Query generators for rag query

This commit is contained in:
Hardik Shah 2024-09-04 17:58:42 -07:00
parent dd1e1ceb13
commit 4a70f3d2ba
3 changed files with 133 additions and 2 deletions

View file

@ -116,10 +116,49 @@ MemoryBankConfig = Annotated[
] ]
@json_schema_type class MemoryQueryGenerator(Enum):
default = "default"
llm = "llm"
custom = "custom"
class DefaultMemoryQueryGeneratorConfig(BaseModel):
type: Literal[MemoryQueryGenerator.default.value] = (
MemoryQueryGenerator.default.value
)
sep: str = " "
class LLMMemoryQueryGeneratorConfig(BaseModel):
type: Literal[MemoryQueryGenerator.llm.value] = MemoryQueryGenerator.llm.value
model: str
template: str
host: str = "localhost"
port: int = 5000
class CustomMemoryQueryGeneratorConfig(BaseModel):
type: Literal[MemoryQueryGenerator.custom.value] = MemoryQueryGenerator.custom.value
MemoryQueryGeneratorConfig = Annotated[
Union[
DefaultMemoryQueryGeneratorConfig,
LLMMemoryQueryGeneratorConfig,
CustomMemoryQueryGeneratorConfig,
],
Field(discriminator="type"),
]
class MemoryToolDefinition(ToolDefinitionCommon): class MemoryToolDefinition(ToolDefinitionCommon):
type: Literal[AgenticSystemTool.memory.value] = AgenticSystemTool.memory.value type: Literal[AgenticSystemTool.memory.value] = AgenticSystemTool.memory.value
memory_bank_configs: List[MemoryBankConfig] = Field(default_factory=list) memory_bank_configs: List[MemoryBankConfig] = Field(default_factory=list)
# This config defines how a query is generated using the messages
# for memory bank retrieval.
query_generator_config: MemoryQueryGeneratorConfig = Field(
default=DefaultMemoryQueryGeneratorConfig
)
max_tokens_in_context: int = 4096 max_tokens_in_context: int = 4096
max_chunks: int = 10 max_chunks: int = 10

View file

@ -31,6 +31,7 @@ from llama_toolchain.tools.builtin import (
SingleMessageBuiltinTool, SingleMessageBuiltinTool,
) )
from .context_retriever import generate_rag_query
from .safety import SafetyException, ShieldRunnerMixin from .safety import SafetyException, ShieldRunnerMixin
@ -664,7 +665,7 @@ class ChatAgent(ShieldRunnerMixin):
# (i.e., no prior turns uploaded an Attachment) # (i.e., no prior turns uploaded an Attachment)
return None, [] return None, []
query = " ".join(m.content for m in messages) query = await generate_rag_query(memory.query_generator_config, messages)
tasks = [ tasks = [
self.memory_api.query_documents( self.memory_api.query_documents(
bank_id=bank_id, bank_id=bank_id,

View file

@ -0,0 +1,91 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List
from jinja2 import Template
from llama_models.llama3.api import * # noqa: F403
from termcolor import cprint
from llama_toolchain.agentic_system.api import (
DefaultMemoryQueryGeneratorConfig,
LLMMemoryQueryGeneratorConfig,
MemoryQueryGenerator,
MemoryQueryGeneratorConfig,
)
from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.inference.client import InferenceClient
async def generate_rag_query(
generator_config: MemoryQueryGeneratorConfig,
messages: List[Message],
):
if generator_config.type == MemoryQueryGenerator.default.value:
generator = DefaultRAGQueryGenerator(generator_config)
elif generator_config.type == MemoryQueryGenerator.llm.value:
generator = LLMRAGQueryGenerator(generator_config)
else:
raise NotImplementedError(
f"Unsupported memory query generator {generator_config.type}"
)
query = await generator.gen(messages)
cprint(f"Generated query >>>: {query}", color="green")
return query
class DefaultRAGQueryGenerator:
def __init__(self, config: DefaultMemoryQueryGeneratorConfig):
self.config = config
async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
query = self.config.sep.join(
interleaved_text_media_as_str(m.content) for m in messages
)
return query
class LLMRAGQueryGenerator:
def __init__(self, config: LLMMemoryQueryGeneratorConfig):
self.config = config
async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
# params will have
"""
Generates a query that will be used for
retrieving relevant information from the memory bank.
"""
# get template from user
# user template will assume data has the format of
# pydantic object representing List[Message]
m_dict = {"messages": [m.model_dump() for m in messages]}
template = Template(self.config.template)
content = template.render(m_dict)
cprint(f"Rendered Template >>>: {content}", color="yellow")
# TODO: How to manage these config params better ?
host = self.config.host
port = self.config.port
client = InferenceClient(f"http://{host}:{port}")
model = self.config.model
message = UserMessage(content=content)
response = client.chat_completion(
ChatCompletionRequest(
model=model,
messages=[message],
stream=False,
)
)
async for chunk in response:
query = chunk.completion_message.content
return query