're Ready to Build Your Own Apps!
|
||||
|
||||
Congrats! 🥳 Now you're ready to [build your own Llama Stack applications](../building_applications/index)! 🚀
|
|
@ -1,455 +1,110 @@
|
|||
# Quick Start
|
||||
# Quickstart
|
||||
|
||||
Get started with Llama Stack in minutes!
|
||||
|
||||
Llama Stack is a stateful service with REST APIs to support seamless transition of AI applications across different environments. The server can be run in a variety of ways, including as a standalone binary, Docker container, or hosted service. You can build and test using a local server first and deploy to a hosted endpoint for production.
|
||||
Llama Stack is a stateful service with REST APIs to support the seamless transition of AI applications across different
|
||||
environments. You can build and test using a local server first and deploy to a hosted endpoint for production.
|
||||
|
||||
In this guide, we'll walk through how to build a RAG agent locally using Llama Stack with [Ollama](https://ollama.com/) to run inference on a Llama Model.
|
||||
|
||||
|
||||
### 1. Download a Llama model with Ollama
|
||||
In this guide, we'll walk through how to build a RAG application locally using Llama Stack with [Ollama](https://ollama.com/)
|
||||
as the inference [provider](../providers/index.md#inference) for a Llama Model.
|
||||
|
||||
## Step 1. Install and Setup
|
||||
Install [uv](https://docs.astral.sh/uv/), setup your virtual environment, and run inference on a Llama model with
|
||||
[Ollama](https://ollama.com/download).
|
||||
```bash
|
||||
ollama pull llama3.2:3b
|
||||
```
|
||||
|
||||
This will instruct the Ollama service to download the Llama 3.2 3B model, which we'll use in the rest of this guide.
|
||||
|
||||
```{admonition} Note
|
||||
:class: tip
|
||||
|
||||
If you do not have ollama, you can install it from [here](https://ollama.com/download).
|
||||
```
|
||||
|
||||
### 2. Run Llama Stack locally
|
||||
|
||||
We use `uv` to setup a virtual environment and install the Llama Stack package.
|
||||
|
||||
:::{dropdown} [Click to Open] Instructions to setup uv
|
||||
|
||||
Install [uv](https://docs.astral.sh/uv/) to setup your virtual environment.
|
||||
|
||||
|
||||
#### For macOS and Linux:
|
||||
```bash
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
```
|
||||
#### For Windows:
|
||||
Use `irm` to download the script and execute it with `iex`:
|
||||
```powershell
|
||||
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
||||
```
|
||||
|
||||
Setup venv
|
||||
```bash
|
||||
uv venv --python 3.10
|
||||
uv pip install llama-stack aiosqlite faiss-cpu ollama openai datasets opentelemetry-exporter-otlp-proto-http mcp autoevals
|
||||
source .venv/bin/activate
|
||||
export INFERENCE_MODEL="llama3.2:3b"
|
||||
ollama run llama3.2:3b --keepalive 60m
|
||||
```
|
||||
:::
|
||||
|
||||
**Install the Llama Stack package**
|
||||
```bash
|
||||
uv pip install -U llama-stack
|
||||
```
|
||||
|
||||
**Build and Run the Llama Stack server for Ollama.**
|
||||
## Step 2: Run the Llama Stack Server
|
||||
```bash
|
||||
INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type venv --run
|
||||
```
|
||||
|
||||
You will see the output end like below:
|
||||
```
|
||||
...
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
Now you can use the llama stack client to run inference and build agents!
|
||||
|
||||
### 3. Client CLI
|
||||
|
||||
Install the client package
|
||||
```bash
|
||||
pip install llama-stack-client
|
||||
```
|
||||
|
||||
:::{dropdown} OR reuse server setup
|
||||
Open a new terminal and navigate to the same directory you started the server from.
|
||||
|
||||
Setup venv (llama-stack already includes the llama-stack-client package)
|
||||
```bash
|
||||
source .venv/bin/activate
|
||||
```
|
||||
:::
|
||||
|
||||
#### 3.1 Configure the client to point to the local server
|
||||
```bash
|
||||
llama-stack-client configure --endpoint http://localhost:8321 --api-key none
|
||||
```
|
||||
You will see the below:
|
||||
```
|
||||
Done! You can now use the Llama Stack Client CLI with endpoint http://localhost:8321
|
||||
```
|
||||
|
||||
#### 3.2 List available models
|
||||
```
|
||||
llama-stack-client models list
|
||||
```
|
||||
|
||||
```
|
||||
Available Models
|
||||
|
||||
┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
|
||||
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
|
||||
┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
|
||||
│ embedding │ all-MiniLM-L6-v2 │ all-minilm:latest │ {'embedding_dimension': 384.0} │ ollama │
|
||||
├─────────────────┼─────────────────────────────────────┼─────────────────────────────────────┼───────────────────────────────────────────┼─────────────────┤
|
||||
│ llm │ llama3.2:3b │ llama3.2:3b │ │ ollama │
|
||||
└─────────────────┴─────────────────────────────────────┴─────────────────────────────────────┴───────────────────────────────────────────┴─────────────────┘
|
||||
|
||||
Total models: 2
|
||||
|
||||
```
|
||||
|
||||
#### 3.3 Test basic inference
|
||||
```bash
|
||||
llama-stack-client inference chat-completion --message "tell me a joke"
|
||||
```
|
||||
Sample output:
|
||||
## Step 3: Run the Demo
|
||||
Now open up a new terminal using the same virtual environment and you can run this demo as a script using `uv run demo_script.py` or in an interactive shell.
|
||||
```python
|
||||
ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content="Here's one:\n\nWhat do you call a fake noodle?\n\nAn impasta!",
|
||||
role="assistant",
|
||||
stop_reason="end_of_turn",
|
||||
tool_calls=[],
|
||||
),
|
||||
logprobs=None,
|
||||
metrics=[
|
||||
Metric(metric="prompt_tokens", value=14.0, unit=None),
|
||||
Metric(metric="completion_tokens", value=27.0, unit=None),
|
||||
Metric(metric="total_tokens", value=41.0, unit=None),
|
||||
],
|
||||
)
|
||||
```
|
||||
|
||||
### 4. Python SDK
|
||||
Install the python client
|
||||
```bash
|
||||
pip install llama-stack-client
|
||||
```
|
||||
:::{dropdown} OR reuse server setup
|
||||
Open a new terminal and navigate to the same directory you started the server from.
|
||||
|
||||
Setup venv (llama-stack already includes the llama-stack-client package)
|
||||
```bash
|
||||
source .venv/bin/activate
|
||||
```
|
||||
:::
|
||||
#### 4.1 Basic Inference
|
||||
Create a file `inference.py` and add the following code:
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient(base_url=f"http://localhost:8321")
|
||||
|
||||
# List available models
|
||||
models = client.models.list()
|
||||
|
||||
# Select the first LLM
|
||||
llm = next(m for m in models if m.model_type == "llm")
|
||||
model_id = llm.identifier
|
||||
|
||||
print("Model:", model_id)
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
model_id=model_id,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Write a haiku about coding"},
|
||||
],
|
||||
)
|
||||
print(response.completion_message.content)
|
||||
```
|
||||
Run the script
|
||||
```bash
|
||||
python inference.py
|
||||
```
|
||||
Sample output:
|
||||
```
|
||||
Model: llama3.2:3b
|
||||
Here is a haiku about coding:
|
||||
|
||||
Lines of code unfold
|
||||
Logic flows through digital night
|
||||
Beauty in the bits
|
||||
```
|
||||
|
||||
#### 4.2. Basic Agent
|
||||
|
||||
Create a file `agent.py` and add the following code:
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client import Agent, AgentEventLogger
|
||||
from rich.pretty import pprint
|
||||
import uuid
|
||||
|
||||
client = LlamaStackClient(base_url=f"http://localhost:8321")
|
||||
|
||||
models = client.models.list()
|
||||
llm = next(m for m in models if m.model_type == "llm")
|
||||
model_id = llm.identifier
|
||||
|
||||
agent = Agent(client, model=model_id, instructions="You are a helpful assistant.")
|
||||
|
||||
s_id = agent.create_session(session_name=f"s{uuid.uuid4().hex}")
|
||||
|
||||
print("Non-streaming ...")
|
||||
response = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "Who are you?"}],
|
||||
session_id=s_id,
|
||||
stream=False,
|
||||
)
|
||||
print("agent>", response.output_message.content)
|
||||
|
||||
print("Streaming ...")
|
||||
stream = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "Who are you?"}], session_id=s_id, stream=True
|
||||
)
|
||||
for event in stream:
|
||||
pprint(event)
|
||||
|
||||
print("Streaming with print helper...")
|
||||
stream = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "Who are you?"}], session_id=s_id, stream=True
|
||||
)
|
||||
for event in AgentEventLogger().log(stream):
|
||||
event.print()
|
||||
```
|
||||
|
||||
Run the script:
|
||||
```bash
|
||||
python agent.py
|
||||
```
|
||||
|
||||
:::{dropdown} `Sample output`
|
||||
```
|
||||
Non-streaming ...
|
||||
agent> I'm an artificial intelligence designed to assist and communicate with users like you. I don't have a personal identity, but I'm here to provide information, answer questions, and help with tasks to the best of my abilities.
|
||||
|
||||
I can be used for a wide range of purposes, such as:
|
||||
|
||||
* Providing definitions and explanations
|
||||
* Offering suggestions and ideas
|
||||
* Helping with language translation
|
||||
* Assisting with writing and proofreading
|
||||
* Generating text or responses to questions
|
||||
* Playing simple games or chatting about topics of interest
|
||||
|
||||
I'm constantly learning and improving my abilities, so feel free to ask me anything, and I'll do my best to help!
|
||||
|
||||
Streaming ...
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseStepStartPayload(
|
||||
│ │ │ event_type='step_start',
|
||||
│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ step_type='inference',
|
||||
│ │ │ metadata={}
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseStepProgressPayload(
|
||||
│ │ │ delta=TextDelta(text='As', type='text'),
|
||||
│ │ │ event_type='step_progress',
|
||||
│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ step_type='inference'
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseStepProgressPayload(
|
||||
│ │ │ delta=TextDelta(text=' a', type='text'),
|
||||
│ │ │ event_type='step_progress',
|
||||
│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ step_type='inference'
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
...
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseStepCompletePayload(
|
||||
│ │ │ event_type='step_complete',
|
||||
│ │ │ step_details=InferenceStep(
|
||||
│ │ │ │ api_model_response=CompletionMessage(
|
||||
│ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?',
|
||||
│ │ │ │ │ role='assistant',
|
||||
│ │ │ │ │ stop_reason='end_of_turn',
|
||||
│ │ │ │ │ tool_calls=[]
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ │ step_type='inference',
|
||||
│ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca',
|
||||
│ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 716174, tzinfo=TzInfo(UTC)),
|
||||
│ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28823, tzinfo=TzInfo(UTC))
|
||||
│ │ │ ),
|
||||
│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ step_type='inference'
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
AgentTurnResponseStreamChunk(
|
||||
│ event=TurnResponseEvent(
|
||||
│ │ payload=AgentTurnResponseTurnCompletePayload(
|
||||
│ │ │ event_type='turn_complete',
|
||||
│ │ │ turn=Turn(
|
||||
│ │ │ │ input_messages=[UserMessage(content='Who are you?', role='user', context=None)],
|
||||
│ │ │ │ output_message=CompletionMessage(
|
||||
│ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?',
|
||||
│ │ │ │ │ role='assistant',
|
||||
│ │ │ │ │ stop_reason='end_of_turn',
|
||||
│ │ │ │ │ tool_calls=[]
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ session_id='abd4afea-4324-43f4-9513-cfe3970d92e8',
|
||||
│ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28722, tzinfo=TzInfo(UTC)),
|
||||
│ │ │ │ steps=[
|
||||
│ │ │ │ │ InferenceStep(
|
||||
│ │ │ │ │ │ api_model_response=CompletionMessage(
|
||||
│ │ │ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?',
|
||||
│ │ │ │ │ │ │ role='assistant',
|
||||
│ │ │ │ │ │ │ stop_reason='end_of_turn',
|
||||
│ │ │ │ │ │ │ tool_calls=[]
|
||||
│ │ │ │ │ │ ),
|
||||
│ │ │ │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1',
|
||||
│ │ │ │ │ │ step_type='inference',
|
||||
│ │ │ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca',
|
||||
│ │ │ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 716174, tzinfo=TzInfo(UTC)),
|
||||
│ │ │ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28823, tzinfo=TzInfo(UTC))
|
||||
│ │ │ │ │ )
|
||||
│ │ │ │ ],
|
||||
│ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca',
|
||||
│ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 727364, tzinfo=TzInfo(UTC)),
|
||||
│ │ │ │ output_attachments=[]
|
||||
│ │ │ )
|
||||
│ │ )
|
||||
│ )
|
||||
)
|
||||
|
||||
|
||||
Streaming with print helper...
|
||||
inference> Déjà vu!
|
||||
|
||||
As I mentioned earlier, I'm an artificial intelligence language model. I don't have a personal identity or consciousness like humans do. I exist solely to process and respond to text-based inputs, providing information and assistance on a wide range of topics.
|
||||
|
||||
I'm a computer program designed to simulate human-like conversations, using natural language processing (NLP) and machine learning algorithms to understand and generate responses. My purpose is to help users like you with their questions, provide information, and engage in conversation.
|
||||
|
||||
Think of me as a virtual companion, a helpful tool designed to make your interactions more efficient and enjoyable. I don't have personal opinions, emotions, or biases, but I'm here to provide accurate and informative responses to the best of my abilities.
|
||||
|
||||
So, who am I? I'm just a computer program designed to help you!
|
||||
|
||||
```
|
||||
:::
|
||||
|
||||
#### 4.3. RAG agent
|
||||
|
||||
Create a file `rag_agent.py` and add the following code:
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client import Agent, AgentEventLogger
|
||||
from termcolor import cprint
|
||||
from llama_stack_client.types import Document
|
||||
import uuid
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient(base_url=f"http://localhost:8321")
|
||||
|
||||
# Create a vector database instance
|
||||
embedlm = next(m for m in client.models.list() if m.model_type == "embedding")
|
||||
embedding_model = embedlm.identifier
|
||||
vector_db_id = f"v{uuid.uuid4().hex}"
|
||||
client.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model,
|
||||
)
|
||||
|
||||
# Create Documents
|
||||
urls = [
|
||||
"memory_optimizations.rst",
|
||||
"chat.rst",
|
||||
"llama3.rst",
|
||||
"datasets.rst",
|
||||
"qat_finetune.rst",
|
||||
"lora_finetune.rst",
|
||||
]
|
||||
vector_db = "faiss"
|
||||
vector_db_id = "test-vector-db"
|
||||
model_id = "llama3.2:3b-instruct-fp16"
|
||||
query = "Can you give me the arxiv link for Lora Fine Tuning in Pytorch?"
|
||||
documents = [
|
||||
Document(
|
||||
document_id=f"num-{i}",
|
||||
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
|
||||
document_id="document_1",
|
||||
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/lora_finetune.rst",
|
||||
mime_type="text/plain",
|
||||
metadata={},
|
||||
)
|
||||
for i, url in enumerate(urls)
|
||||
]
|
||||
|
||||
# Insert documents
|
||||
client = LlamaStackClient(base_url="http://localhost:8321")
|
||||
client.vector_dbs.register(
|
||||
provider_id=vector_db,
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_dimension=384,
|
||||
)
|
||||
|
||||
client.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=vector_db_id,
|
||||
chunk_size_in_tokens=512,
|
||||
chunk_size_in_tokens=50,
|
||||
)
|
||||
|
||||
# Get the model being served
|
||||
llm = next(m for m in client.models.list() if m.model_type == "llm")
|
||||
model = llm.identifier
|
||||
|
||||
# Create RAG agent
|
||||
ragagent = Agent(
|
||||
client,
|
||||
model=model,
|
||||
instructions="You are a helpful assistant. Use the RAG tool to answer questions as needed.",
|
||||
tools=[
|
||||
{
|
||||
"name": "builtin::rag/knowledge_search",
|
||||
"args": {"vector_db_ids": [vector_db_id]},
|
||||
}
|
||||
],
|
||||
response = client.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[vector_db_id],
|
||||
content=query,
|
||||
)
|
||||
|
||||
s_id = ragagent.create_session(session_name=f"s{uuid.uuid4().hex}")
|
||||
cprint("" + "-" * 50, "yellow")
|
||||
cprint(f"Query> {query}", "red")
|
||||
cprint("" + "-" * 50, "yellow")
|
||||
for chunk in response.content:
|
||||
cprint(f"Chunk ID> {chunk.text}", "green")
|
||||
cprint("" + "-" * 50, "yellow")
|
||||
```
|
||||
And you should see output like below.
|
||||
```
|
||||
--------------------------------------------------
|
||||
Query> Can you give me the arxiv link for Lora Fine Tuning in Pytorch?
|
||||
--------------------------------------------------
|
||||
Chunk ID> knowledge_search tool found 5 chunks:
|
||||
BEGIN of knowledge_search tool results.
|
||||
|
||||
turns = ["what is torchtune", "tell me about dora"]
|
||||
--------------------------------------------------
|
||||
Chunk ID> Result 1:
|
||||
Document_id:docum
|
||||
Content: .. _lora_finetune_label:
|
||||
|
||||
for t in turns:
|
||||
print("user>", t)
|
||||
stream = ragagent.create_turn(
|
||||
messages=[{"role": "user", "content": t}], session_id=s_id, stream=True
|
||||
)
|
||||
for event in AgentEventLogger().log(stream):
|
||||
event.print()
|
||||
```
|
||||
Run the script:
|
||||
```
|
||||
python rag_agent.py
|
||||
```
|
||||
:::{dropdown} `Sample output`
|
||||
```
|
||||
user> what is torchtune
|
||||
inference> [knowledge_search(query='TorchTune')]
|
||||
tool_execution> Tool:knowledge_search Args:{'query': 'TorchTune'}
|
||||
tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text='Result 1:\nDocument_id:num-1\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. ..., type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')]
|
||||
inference> Here is a high-level overview of the text:
|
||||
============================
|
||||
Fine-Tuning Llama2 with LoRA
|
||||
============================
|
||||
|
||||
**LoRA Finetuning with PyTorch Tune**
|
||||
This guide will teach you about `LoRA <https://arxiv.org/abs/2106.09685>`_, a
|
||||
|
||||
PyTorch Tune provides a recipe for LoRA (Low-Rank Adaptation) finetuning, which is a technique to adapt pre-trained models to new tasks. The recipe uses the `lora_finetune_distributed` command.
|
||||
...
|
||||
Overall, DORA is a powerful reinforcement learning algorithm that can learn complex tasks from human demonstrations. However, it requires careful consideration of the challenges and limitations to achieve optimal results.
|
||||
--------------------------------------------------
|
||||
```
|
||||
:::
|
||||
Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳
|
||||
|
||||
## Next Steps
|
||||
- Go through the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)
|
||||
- Checkout more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks)
|
||||
- See [References](../references/index.md) for more details about the llama CLI and Python SDK
|
||||
- For example applications and more detailed tutorials, visit our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository.
|
||||
|
||||
Now you're ready to dive deeper into Llama Stack!
|
||||
- Explore the [Detailed Tutorial](./detailed_tutorial.md).
|
||||
- Try the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb).
|
||||
- Browse more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks).
|
||||
- Learn about Llama Stack [Concepts](../concepts/index.md).
|
||||
- Discover how to [Build Llama Stacks](../distributions/index.md).
|
||||
- Refer to our [References](../references/index.md) for details on the Llama CLI and Python SDK.
|
||||
- Check out the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository for example applications and tutorials.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 0
|
||||
:hidden:
|
||||
|
||||
detailed_tutorial
|
||||
```
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
# Llama Stack
|
||||
Welcome to Llama Stack, the open-source framework for building generative AI applications.
|
||||
```{admonition} Llama 4 is here!
|
||||
:class: tip
|
||||
|
||||
|
@ -9,7 +11,6 @@ Check out [Getting Started with Llama 4](https://colab.research.google.com/githu
|
|||
Llama Stack {{ llama_stack_version }} is now available! See the {{ llama_stack_version_link }} for more details.
|
||||
```
|
||||
|
||||
# Llama Stack
|
||||
|
||||
## What is Llama Stack?
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
# Providers Overview
|
||||
|
||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.),
|
||||
- LLM inference providers (e.g., Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, SQLite-Vec, etc.),
|
||||
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
||||
|
||||
Providers come in two flavors:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue