mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
feat(telemetry:major): End to End Testing, Metric Capture, SQL Alchemy Injection
This commit is contained in:
parent
9a0294ab4f
commit
4aa2dc110d
19 changed files with 1854 additions and 881 deletions
|
@ -424,6 +424,7 @@ def create_app(
|
|||
|
||||
if Api.telemetry in impls:
|
||||
impls[Api.telemetry].fastapi_middleware(app)
|
||||
impls[Api.telemetry].sqlalchemy_instrumentation()
|
||||
|
||||
# Load external APIs if configured
|
||||
external_apis = load_external_apis(config)
|
||||
|
|
|
@ -6,7 +6,13 @@
|
|||
from abc import abstractmethod
|
||||
from fastapi import FastAPI
|
||||
from pydantic import BaseModel
|
||||
from typing import Any
|
||||
|
||||
from opentelemetry.trace import Tracer
|
||||
from opentelemetry.metrics import Meter
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.sdk.resources import Attributes
|
||||
from sqlalchemy import Engine
|
||||
|
||||
|
||||
class TelemetryProvider(BaseModel):
|
||||
|
@ -21,29 +27,32 @@ class TelemetryProvider(BaseModel):
|
|||
...
|
||||
|
||||
@abstractmethod
|
||||
def custom_trace(self, name: str, *args, **kwargs) -> Any:
|
||||
def sqlalchemy_instrumentation(self, engine: Engine | None = None):
|
||||
"""
|
||||
Creates a custom trace.
|
||||
Injects SQLAlchemy instrumentation that instruments the application for telemetry.
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def record_count(self, name: str, *args, **kwargs):
|
||||
def get_tracer(self,
|
||||
instrumenting_module_name: str,
|
||||
instrumenting_library_version: str | None = None,
|
||||
tracer_provider: TracerProvider | None = None,
|
||||
schema_url: str | None = None,
|
||||
attributes: Attributes | None = None
|
||||
) -> Tracer:
|
||||
"""
|
||||
Increments a counter metric.
|
||||
Gets a tracer.
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def record_histogram(self, name: str, *args, **kwargs):
|
||||
def get_meter(self, name: str,
|
||||
version: str = "",
|
||||
meter_provider: MeterProvider | None = None,
|
||||
schema_url: str | None = None,
|
||||
attributes: Attributes | None = None) -> Meter:
|
||||
"""
|
||||
Records a histogram metric.
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def record_up_down_counter(self, name: str, *args, **kwargs):
|
||||
"""
|
||||
Records an up/down counter metric.
|
||||
Gets a meter.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -1,20 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from abc import abstractmethod
|
||||
from fastapi import FastAPI
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class TelemetryProvider(BaseModel):
|
||||
"""
|
||||
TelemetryProvider standardizes how telemetry is provided to the application.
|
||||
"""
|
||||
@abstractmethod
|
||||
def fastapi_middleware(self, app: FastAPI, *args, **kwargs):
|
||||
"""
|
||||
Injects FastAPI middleware that instruments the application for telemetry.
|
||||
"""
|
||||
...
|
|
@ -0,0 +1,24 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import OTelTelemetryConfig
|
||||
|
||||
__all__ = ["OTelTelemetryConfig"]
|
||||
|
||||
|
||||
async def get_provider_impl(config: OTelTelemetryConfig, deps):
|
||||
"""
|
||||
Get the OTel telemetry provider implementation.
|
||||
|
||||
This function is called by the Llama Stack registry to instantiate
|
||||
the provider.
|
||||
"""
|
||||
from .otel import OTelTelemetryProvider
|
||||
|
||||
# The provider is synchronously initialized via Pydantic model_post_init
|
||||
# No async initialization needed
|
||||
return OTelTelemetryProvider(config=config)
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Literal
|
||||
from typing import Any, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
@ -11,17 +11,19 @@ class OTelTelemetryConfig(BaseModel):
|
|||
"""
|
||||
The configuration for the OpenTelemetry telemetry provider.
|
||||
Most configuration is set using environment variables.
|
||||
See https://opentelemetry.io/docs/specs/otel/configuration/sdk-environment-variables/ for more information.
|
||||
See https://opentelemetry.io/docs/specs/otel/configuration/sdk-configuration-variables/ for more information.
|
||||
"""
|
||||
service_name: str = Field(
|
||||
description="""The name of the service to be monitored.
|
||||
Is overridden by the OTEL_SERVICE_NAME or OTEL_RESOURCE_ATTRIBUTES environment variables.""",
|
||||
)
|
||||
service_version: str | None = Field(
|
||||
default=None,
|
||||
description="""The version of the service to be monitored.
|
||||
Is overriden by the OTEL_RESOURCE_ATTRIBUTES environment variable."""
|
||||
)
|
||||
deployment_environment: str | None = Field(
|
||||
default=None,
|
||||
description="""The name of the environment of the service to be monitored.
|
||||
Is overriden by the OTEL_RESOURCE_ATTRIBUTES environment variable."""
|
||||
)
|
||||
|
@ -30,3 +32,13 @@ class OTelTelemetryConfig(BaseModel):
|
|||
Is overriden by the OTEL_SPAN_PROCESSOR environment variable.""",
|
||||
default="batch"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str = "") -> dict[str, Any]:
|
||||
"""Sample configuration for use in distributions."""
|
||||
return {
|
||||
"service_name": "${env.OTEL_SERVICE_NAME:=llama-stack}",
|
||||
"service_version": "${env.OTEL_SERVICE_VERSION:=}",
|
||||
"deployment_environment": "${env.OTEL_DEPLOYMENT_ENVIRONMENT:=}",
|
||||
"span_processor": "${env.OTEL_SPAN_PROCESSOR:=batch}",
|
||||
}
|
||||
|
|
|
@ -1,22 +1,21 @@
|
|||
import os
|
||||
import threading
|
||||
|
||||
from opentelemetry import trace, metrics
|
||||
from opentelemetry.context.context import Context
|
||||
from opentelemetry.sdk.resources import Attributes, Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor, SimpleSpanProcessor
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.metrics import Counter, UpDownCounter, Histogram, ObservableGauge
|
||||
from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor
|
||||
from opentelemetry.trace import Span, SpanKind, _Links
|
||||
from typing import Sequence
|
||||
from pydantic import PrivateAttr
|
||||
from opentelemetry.trace import Tracer
|
||||
from opentelemetry.metrics import Meter
|
||||
from opentelemetry.instrumentation.sqlalchemy import SQLAlchemyInstrumentor
|
||||
|
||||
from llama_stack.core.telemetry.tracing import TelemetryProvider
|
||||
from llama_stack.core.telemetry.telemetry import TelemetryProvider
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from sqlalchemy import Engine
|
||||
|
||||
from .config import OTelTelemetryConfig
|
||||
from fastapi import FastAPI
|
||||
|
||||
|
@ -29,15 +28,9 @@ class OTelTelemetryProvider(TelemetryProvider):
|
|||
A simple Open Telemetry native telemetry provider.
|
||||
"""
|
||||
config: OTelTelemetryConfig
|
||||
_counters: dict[str, Counter] = PrivateAttr(default_factory=dict)
|
||||
_up_down_counters: dict[str, UpDownCounter] = PrivateAttr(default_factory=dict)
|
||||
_histograms: dict[str, Histogram] = PrivateAttr(default_factory=dict)
|
||||
_gauges: dict[str, ObservableGauge] = PrivateAttr(default_factory=dict)
|
||||
|
||||
|
||||
def model_post_init(self, __context):
|
||||
"""Initialize provider after Pydantic validation."""
|
||||
self._lock = threading.Lock()
|
||||
|
||||
attributes: Attributes = {
|
||||
key: value
|
||||
|
@ -74,68 +67,114 @@ class OTelTelemetryProvider(TelemetryProvider):
|
|||
if not os.environ.get("OTEL_EXPORTER_OTLP_METRICS_ENDPOINT"):
|
||||
logger.warning("OTEL_EXPORTER_OTLP_ENDPOINT or OTEL_EXPORTER_OTLP_METRICS_ENDPOINT is not set. Metrics will not be exported.")
|
||||
|
||||
|
||||
def fastapi_middleware(self, app: FastAPI):
|
||||
"""
|
||||
Instrument FastAPI with OTel for automatic tracing and metrics.
|
||||
|
||||
Captures:
|
||||
- Distributed traces for all HTTP requests (via FastAPIInstrumentor)
|
||||
- HTTP metrics following semantic conventions (custom middleware)
|
||||
"""
|
||||
# Enable automatic tracing
|
||||
FastAPIInstrumentor.instrument_app(app)
|
||||
|
||||
def custom_trace(self,
|
||||
# Add custom middleware for HTTP metrics
|
||||
meter = self.get_meter("llama_stack.http.server")
|
||||
|
||||
# Create HTTP metrics following semantic conventions
|
||||
# https://opentelemetry.io/docs/specs/semconv/http/http-metrics/
|
||||
request_duration = meter.create_histogram(
|
||||
"http.server.request.duration",
|
||||
unit="ms",
|
||||
description="Duration of HTTP server requests"
|
||||
)
|
||||
|
||||
active_requests = meter.create_up_down_counter(
|
||||
"http.server.active_requests",
|
||||
unit="requests",
|
||||
description="Number of active HTTP server requests"
|
||||
)
|
||||
|
||||
request_count = meter.create_counter(
|
||||
"http.server.request.count",
|
||||
unit="requests",
|
||||
description="Total number of HTTP server requests"
|
||||
)
|
||||
|
||||
# Add middleware to record metrics
|
||||
@app.middleware("http") # type: ignore[misc]
|
||||
async def http_metrics_middleware(request, call_next):
|
||||
import time
|
||||
|
||||
# Record active request
|
||||
active_requests.add(1, {
|
||||
"http.method": request.method,
|
||||
"http.route": request.url.path,
|
||||
})
|
||||
|
||||
start_time = time.time()
|
||||
status_code = 500 # Default to error
|
||||
|
||||
try:
|
||||
response = await call_next(request)
|
||||
status_code = response.status_code
|
||||
except Exception:
|
||||
raise
|
||||
finally:
|
||||
# Record metrics
|
||||
duration_ms = (time.time() - start_time) * 1000
|
||||
|
||||
attributes = {
|
||||
"http.method": request.method,
|
||||
"http.route": request.url.path,
|
||||
"http.status_code": status_code,
|
||||
}
|
||||
|
||||
request_duration.record(duration_ms, attributes)
|
||||
request_count.add(1, attributes)
|
||||
active_requests.add(-1, {
|
||||
"http.method": request.method,
|
||||
"http.route": request.url.path,
|
||||
})
|
||||
|
||||
return response
|
||||
|
||||
|
||||
def sqlalchemy_instrumentation(self, engine: Engine | None = None):
|
||||
kwargs = {}
|
||||
if engine:
|
||||
kwargs["engine"] = engine
|
||||
SQLAlchemyInstrumentor().instrument(**kwargs)
|
||||
|
||||
|
||||
def get_tracer(self,
|
||||
instrumenting_module_name: str,
|
||||
instrumenting_library_version: str | None = None,
|
||||
tracer_provider: TracerProvider | None = None,
|
||||
schema_url: str | None = None,
|
||||
attributes: Attributes | None = None
|
||||
) -> Tracer:
|
||||
return trace.get_tracer(
|
||||
instrumenting_module_name=instrumenting_module_name,
|
||||
instrumenting_library_version=instrumenting_library_version,
|
||||
tracer_provider=tracer_provider,
|
||||
schema_url=schema_url,
|
||||
attributes=attributes
|
||||
)
|
||||
|
||||
|
||||
def get_meter(self,
|
||||
name: str,
|
||||
context: Context | None = None,
|
||||
kind: SpanKind = SpanKind.INTERNAL,
|
||||
attributes: Attributes = {},
|
||||
links: _Links = None,
|
||||
start_time: int | None = None,
|
||||
record_exception: bool = True,
|
||||
set_status_on_exception: bool = True) -> Span:
|
||||
"""
|
||||
Creates a custom tracing span using the Open Telemetry SDK.
|
||||
"""
|
||||
tracer = trace.get_tracer(__name__)
|
||||
return tracer.start_span(name, context, kind, attributes, links, start_time, record_exception, set_status_on_exception)
|
||||
|
||||
|
||||
def record_count(self, name: str, amount: int|float, context: Context | None = None, attributes: dict[str, str] | None = None, unit: str = "", description: str = ""):
|
||||
"""
|
||||
Increments a counter metric using the Open Telemetry SDK that are indexed by the meter name.
|
||||
This function is designed to be compatible with other popular telemetry providers design patterns,
|
||||
like Datadog and New Relic.
|
||||
"""
|
||||
meter = metrics.get_meter(__name__)
|
||||
|
||||
with self._lock:
|
||||
if name not in self._counters:
|
||||
self._counters[name] = meter.create_counter(name, unit=unit, description=description)
|
||||
counter = self._counters[name]
|
||||
|
||||
counter.add(amount, attributes=attributes, context=context)
|
||||
|
||||
|
||||
def record_histogram(self, name: str, value: int|float, context: Context | None = None, attributes: dict[str, str] | None = None, unit: str = "", description: str = "", explicit_bucket_boundaries_advisory: Sequence[float] | None = None):
|
||||
"""
|
||||
Records a histogram metric using the Open Telemetry SDK that are indexed by the meter name.
|
||||
This function is designed to be compatible with other popular telemetry providers design patterns,
|
||||
like Datadog and New Relic.
|
||||
"""
|
||||
meter = metrics.get_meter(__name__)
|
||||
|
||||
with self._lock:
|
||||
if name not in self._histograms:
|
||||
self._histograms[name] = meter.create_histogram(name, unit=unit, description=description, explicit_bucket_boundaries_advisory=explicit_bucket_boundaries_advisory)
|
||||
histogram = self._histograms[name]
|
||||
|
||||
histogram.record(value, attributes=attributes, context=context)
|
||||
|
||||
|
||||
def record_up_down_counter(self, name: str, value: int|float, context: Context | None = None, attributes: dict[str, str] | None = None, unit: str = "", description: str = ""):
|
||||
"""
|
||||
Records an up/down counter metric using the Open Telemetry SDK that are indexed by the meter name.
|
||||
This function is designed to be compatible with other popular telemetry providers design patterns,
|
||||
like Datadog and New Relic.
|
||||
"""
|
||||
meter = metrics.get_meter(__name__)
|
||||
|
||||
with self._lock:
|
||||
if name not in self._up_down_counters:
|
||||
self._up_down_counters[name] = meter.create_up_down_counter(name, unit=unit, description=description)
|
||||
up_down_counter = self._up_down_counters[name]
|
||||
|
||||
up_down_counter.add(value, attributes=attributes, context=context)
|
||||
version: str = "",
|
||||
meter_provider: MeterProvider | None = None,
|
||||
schema_url: str | None = None,
|
||||
attributes: Attributes | None = None
|
||||
) -> Meter:
|
||||
return metrics.get_meter(
|
||||
name=name,
|
||||
version=version,
|
||||
meter_provider=meter_provider,
|
||||
schema_url=schema_url,
|
||||
attributes=attributes
|
||||
)
|
|
@ -26,4 +26,16 @@ def available_providers() -> list[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.telemetry.meta_reference.config.TelemetryConfig",
|
||||
description="Meta's reference implementation of telemetry and observability using OpenTelemetry.",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.telemetry,
|
||||
provider_type="inline::otel",
|
||||
pip_packages=[
|
||||
"opentelemetry-sdk",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-instrumentation-fastapi",
|
||||
],
|
||||
module="llama_stack.providers.inline.telemetry.otel",
|
||||
config_class="llama_stack.providers.inline.telemetry.otel.config.OTelTelemetryConfig",
|
||||
description="Native OpenTelemetry provider with full access to OTel Tracer and Meter APIs for advanced instrumentation.",
|
||||
),
|
||||
]
|
||||
|
|
|
@ -52,6 +52,7 @@ dependencies = [
|
|||
"sqlalchemy[asyncio]>=2.0.41", # server - for conversations
|
||||
"opentelemetry-semantic-conventions>=0.57b0",
|
||||
"opentelemetry-instrumentation-fastapi>=0.57b0",
|
||||
"opentelemetry-instrumentation-sqlalchemy>=0.57b0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
|
6
tests/integration/telemetry/__init__.py
Normal file
6
tests/integration/telemetry/__init__.py
Normal file
|
@ -0,0 +1,6 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
148
tests/integration/telemetry/mocking/README.md
Normal file
148
tests/integration/telemetry/mocking/README.md
Normal file
|
@ -0,0 +1,148 @@
|
|||
# Mock Server Infrastructure
|
||||
|
||||
This directory contains mock servers for E2E telemetry testing.
|
||||
|
||||
## Structure
|
||||
|
||||
```
|
||||
mocking/
|
||||
├── README.md ← You are here
|
||||
├── __init__.py ← Module exports
|
||||
├── mock_base.py ← Pydantic base class for all mocks
|
||||
├── servers.py ← Mock server implementations
|
||||
└── harness.py ← Async startup harness
|
||||
```
|
||||
|
||||
## Files
|
||||
|
||||
### `mock_base.py` - Base Class
|
||||
Pydantic base model that all mock servers must inherit from.
|
||||
|
||||
**Contract:**
|
||||
```python
|
||||
class MockServerBase(BaseModel):
|
||||
async def await_start(self):
|
||||
# Start server and wait until ready
|
||||
...
|
||||
|
||||
def stop(self):
|
||||
# Stop server and cleanup
|
||||
...
|
||||
```
|
||||
|
||||
### `servers.py` - Mock Implementations
|
||||
Contains:
|
||||
- **MockOTLPCollector** - Receives OTLP telemetry (port 4318)
|
||||
- **MockVLLMServer** - Simulates vLLM inference API (port 8000)
|
||||
|
||||
### `harness.py` - Startup Orchestration
|
||||
Provides:
|
||||
- **MockServerConfig** - Pydantic config for server registration
|
||||
- **start_mock_servers_async()** - Starts servers in parallel
|
||||
- **stop_mock_servers()** - Stops all servers
|
||||
|
||||
## Creating a New Mock Server
|
||||
|
||||
### Step 1: Implement the Server
|
||||
|
||||
Add to `servers.py`:
|
||||
```python
|
||||
class MockRedisServer(MockServerBase):
|
||||
"""Mock Redis server."""
|
||||
|
||||
port: int = Field(default=6379)
|
||||
|
||||
# Non-Pydantic fields
|
||||
server: Any = Field(default=None, exclude=True)
|
||||
|
||||
def model_post_init(self, __context):
|
||||
self.server = None
|
||||
|
||||
async def await_start(self):
|
||||
"""Start Redis mock and wait until ready."""
|
||||
# Start your server
|
||||
self.server = create_redis_server(self.port)
|
||||
self.server.start()
|
||||
|
||||
# Wait for port to be listening
|
||||
for _ in range(10):
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
if sock.connect_ex(('localhost', self.port)) == 0:
|
||||
sock.close()
|
||||
return # Ready!
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
def stop(self):
|
||||
if self.server:
|
||||
self.server.stop()
|
||||
```
|
||||
|
||||
### Step 2: Register in Test
|
||||
|
||||
In `test_otel_e2e.py`, add to MOCK_SERVERS list:
|
||||
```python
|
||||
MOCK_SERVERS = [
|
||||
# ... existing servers ...
|
||||
MockServerConfig(
|
||||
name="Mock Redis",
|
||||
server_class=MockRedisServer,
|
||||
init_kwargs={"port": 6379},
|
||||
),
|
||||
]
|
||||
```
|
||||
|
||||
### Step 3: Done!
|
||||
|
||||
The harness automatically:
|
||||
- Creates the server instance
|
||||
- Calls `await_start()` in parallel with other servers
|
||||
- Returns when all are ready
|
||||
- Stops all servers on teardown
|
||||
|
||||
## Benefits
|
||||
|
||||
✅ **Parallel Startup** - All servers start simultaneously
|
||||
✅ **Type-Safe** - Pydantic validation
|
||||
✅ **Simple** - Just implement 2 methods
|
||||
✅ **Fast** - No HTTP polling, direct port checking
|
||||
✅ **Clean** - Async/await pattern
|
||||
|
||||
## Usage in Tests
|
||||
|
||||
```python
|
||||
@pytest.fixture(scope="module")
|
||||
def mock_servers():
|
||||
servers = asyncio.run(start_mock_servers_async(MOCK_SERVERS))
|
||||
yield servers
|
||||
stop_mock_servers(servers)
|
||||
|
||||
# Access specific servers
|
||||
@pytest.fixture(scope="module")
|
||||
def mock_redis(mock_servers):
|
||||
return mock_servers["Mock Redis"]
|
||||
```
|
||||
|
||||
## Key Design Decisions
|
||||
|
||||
### Why Pydantic?
|
||||
- Type safety for server configuration
|
||||
- Built-in validation
|
||||
- Clear interface contract
|
||||
|
||||
### Why `await_start()` instead of HTTP `/ready`?
|
||||
- Faster (no HTTP round-trip)
|
||||
- Simpler (direct port checking)
|
||||
- More reliable (internal state, not external endpoint)
|
||||
|
||||
### Why separate harness?
|
||||
- Reusable across different test files
|
||||
- Easy to add new servers
|
||||
- Centralized error handling
|
||||
|
||||
## Examples
|
||||
|
||||
See `test_otel_e2e.py` for real-world usage:
|
||||
- Line ~200: MOCK_SERVERS configuration
|
||||
- Line ~230: Convenience fixtures
|
||||
- Line ~240: Using servers in tests
|
||||
|
29
tests/integration/telemetry/mocking/__init__.py
Normal file
29
tests/integration/telemetry/mocking/__init__.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Mock server infrastructure for telemetry E2E testing.
|
||||
|
||||
This module provides:
|
||||
- MockServerBase: Pydantic base class for all mock servers
|
||||
- MockOTLPCollector: Mock OTLP telemetry collector
|
||||
- MockVLLMServer: Mock vLLM inference server
|
||||
- Mock server harness for parallel async startup
|
||||
"""
|
||||
|
||||
from .mock_base import MockServerBase
|
||||
from .servers import MockOTLPCollector, MockVLLMServer
|
||||
from .harness import MockServerConfig, start_mock_servers_async, stop_mock_servers
|
||||
|
||||
__all__ = [
|
||||
"MockServerBase",
|
||||
"MockOTLPCollector",
|
||||
"MockVLLMServer",
|
||||
"MockServerConfig",
|
||||
"start_mock_servers_async",
|
||||
"stop_mock_servers",
|
||||
]
|
||||
|
107
tests/integration/telemetry/mocking/harness.py
Normal file
107
tests/integration/telemetry/mocking/harness.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Mock server startup harness for parallel initialization.
|
||||
|
||||
HOW TO ADD A NEW MOCK SERVER:
|
||||
1. Import your mock server class
|
||||
2. Add it to MOCK_SERVERS list with configuration
|
||||
3. Done! It will start in parallel with others.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from .mock_base import MockServerBase
|
||||
|
||||
|
||||
class MockServerConfig(BaseModel):
|
||||
"""
|
||||
Configuration for a mock server to start.
|
||||
|
||||
**TO ADD A NEW MOCK SERVER:**
|
||||
Just create a MockServerConfig instance with your server class.
|
||||
|
||||
Example:
|
||||
MockServerConfig(
|
||||
name="Mock MyService",
|
||||
server_class=MockMyService,
|
||||
init_kwargs={"port": 9000, "config_param": "value"},
|
||||
)
|
||||
"""
|
||||
|
||||
model_config = {"arbitrary_types_allowed": True}
|
||||
|
||||
name: str = Field(description="Display name for logging")
|
||||
server_class: type = Field(description="Mock server class (must inherit from MockServerBase)")
|
||||
init_kwargs: Dict[str, Any] = Field(default_factory=dict, description="Kwargs to pass to server constructor")
|
||||
|
||||
|
||||
async def start_mock_servers_async(mock_servers_config: List[MockServerConfig]) -> Dict[str, MockServerBase]:
|
||||
"""
|
||||
Start all mock servers in parallel and wait for them to be ready.
|
||||
|
||||
**HOW IT WORKS:**
|
||||
1. Creates all server instances
|
||||
2. Calls await_start() on all servers in parallel
|
||||
3. Returns when all are ready
|
||||
|
||||
**SIMPLE TO USE:**
|
||||
servers = await start_mock_servers_async([config1, config2, ...])
|
||||
|
||||
Args:
|
||||
mock_servers_config: List of mock server configurations
|
||||
|
||||
Returns:
|
||||
Dict mapping server name to server instance
|
||||
"""
|
||||
servers = {}
|
||||
start_tasks = []
|
||||
|
||||
# Create all servers and prepare start tasks
|
||||
for config in mock_servers_config:
|
||||
server = config.server_class(**config.init_kwargs)
|
||||
servers[config.name] = server
|
||||
start_tasks.append(server.await_start())
|
||||
|
||||
# Start all servers in parallel
|
||||
try:
|
||||
await asyncio.gather(*start_tasks)
|
||||
|
||||
# Print readiness confirmation
|
||||
for name in servers.keys():
|
||||
print(f"[INFO] {name} ready")
|
||||
|
||||
except Exception as e:
|
||||
# If any server fails, stop all servers
|
||||
for server in servers.values():
|
||||
try:
|
||||
server.stop()
|
||||
except:
|
||||
pass
|
||||
raise RuntimeError(f"Failed to start mock servers: {e}")
|
||||
|
||||
return servers
|
||||
|
||||
|
||||
def stop_mock_servers(servers: Dict[str, Any]):
|
||||
"""
|
||||
Stop all mock servers.
|
||||
|
||||
Args:
|
||||
servers: Dict of server instances from start_mock_servers_async()
|
||||
"""
|
||||
for name, server in servers.items():
|
||||
try:
|
||||
if hasattr(server, 'get_request_count'):
|
||||
print(f"\n[INFO] {name} received {server.get_request_count()} requests")
|
||||
server.stop()
|
||||
except Exception as e:
|
||||
print(f"[WARN] Error stopping {name}: {e}")
|
||||
|
69
tests/integration/telemetry/mocking/mock_base.py
Normal file
69
tests/integration/telemetry/mocking/mock_base.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Base class for mock servers with async startup support.
|
||||
|
||||
All mock servers should inherit from MockServerBase and implement await_start().
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
from abc import abstractmethod
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MockServerBase(BaseModel):
|
||||
"""
|
||||
Pydantic base model for mock servers.
|
||||
|
||||
**TO CREATE A NEW MOCK SERVER:**
|
||||
1. Inherit from this class
|
||||
2. Implement async def await_start(self)
|
||||
3. Implement def stop(self)
|
||||
4. Done!
|
||||
|
||||
Example:
|
||||
class MyMockServer(MockServerBase):
|
||||
port: int = 8080
|
||||
|
||||
async def await_start(self):
|
||||
# Start your server
|
||||
self.server = create_server()
|
||||
self.server.start()
|
||||
# Wait until ready (can check internal state, no HTTP needed)
|
||||
while not self.server.is_listening():
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
def stop(self):
|
||||
if self.server:
|
||||
self.server.stop()
|
||||
"""
|
||||
|
||||
model_config = {"arbitrary_types_allowed": True}
|
||||
|
||||
@abstractmethod
|
||||
async def await_start(self):
|
||||
"""
|
||||
Start the server and wait until it's ready.
|
||||
|
||||
This method should:
|
||||
1. Start the server (synchronous or async)
|
||||
2. Wait until the server is fully ready to accept requests
|
||||
3. Return when ready
|
||||
|
||||
Subclasses can check internal state directly - no HTTP polling needed!
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def stop(self):
|
||||
"""
|
||||
Stop the server and clean up resources.
|
||||
|
||||
This method should gracefully shut down the server.
|
||||
"""
|
||||
...
|
||||
|
387
tests/integration/telemetry/mocking/servers.py
Normal file
387
tests/integration/telemetry/mocking/servers.py
Normal file
|
@ -0,0 +1,387 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Mock servers for OpenTelemetry E2E testing.
|
||||
|
||||
This module provides mock servers for testing telemetry:
|
||||
- MockOTLPCollector: Receives and stores OTLP telemetry exports
|
||||
- MockVLLMServer: Simulates vLLM inference API with valid OpenAI responses
|
||||
|
||||
These mocks allow E2E testing without external dependencies.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import http.server
|
||||
import json
|
||||
import socket
|
||||
import threading
|
||||
import time
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from .mock_base import MockServerBase
|
||||
|
||||
|
||||
class MockOTLPCollector(MockServerBase):
|
||||
"""
|
||||
Mock OTLP collector HTTP server.
|
||||
|
||||
Receives real OTLP exports from Llama Stack and stores them for verification.
|
||||
Runs on localhost:4318 (standard OTLP HTTP port).
|
||||
|
||||
Usage:
|
||||
collector = MockOTLPCollector()
|
||||
await collector.await_start()
|
||||
# ... run tests ...
|
||||
print(f"Received {collector.get_trace_count()} traces")
|
||||
collector.stop()
|
||||
"""
|
||||
|
||||
port: int = Field(default=4318, description="Port to run collector on")
|
||||
|
||||
# Non-Pydantic fields (set after initialization)
|
||||
traces: List[Dict] = Field(default_factory=list, exclude=True)
|
||||
metrics: List[Dict] = Field(default_factory=list, exclude=True)
|
||||
server: Any = Field(default=None, exclude=True)
|
||||
server_thread: Any = Field(default=None, exclude=True)
|
||||
|
||||
def model_post_init(self, __context):
|
||||
"""Initialize after Pydantic validation."""
|
||||
self.traces = []
|
||||
self.metrics = []
|
||||
self.server = None
|
||||
self.server_thread = None
|
||||
|
||||
def _create_handler_class(self):
|
||||
"""Create the HTTP handler class for this collector instance."""
|
||||
collector_self = self
|
||||
|
||||
class OTLPHandler(http.server.BaseHTTPRequestHandler):
|
||||
"""HTTP request handler for OTLP requests."""
|
||||
|
||||
def log_message(self, format, *args):
|
||||
"""Suppress HTTP server logs."""
|
||||
pass
|
||||
|
||||
def do_GET(self):
|
||||
"""Handle GET requests."""
|
||||
# No readiness endpoint needed - using await_start() instead
|
||||
self.send_response(404)
|
||||
self.end_headers()
|
||||
|
||||
def do_POST(self):
|
||||
"""Handle OTLP POST requests."""
|
||||
content_length = int(self.headers.get('Content-Length', 0))
|
||||
body = self.rfile.read(content_length) if content_length > 0 else b''
|
||||
|
||||
# Store the export request
|
||||
if '/v1/traces' in self.path:
|
||||
collector_self.traces.append({
|
||||
'body': body,
|
||||
'timestamp': time.time(),
|
||||
})
|
||||
elif '/v1/metrics' in self.path:
|
||||
collector_self.metrics.append({
|
||||
'body': body,
|
||||
'timestamp': time.time(),
|
||||
})
|
||||
|
||||
# Always return success (200 OK)
|
||||
self.send_response(200)
|
||||
self.send_header('Content-Type', 'application/json')
|
||||
self.end_headers()
|
||||
self.wfile.write(b'{}')
|
||||
|
||||
return OTLPHandler
|
||||
|
||||
async def await_start(self):
|
||||
"""
|
||||
Start the OTLP collector and wait until ready.
|
||||
|
||||
This method is async and can be awaited to ensure the server is ready.
|
||||
"""
|
||||
# Create handler and start the HTTP server
|
||||
handler_class = self._create_handler_class()
|
||||
self.server = http.server.HTTPServer(('localhost', self.port), handler_class)
|
||||
self.server_thread = threading.Thread(target=self.server.serve_forever, daemon=True)
|
||||
self.server_thread.start()
|
||||
|
||||
# Wait for server to be listening on the port
|
||||
for _ in range(10):
|
||||
try:
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
result = sock.connect_ex(('localhost', self.port))
|
||||
sock.close()
|
||||
if result == 0:
|
||||
# Port is listening
|
||||
return
|
||||
except:
|
||||
pass
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
raise RuntimeError(f"OTLP collector failed to start on port {self.port}")
|
||||
|
||||
def stop(self):
|
||||
"""Stop the OTLP collector server."""
|
||||
if self.server:
|
||||
self.server.shutdown()
|
||||
self.server.server_close()
|
||||
|
||||
def clear(self):
|
||||
"""Clear all captured telemetry data."""
|
||||
self.traces = []
|
||||
self.metrics = []
|
||||
|
||||
def get_trace_count(self) -> int:
|
||||
"""Get number of trace export requests received."""
|
||||
return len(self.traces)
|
||||
|
||||
def get_metric_count(self) -> int:
|
||||
"""Get number of metric export requests received."""
|
||||
return len(self.metrics)
|
||||
|
||||
def get_all_traces(self) -> List[Dict]:
|
||||
"""Get all captured trace exports."""
|
||||
return self.traces
|
||||
|
||||
def get_all_metrics(self) -> List[Dict]:
|
||||
"""Get all captured metric exports."""
|
||||
return self.metrics
|
||||
|
||||
|
||||
class MockVLLMServer(MockServerBase):
|
||||
"""
|
||||
Mock vLLM inference server with OpenAI-compatible API.
|
||||
|
||||
Returns valid OpenAI Python client response objects for:
|
||||
- Chat completions (/v1/chat/completions)
|
||||
- Text completions (/v1/completions)
|
||||
- Model listing (/v1/models)
|
||||
|
||||
Runs on localhost:8000 (standard vLLM port).
|
||||
|
||||
Usage:
|
||||
server = MockVLLMServer(models=["my-model"])
|
||||
await server.await_start()
|
||||
# ... make inference calls ...
|
||||
print(f"Handled {server.get_request_count()} requests")
|
||||
server.stop()
|
||||
"""
|
||||
|
||||
port: int = Field(default=8000, description="Port to run server on")
|
||||
models: List[str] = Field(
|
||||
default_factory=lambda: ["meta-llama/Llama-3.2-1B-Instruct"],
|
||||
description="List of model IDs to serve"
|
||||
)
|
||||
|
||||
# Non-Pydantic fields
|
||||
requests_received: List[Dict] = Field(default_factory=list, exclude=True)
|
||||
server: Any = Field(default=None, exclude=True)
|
||||
server_thread: Any = Field(default=None, exclude=True)
|
||||
|
||||
def model_post_init(self, __context):
|
||||
"""Initialize after Pydantic validation."""
|
||||
self.requests_received = []
|
||||
self.server = None
|
||||
self.server_thread = None
|
||||
|
||||
def _create_handler_class(self):
|
||||
"""Create the HTTP handler class for this vLLM instance."""
|
||||
server_self = self
|
||||
|
||||
class VLLMHandler(http.server.BaseHTTPRequestHandler):
|
||||
"""HTTP request handler for vLLM API."""
|
||||
|
||||
def log_message(self, format, *args):
|
||||
"""Suppress HTTP server logs."""
|
||||
pass
|
||||
|
||||
def log_request(self, code='-', size='-'):
|
||||
"""Log incoming requests for debugging."""
|
||||
print(f"[DEBUG] Mock vLLM received: {self.command} {self.path} -> {code}")
|
||||
|
||||
def do_GET(self):
|
||||
"""Handle GET requests (models list, health check)."""
|
||||
# Log GET requests too
|
||||
server_self.requests_received.append({
|
||||
'path': self.path,
|
||||
'method': 'GET',
|
||||
'timestamp': time.time(),
|
||||
})
|
||||
|
||||
if self.path == '/v1/models':
|
||||
response = self._create_models_list_response()
|
||||
self._send_json_response(200, response)
|
||||
|
||||
elif self.path == '/health' or self.path == '/v1/health':
|
||||
self._send_json_response(200, {"status": "healthy"})
|
||||
|
||||
else:
|
||||
self.send_response(404)
|
||||
self.end_headers()
|
||||
|
||||
def do_POST(self):
|
||||
"""Handle POST requests (chat/text completions)."""
|
||||
content_length = int(self.headers.get('Content-Length', 0))
|
||||
body = self.rfile.read(content_length) if content_length > 0 else b'{}'
|
||||
|
||||
try:
|
||||
request_data = json.loads(body)
|
||||
except:
|
||||
request_data = {}
|
||||
|
||||
# Log the request
|
||||
server_self.requests_received.append({
|
||||
'path': self.path,
|
||||
'body': request_data,
|
||||
'timestamp': time.time(),
|
||||
})
|
||||
|
||||
# Route to appropriate handler
|
||||
if '/chat/completions' in self.path:
|
||||
response = self._create_chat_completion_response(request_data)
|
||||
self._send_json_response(200, response)
|
||||
|
||||
elif '/completions' in self.path:
|
||||
response = self._create_text_completion_response(request_data)
|
||||
self._send_json_response(200, response)
|
||||
|
||||
else:
|
||||
self._send_json_response(200, {"status": "ok"})
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# Response Generators
|
||||
# **TO MODIFY RESPONSES:** Edit these methods
|
||||
# ----------------------------------------------------------------
|
||||
|
||||
def _create_models_list_response(self) -> Dict:
|
||||
"""Create OpenAI models list response with configured models."""
|
||||
return {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": model_id,
|
||||
"object": "model",
|
||||
"created": int(time.time()),
|
||||
"owned_by": "meta",
|
||||
}
|
||||
for model_id in server_self.models
|
||||
]
|
||||
}
|
||||
|
||||
def _create_chat_completion_response(self, request_data: Dict) -> Dict:
|
||||
"""
|
||||
Create OpenAI ChatCompletion response.
|
||||
|
||||
Returns a valid response matching openai.types.ChatCompletion
|
||||
"""
|
||||
return {
|
||||
"id": "chatcmpl-test123",
|
||||
"object": "chat.completion",
|
||||
"created": int(time.time()),
|
||||
"model": request_data.get("model", "meta-llama/Llama-3.2-1B-Instruct"),
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "This is a test response from mock vLLM server.",
|
||||
"tool_calls": None,
|
||||
},
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
}],
|
||||
"usage": {
|
||||
"prompt_tokens": 25,
|
||||
"completion_tokens": 15,
|
||||
"total_tokens": 40,
|
||||
"completion_tokens_details": None,
|
||||
},
|
||||
"system_fingerprint": None,
|
||||
"service_tier": None,
|
||||
}
|
||||
|
||||
def _create_text_completion_response(self, request_data: Dict) -> Dict:
|
||||
"""
|
||||
Create OpenAI Completion response.
|
||||
|
||||
Returns a valid response matching openai.types.Completion
|
||||
"""
|
||||
return {
|
||||
"id": "cmpl-test123",
|
||||
"object": "text_completion",
|
||||
"created": int(time.time()),
|
||||
"model": request_data.get("model", "meta-llama/Llama-3.2-1B-Instruct"),
|
||||
"choices": [{
|
||||
"text": "This is a test completion.",
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
}],
|
||||
"usage": {
|
||||
"prompt_tokens": 10,
|
||||
"completion_tokens": 8,
|
||||
"total_tokens": 18,
|
||||
"completion_tokens_details": None,
|
||||
},
|
||||
"system_fingerprint": None,
|
||||
}
|
||||
|
||||
def _send_json_response(self, status_code: int, data: Dict):
|
||||
"""Helper to send JSON response."""
|
||||
self.send_response(status_code)
|
||||
self.send_header('Content-Type', 'application/json')
|
||||
self.end_headers()
|
||||
self.wfile.write(json.dumps(data).encode())
|
||||
|
||||
return VLLMHandler
|
||||
|
||||
async def await_start(self):
|
||||
"""
|
||||
Start the vLLM server and wait until ready.
|
||||
|
||||
This method is async and can be awaited to ensure the server is ready.
|
||||
"""
|
||||
# Create handler and start the HTTP server
|
||||
handler_class = self._create_handler_class()
|
||||
self.server = http.server.HTTPServer(('localhost', self.port), handler_class)
|
||||
self.server_thread = threading.Thread(target=self.server.serve_forever, daemon=True)
|
||||
self.server_thread.start()
|
||||
|
||||
# Wait for server to be listening on the port
|
||||
for _ in range(10):
|
||||
try:
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
result = sock.connect_ex(('localhost', self.port))
|
||||
sock.close()
|
||||
if result == 0:
|
||||
# Port is listening
|
||||
return
|
||||
except:
|
||||
pass
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
raise RuntimeError(f"vLLM server failed to start on port {self.port}")
|
||||
|
||||
def stop(self):
|
||||
"""Stop the vLLM server."""
|
||||
if self.server:
|
||||
self.server.shutdown()
|
||||
self.server.server_close()
|
||||
|
||||
def clear(self):
|
||||
"""Clear request history."""
|
||||
self.requests_received = []
|
||||
|
||||
def get_request_count(self) -> int:
|
||||
"""Get number of requests received."""
|
||||
return len(self.requests_received)
|
||||
|
||||
def get_all_requests(self) -> List[Dict]:
|
||||
"""Get all received requests with their bodies."""
|
||||
return self.requests_received
|
||||
|
455
tests/integration/telemetry/test_otel_e2e.py
Normal file
455
tests/integration/telemetry/test_otel_e2e.py
Normal file
|
@ -0,0 +1,455 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
End-to-end integration tests for OpenTelemetry with automatic instrumentation.
|
||||
|
||||
HOW THIS WORKS:
|
||||
1. Starts a mock OTLP collector (HTTP server) to receive telemetry
|
||||
2. Starts a mock vLLM server to handle inference requests
|
||||
3. Starts REAL Llama Stack with: opentelemetry-instrument llama stack run
|
||||
4. Makes REAL API calls to the stack
|
||||
5. Verifies telemetry was exported to the mock collector
|
||||
|
||||
WHERE TO MAKE CHANGES:
|
||||
- Add test cases → See TEST_CASES list below (line ~70)
|
||||
- Add mock servers → See MOCK_SERVERS list in mock_servers fixture (line ~200)
|
||||
- Modify mock behavior → See mocking/servers.py
|
||||
- Change stack config → See llama_stack_server fixture (line ~250)
|
||||
- Add assertions → See TestOTelE2EWithRealServer class (line ~370)
|
||||
|
||||
RUNNING THE TESTS:
|
||||
- Quick (mock servers only): pytest test_otel_e2e.py::TestMockServers -v
|
||||
- Full E2E (slow): pytest test_otel_e2e.py::TestOTelE2EWithRealServer -v -m slow
|
||||
"""
|
||||
|
||||
# ============================================================================
|
||||
# IMPORTS
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import socket
|
||||
import subprocess
|
||||
import time
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pytest
|
||||
import requests
|
||||
import yaml
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
# Mock servers are in the mocking/ subdirectory
|
||||
from .mocking import (
|
||||
MockOTLPCollector,
|
||||
MockVLLMServer,
|
||||
MockServerConfig,
|
||||
start_mock_servers_async,
|
||||
stop_mock_servers,
|
||||
)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# DATA MODELS
|
||||
# ============================================================================
|
||||
|
||||
class TelemetryTestCase(BaseModel):
|
||||
"""
|
||||
Pydantic model defining expected telemetry for an API call.
|
||||
|
||||
**TO ADD A NEW TEST CASE:** Add to TEST_CASES list below.
|
||||
"""
|
||||
|
||||
name: str = Field(description="Unique test case identifier")
|
||||
http_method: str = Field(description="HTTP method (GET, POST, etc.)")
|
||||
api_path: str = Field(description="API path (e.g., '/v1/models')")
|
||||
request_body: Dict[str, Any] | None = Field(default=None)
|
||||
expected_http_status: int = Field(default=200)
|
||||
expected_trace_exports: int = Field(default=1, description="Minimum number of trace exports expected")
|
||||
expected_metric_exports: int = Field(default=0, description="Minimum number of metric exports expected")
|
||||
should_have_error_span: bool = Field(default=False)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# TEST CONFIGURATION
|
||||
# **TO ADD NEW TESTS:** Add TelemetryTestCase instances here
|
||||
# ============================================================================
|
||||
|
||||
TEST_CASES = [
|
||||
TelemetryTestCase(
|
||||
name="models_list",
|
||||
http_method="GET",
|
||||
api_path="/v1/models",
|
||||
expected_trace_exports=1,
|
||||
expected_metric_exports=1, # HTTP metrics from OTel provider middleware
|
||||
),
|
||||
TelemetryTestCase(
|
||||
name="chat_completion",
|
||||
http_method="POST",
|
||||
api_path="/v1/inference/chat_completion",
|
||||
request_body={
|
||||
"model": "meta-llama/Llama-3.2-1B-Instruct",
|
||||
"messages": [{"role": "user", "content": "Hello!"}],
|
||||
},
|
||||
expected_trace_exports=2, # Stack request + vLLM backend call
|
||||
expected_metric_exports=1, # HTTP metrics (duration, count, active_requests)
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# TEST INFRASTRUCTURE
|
||||
# ============================================================================
|
||||
|
||||
class TelemetryTestRunner:
|
||||
"""
|
||||
Executes TelemetryTestCase instances against real Llama Stack.
|
||||
|
||||
**HOW IT WORKS:**
|
||||
1. Makes real HTTP request to the stack
|
||||
2. Waits for telemetry export
|
||||
3. Verifies exports were sent to mock collector
|
||||
"""
|
||||
|
||||
def __init__(self, base_url: str, collector: MockOTLPCollector):
|
||||
self.base_url = base_url
|
||||
self.collector = collector
|
||||
|
||||
def run_test_case(self, test_case: TelemetryTestCase, verbose: bool = False) -> bool:
|
||||
"""Execute a single test case and verify telemetry."""
|
||||
initial_traces = self.collector.get_trace_count()
|
||||
initial_metrics = self.collector.get_metric_count()
|
||||
|
||||
if verbose:
|
||||
print(f"\n--- {test_case.name} ---")
|
||||
print(f" {test_case.http_method} {test_case.api_path}")
|
||||
|
||||
# Make real HTTP request to Llama Stack
|
||||
try:
|
||||
url = f"{self.base_url}{test_case.api_path}"
|
||||
|
||||
if test_case.http_method == "GET":
|
||||
response = requests.get(url, timeout=5)
|
||||
elif test_case.http_method == "POST":
|
||||
response = requests.post(url, json=test_case.request_body or {}, timeout=5)
|
||||
else:
|
||||
response = requests.request(test_case.http_method, url, timeout=5)
|
||||
|
||||
if verbose:
|
||||
print(f" HTTP Response: {response.status_code}")
|
||||
|
||||
status_match = response.status_code == test_case.expected_http_status
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
if verbose:
|
||||
print(f" Request failed: {e}")
|
||||
status_match = False
|
||||
|
||||
# Wait for automatic instrumentation to export telemetry
|
||||
# Traces export immediately, metrics export every 1 second (configured via env var)
|
||||
time.sleep(2.0) # Wait for both traces and metrics to export
|
||||
|
||||
# Verify traces were exported to mock collector
|
||||
new_traces = self.collector.get_trace_count() - initial_traces
|
||||
traces_exported = new_traces >= test_case.expected_trace_exports
|
||||
|
||||
# Verify metrics were exported (if expected)
|
||||
new_metrics = self.collector.get_metric_count() - initial_metrics
|
||||
metrics_exported = new_metrics >= test_case.expected_metric_exports
|
||||
|
||||
if verbose:
|
||||
print(f" Expected: >={test_case.expected_trace_exports} trace exports, >={test_case.expected_metric_exports} metric exports")
|
||||
print(f" Actual: {new_traces} trace exports, {new_metrics} metric exports")
|
||||
result = status_match and traces_exported and metrics_exported
|
||||
print(f" Result: {'PASS' if result else 'FAIL'}")
|
||||
|
||||
return status_match and traces_exported and metrics_exported
|
||||
|
||||
def run_all_test_cases(self, test_cases: List[TelemetryTestCase], verbose: bool = True) -> Dict[str, bool]:
|
||||
"""Run all test cases and return results."""
|
||||
results = {}
|
||||
for test_case in test_cases:
|
||||
results[test_case.name] = self.run_test_case(test_case, verbose=verbose)
|
||||
return results
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# HELPER FUNCTIONS
|
||||
# ============================================================================
|
||||
|
||||
def is_port_available(port: int) -> bool:
|
||||
"""Check if a TCP port is available for binding."""
|
||||
try:
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
|
||||
sock.bind(('localhost', port))
|
||||
return True
|
||||
except OSError:
|
||||
return False
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# PYTEST FIXTURES
|
||||
# ============================================================================
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def mock_servers():
|
||||
"""
|
||||
Fixture: Start all mock servers in parallel using async harness.
|
||||
|
||||
**TO ADD A NEW MOCK SERVER:**
|
||||
Just add a MockServerConfig to the MOCK_SERVERS list below.
|
||||
"""
|
||||
import asyncio
|
||||
|
||||
# ========================================================================
|
||||
# MOCK SERVER CONFIGURATION
|
||||
# **TO ADD A NEW MOCK:** Just add a MockServerConfig instance below
|
||||
#
|
||||
# Example:
|
||||
# MockServerConfig(
|
||||
# name="Mock MyService",
|
||||
# server_class=MockMyService, # Must inherit from MockServerBase
|
||||
# init_kwargs={"port": 9000, "param": "value"},
|
||||
# ),
|
||||
# ========================================================================
|
||||
MOCK_SERVERS = [
|
||||
MockServerConfig(
|
||||
name="Mock OTLP Collector",
|
||||
server_class=MockOTLPCollector,
|
||||
init_kwargs={"port": 4318},
|
||||
),
|
||||
MockServerConfig(
|
||||
name="Mock vLLM Server",
|
||||
server_class=MockVLLMServer,
|
||||
init_kwargs={
|
||||
"port": 8000,
|
||||
"models": ["meta-llama/Llama-3.2-1B-Instruct"],
|
||||
},
|
||||
),
|
||||
# Add more mock servers here - they will start in parallel automatically!
|
||||
]
|
||||
|
||||
# Start all servers in parallel
|
||||
servers = asyncio.run(start_mock_servers_async(MOCK_SERVERS))
|
||||
|
||||
# Verify vLLM models
|
||||
models_response = requests.get("http://localhost:8000/v1/models", timeout=1)
|
||||
models_data = models_response.json()
|
||||
print(f"[INFO] Mock vLLM serving {len(models_data['data'])} models: {[m['id'] for m in models_data['data']]}")
|
||||
|
||||
yield servers
|
||||
|
||||
# Stop all servers
|
||||
stop_mock_servers(servers)
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def mock_otlp_collector(mock_servers):
|
||||
"""Convenience fixture to get OTLP collector from mock_servers."""
|
||||
return mock_servers["Mock OTLP Collector"]
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def mock_vllm_server(mock_servers):
|
||||
"""Convenience fixture to get vLLM server from mock_servers."""
|
||||
return mock_servers["Mock vLLM Server"]
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def llama_stack_server(tmp_path_factory, mock_otlp_collector, mock_vllm_server):
|
||||
"""
|
||||
Fixture: Start real Llama Stack server with automatic OTel instrumentation.
|
||||
|
||||
**THIS IS THE MAIN FIXTURE** - it runs:
|
||||
opentelemetry-instrument llama stack run --config run.yaml
|
||||
|
||||
**TO MODIFY STACK CONFIG:** Edit run_config dict below
|
||||
"""
|
||||
config_dir = tmp_path_factory.mktemp("otel-stack-config")
|
||||
|
||||
# Ensure mock vLLM is ready and accessible before starting Llama Stack
|
||||
print(f"\n[INFO] Verifying mock vLLM is accessible at http://localhost:8000...")
|
||||
try:
|
||||
vllm_models = requests.get("http://localhost:8000/v1/models", timeout=2)
|
||||
print(f"[INFO] Mock vLLM models endpoint response: {vllm_models.status_code}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Mock vLLM not accessible before starting Llama Stack: {e}")
|
||||
|
||||
# Create run.yaml with inference provider
|
||||
# **TO ADD MORE PROVIDERS:** Add to providers dict
|
||||
run_config = {
|
||||
"image_name": "test-otel-e2e",
|
||||
"apis": ["inference"],
|
||||
"providers": {
|
||||
"inference": [
|
||||
{
|
||||
"provider_id": "vllm",
|
||||
"provider_type": "remote::vllm",
|
||||
"config": {
|
||||
"url": "http://localhost:8000/v1",
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
"models": [
|
||||
{
|
||||
"model_id": "meta-llama/Llama-3.2-1B-Instruct",
|
||||
"provider_id": "vllm",
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
config_file = config_dir / "run.yaml"
|
||||
with open(config_file, "w") as f:
|
||||
yaml.dump(run_config, f)
|
||||
|
||||
# Find available port for Llama Stack
|
||||
port = 5555
|
||||
while not is_port_available(port) and port < 5600:
|
||||
port += 1
|
||||
|
||||
if port >= 5600:
|
||||
pytest.skip("No available ports for test server")
|
||||
|
||||
# Set environment variables for OTel instrumentation
|
||||
# NOTE: These only affect the subprocess, not other tests
|
||||
env = os.environ.copy()
|
||||
env["OTEL_EXPORTER_OTLP_ENDPOINT"] = "http://localhost:4318"
|
||||
env["OTEL_EXPORTER_OTLP_PROTOCOL"] = "http/protobuf" # Ensure correct protocol
|
||||
env["OTEL_SERVICE_NAME"] = "llama-stack-e2e-test"
|
||||
env["LLAMA_STACK_PORT"] = str(port)
|
||||
env["OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED"] = "true"
|
||||
|
||||
# Configure fast metric export for testing (default is 60 seconds)
|
||||
# This makes metrics export every 500ms instead of every 60 seconds
|
||||
env["OTEL_METRIC_EXPORT_INTERVAL"] = "500" # milliseconds
|
||||
env["OTEL_METRIC_EXPORT_TIMEOUT"] = "1000" # milliseconds
|
||||
|
||||
# Disable inference recording to ensure real requests to our mock vLLM
|
||||
# This is critical - without this, Llama Stack replays cached responses
|
||||
# Safe to remove here as it only affects the subprocess environment
|
||||
if "LLAMA_STACK_TEST_INFERENCE_MODE" in env:
|
||||
del env["LLAMA_STACK_TEST_INFERENCE_MODE"]
|
||||
|
||||
# Start server with automatic instrumentation
|
||||
cmd = [
|
||||
"opentelemetry-instrument", # ← Automatic instrumentation wrapper
|
||||
"llama", "stack", "run",
|
||||
str(config_file),
|
||||
"--port", str(port),
|
||||
]
|
||||
|
||||
print(f"\n[INFO] Starting Llama Stack with OTel instrumentation on port {port}")
|
||||
print(f"[INFO] Command: {' '.join(cmd)}")
|
||||
|
||||
process = subprocess.Popen(
|
||||
cmd,
|
||||
env=env,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
text=True,
|
||||
)
|
||||
|
||||
# Wait for server to start
|
||||
max_wait = 30
|
||||
base_url = f"http://localhost:{port}"
|
||||
|
||||
for i in range(max_wait):
|
||||
try:
|
||||
response = requests.get(f"{base_url}/v1/health", timeout=1)
|
||||
if response.status_code == 200:
|
||||
print(f"[INFO] Server ready at {base_url}")
|
||||
break
|
||||
except requests.exceptions.RequestException:
|
||||
if i == max_wait - 1:
|
||||
process.terminate()
|
||||
stdout, stderr = process.communicate(timeout=5)
|
||||
pytest.fail(f"Server failed to start.\nStdout: {stdout}\nStderr: {stderr}")
|
||||
time.sleep(1)
|
||||
|
||||
yield {
|
||||
'base_url': base_url,
|
||||
'port': port,
|
||||
'collector': mock_otlp_collector,
|
||||
'vllm_server': mock_vllm_server,
|
||||
}
|
||||
|
||||
# Cleanup
|
||||
print(f"\n[INFO] Stopping Llama Stack server")
|
||||
process.terminate()
|
||||
try:
|
||||
process.wait(timeout=5)
|
||||
except subprocess.TimeoutExpired:
|
||||
process.kill()
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# TESTS: End-to-End with Real Stack
|
||||
# **THESE RUN SLOW** - marked with @pytest.mark.slow
|
||||
# **TO ADD NEW E2E TESTS:** Add methods to this class
|
||||
# ============================================================================
|
||||
|
||||
@pytest.mark.slow
|
||||
class TestOTelE2E:
|
||||
"""
|
||||
End-to-end tests with real Llama Stack server.
|
||||
|
||||
These tests verify the complete flow:
|
||||
- Real Llama Stack with opentelemetry-instrument
|
||||
- Real API calls
|
||||
- Real automatic instrumentation
|
||||
- Mock OTLP collector captures exports
|
||||
"""
|
||||
|
||||
def test_server_starts_with_auto_instrumentation(self, llama_stack_server):
|
||||
"""Verify server starts successfully with opentelemetry-instrument."""
|
||||
base_url = llama_stack_server['base_url']
|
||||
|
||||
# Try different health check endpoints
|
||||
health_endpoints = ["/health", "/v1/health", "/"]
|
||||
server_responding = False
|
||||
|
||||
for endpoint in health_endpoints:
|
||||
try:
|
||||
response = requests.get(f"{base_url}{endpoint}", timeout=5)
|
||||
print(f"\n[DEBUG] {endpoint} -> {response.status_code}")
|
||||
if response.status_code == 200:
|
||||
server_responding = True
|
||||
break
|
||||
except Exception as e:
|
||||
print(f"[DEBUG] {endpoint} failed: {e}")
|
||||
|
||||
assert server_responding, f"Server not responding on any endpoint at {base_url}"
|
||||
|
||||
print(f"\n[PASS] Llama Stack running with OTel at {base_url}")
|
||||
|
||||
def test_all_test_cases_via_runner(self, llama_stack_server):
|
||||
"""
|
||||
**MAIN TEST:** Run all TelemetryTestCase instances.
|
||||
|
||||
This executes all test cases defined in TEST_CASES list.
|
||||
**TO ADD MORE TESTS:** Add to TEST_CASES at top of file
|
||||
"""
|
||||
base_url = llama_stack_server['base_url']
|
||||
collector = llama_stack_server['collector']
|
||||
|
||||
# Create test runner
|
||||
runner = TelemetryTestRunner(base_url, collector)
|
||||
|
||||
# Execute all test cases
|
||||
results = runner.run_all_test_cases(TEST_CASES, verbose=True)
|
||||
|
||||
# Print summary
|
||||
print(f"\n{'='*50}")
|
||||
print(f"TEST CASE SUMMARY")
|
||||
print(f"{'='*50}")
|
||||
passed = sum(1 for p in results.values() if p)
|
||||
total = len(results)
|
||||
print(f"Passed: {passed}/{total}\n")
|
||||
|
||||
for name, result in results.items():
|
||||
status = "[PASS]" if result else "[FAIL]"
|
||||
print(f" {status} {name}")
|
||||
print(f"{'='*50}\n")
|
|
@ -1,532 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Integration tests for OpenTelemetry provider.
|
||||
|
||||
These tests verify that the OTel provider correctly:
|
||||
- Initializes within the Llama Stack
|
||||
- Captures expected metrics (counters, histograms, up/down counters)
|
||||
- Captures expected spans/traces
|
||||
- Exports telemetry data to an OTLP collector (in-memory for testing)
|
||||
|
||||
Tests use in-memory exporters to avoid external dependencies and can run in GitHub Actions.
|
||||
"""
|
||||
|
||||
import os
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from opentelemetry.sdk.metrics.export import InMemoryMetricReader
|
||||
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
|
||||
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
|
||||
|
||||
from llama_stack.providers.inline.telemetry.otel.config import OTelTelemetryConfig
|
||||
from llama_stack.providers.inline.telemetry.otel.otel import OTelTelemetryProvider
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def in_memory_span_exporter():
|
||||
"""Create an in-memory span exporter to capture traces."""
|
||||
return InMemorySpanExporter()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def in_memory_metric_reader():
|
||||
"""Create an in-memory metric reader to capture metrics."""
|
||||
return InMemoryMetricReader()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def otel_provider_with_memory_exporters(in_memory_span_exporter, in_memory_metric_reader):
|
||||
"""
|
||||
Create an OTelTelemetryProvider configured with in-memory exporters.
|
||||
|
||||
This allows us to capture and verify telemetry data without external services.
|
||||
Returns a dict with 'provider', 'span_exporter', and 'metric_reader'.
|
||||
"""
|
||||
# Set mock environment to avoid warnings
|
||||
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "http://localhost:4318"
|
||||
|
||||
config = OTelTelemetryConfig(
|
||||
service_name="test-llama-stack-otel",
|
||||
service_version="1.0.0-test",
|
||||
deployment_environment="ci-test",
|
||||
span_processor="simple",
|
||||
)
|
||||
|
||||
# Patch the provider to use in-memory exporters
|
||||
with patch.object(
|
||||
OTelTelemetryProvider,
|
||||
'model_post_init',
|
||||
lambda self, _: _init_with_memory_exporters(
|
||||
self, config, in_memory_span_exporter, in_memory_metric_reader
|
||||
)
|
||||
):
|
||||
provider = OTelTelemetryProvider(config=config)
|
||||
yield {
|
||||
'provider': provider,
|
||||
'span_exporter': in_memory_span_exporter,
|
||||
'metric_reader': in_memory_metric_reader
|
||||
}
|
||||
|
||||
|
||||
def _init_with_memory_exporters(provider, config, span_exporter, metric_reader):
|
||||
"""Helper to initialize provider with in-memory exporters."""
|
||||
import threading
|
||||
from opentelemetry import metrics, trace
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.sdk.resources import Attributes, Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
|
||||
# Initialize pydantic private attributes
|
||||
if provider.__pydantic_private__ is None:
|
||||
provider.__pydantic_private__ = {}
|
||||
|
||||
provider._lock = threading.Lock()
|
||||
provider._counters = {}
|
||||
provider._up_down_counters = {}
|
||||
provider._histograms = {}
|
||||
provider._gauges = {}
|
||||
|
||||
# Create resource attributes
|
||||
attributes: Attributes = {
|
||||
key: value
|
||||
for key, value in {
|
||||
"service.name": config.service_name,
|
||||
"service.version": config.service_version,
|
||||
"deployment.environment": config.deployment_environment,
|
||||
}.items()
|
||||
if value is not None
|
||||
}
|
||||
|
||||
resource = Resource.create(attributes)
|
||||
|
||||
# Configure tracer provider with in-memory exporter
|
||||
tracer_provider = TracerProvider(resource=resource)
|
||||
tracer_provider.add_span_processor(SimpleSpanProcessor(span_exporter))
|
||||
trace.set_tracer_provider(tracer_provider)
|
||||
|
||||
# Configure meter provider with in-memory reader
|
||||
meter_provider = MeterProvider(
|
||||
resource=resource,
|
||||
metric_readers=[metric_reader]
|
||||
)
|
||||
metrics.set_meter_provider(meter_provider)
|
||||
|
||||
|
||||
class TestOTelProviderInitialization:
|
||||
"""Test OTel provider initialization within Llama Stack."""
|
||||
|
||||
def test_provider_initializes_successfully(self, otel_provider_with_memory_exporters):
|
||||
"""Test that the OTel provider initializes without errors."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
span_exporter = otel_provider_with_memory_exporters['span_exporter']
|
||||
|
||||
assert provider is not None
|
||||
assert provider.config.service_name == "test-llama-stack-otel"
|
||||
assert provider.config.service_version == "1.0.0-test"
|
||||
assert provider.config.deployment_environment == "ci-test"
|
||||
|
||||
def test_provider_has_thread_safety_mechanisms(self, otel_provider_with_memory_exporters):
|
||||
"""Test that the provider has thread-safety mechanisms in place."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
|
||||
assert hasattr(provider, "_lock")
|
||||
assert provider._lock is not None
|
||||
assert hasattr(provider, "_counters")
|
||||
assert hasattr(provider, "_histograms")
|
||||
assert hasattr(provider, "_up_down_counters")
|
||||
|
||||
|
||||
class TestOTelMetricsCapture:
|
||||
"""Test that OTel provider captures expected metrics."""
|
||||
|
||||
def test_counter_metric_is_captured(self, otel_provider_with_memory_exporters):
|
||||
"""Test that counter metrics are captured."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
|
||||
# Record counter metrics
|
||||
provider.record_count("llama.requests.total", 1.0, attributes={"endpoint": "/chat"})
|
||||
provider.record_count("llama.requests.total", 1.0, attributes={"endpoint": "/chat"})
|
||||
provider.record_count("llama.requests.total", 1.0, attributes={"endpoint": "/embeddings"})
|
||||
|
||||
# Force metric collection - collect() triggers the reader to gather metrics
|
||||
metric_reader.collect()
|
||||
metric_reader.collect()
|
||||
metrics_data = metric_reader.get_metrics_data()
|
||||
|
||||
# Verify metrics were captured
|
||||
assert metrics_data is not None
|
||||
assert len(metrics_data.resource_metrics) > 0
|
||||
|
||||
# Find our counter metric
|
||||
found_counter = False
|
||||
for resource_metric in metrics_data.resource_metrics:
|
||||
for scope_metric in resource_metric.scope_metrics:
|
||||
for metric in scope_metric.metrics:
|
||||
if metric.name == "llama.requests.total":
|
||||
found_counter = True
|
||||
# Verify it's a counter with data points
|
||||
assert hasattr(metric.data, "data_points")
|
||||
assert len(metric.data.data_points) > 0
|
||||
|
||||
assert found_counter, "Counter metric 'llama.requests.total' was not captured"
|
||||
|
||||
def test_histogram_metric_is_captured(self, otel_provider_with_memory_exporters):
|
||||
"""Test that histogram metrics are captured."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
|
||||
# Record histogram metrics with various values
|
||||
latencies = [10.5, 25.3, 50.1, 100.7, 250.2]
|
||||
for latency in latencies:
|
||||
provider.record_histogram(
|
||||
"llama.inference.latency",
|
||||
latency,
|
||||
attributes={"model": "llama-3.2"}
|
||||
)
|
||||
|
||||
# Force metric collection
|
||||
metric_reader.collect()
|
||||
metrics_data = metric_reader.get_metrics_data()
|
||||
|
||||
# Find our histogram metric
|
||||
found_histogram = False
|
||||
for resource_metric in metrics_data.resource_metrics:
|
||||
for scope_metric in resource_metric.scope_metrics:
|
||||
for metric in scope_metric.metrics:
|
||||
if metric.name == "llama.inference.latency":
|
||||
found_histogram = True
|
||||
# Verify it's a histogram
|
||||
assert hasattr(metric.data, "data_points")
|
||||
data_point = metric.data.data_points[0]
|
||||
# Histograms should have count and sum
|
||||
assert hasattr(data_point, "count")
|
||||
assert data_point.count == len(latencies)
|
||||
|
||||
assert found_histogram, "Histogram metric 'llama.inference.latency' was not captured"
|
||||
|
||||
def test_up_down_counter_metric_is_captured(self, otel_provider_with_memory_exporters):
|
||||
"""Test that up/down counter metrics are captured."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
|
||||
# Record up/down counter metrics
|
||||
provider.record_up_down_counter("llama.active.sessions", 5)
|
||||
provider.record_up_down_counter("llama.active.sessions", 3)
|
||||
provider.record_up_down_counter("llama.active.sessions", -2)
|
||||
|
||||
# Force metric collection
|
||||
metric_reader.collect()
|
||||
metrics_data = metric_reader.get_metrics_data()
|
||||
|
||||
# Find our up/down counter metric
|
||||
found_updown = False
|
||||
for resource_metric in metrics_data.resource_metrics:
|
||||
for scope_metric in resource_metric.scope_metrics:
|
||||
for metric in scope_metric.metrics:
|
||||
if metric.name == "llama.active.sessions":
|
||||
found_updown = True
|
||||
assert hasattr(metric.data, "data_points")
|
||||
assert len(metric.data.data_points) > 0
|
||||
|
||||
assert found_updown, "Up/Down counter metric 'llama.active.sessions' was not captured"
|
||||
|
||||
def test_metrics_with_attributes_are_captured(self, otel_provider_with_memory_exporters):
|
||||
"""Test that metric attributes/labels are preserved."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
|
||||
# Record metrics with different attributes
|
||||
provider.record_count("llama.tokens.generated", 150.0, attributes={
|
||||
"model": "llama-3.2-1b",
|
||||
"user": "test-user"
|
||||
})
|
||||
|
||||
# Force metric collection
|
||||
metric_reader.collect()
|
||||
metrics_data = metric_reader.get_metrics_data()
|
||||
|
||||
# Verify attributes are preserved
|
||||
found_with_attributes = False
|
||||
for resource_metric in metrics_data.resource_metrics:
|
||||
for scope_metric in resource_metric.scope_metrics:
|
||||
for metric in scope_metric.metrics:
|
||||
if metric.name == "llama.tokens.generated":
|
||||
data_point = metric.data.data_points[0]
|
||||
# Check attributes - they're already a dict in the SDK
|
||||
attrs = data_point.attributes if isinstance(data_point.attributes, dict) else {}
|
||||
if "model" in attrs and "user" in attrs:
|
||||
found_with_attributes = True
|
||||
assert attrs["model"] == "llama-3.2-1b"
|
||||
assert attrs["user"] == "test-user"
|
||||
|
||||
assert found_with_attributes, "Metrics with attributes were not properly captured"
|
||||
|
||||
def test_multiple_metric_types_coexist(self, otel_provider_with_memory_exporters):
|
||||
"""Test that different metric types can coexist."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
|
||||
# Record various metric types
|
||||
provider.record_count("test.counter", 1.0)
|
||||
provider.record_histogram("test.histogram", 42.0)
|
||||
provider.record_up_down_counter("test.gauge", 10)
|
||||
|
||||
# Force metric collection
|
||||
metric_reader.collect()
|
||||
metrics_data = metric_reader.get_metrics_data()
|
||||
|
||||
# Count unique metrics
|
||||
metric_names = set()
|
||||
for resource_metric in metrics_data.resource_metrics:
|
||||
for scope_metric in resource_metric.scope_metrics:
|
||||
for metric in scope_metric.metrics:
|
||||
metric_names.add(metric.name)
|
||||
|
||||
# Should have all three metrics
|
||||
assert "test.counter" in metric_names
|
||||
assert "test.histogram" in metric_names
|
||||
assert "test.gauge" in metric_names
|
||||
|
||||
|
||||
class TestOTelSpansCapture:
|
||||
"""Test that OTel provider captures expected spans/traces."""
|
||||
|
||||
def test_basic_span_is_captured(self, otel_provider_with_memory_exporters):
|
||||
"""Test that basic spans are captured."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
span_exporter = otel_provider_with_memory_exporters['span_exporter']
|
||||
|
||||
# Create a span
|
||||
span = provider.custom_trace("llama.inference.request")
|
||||
span.end()
|
||||
|
||||
# Get captured spans
|
||||
spans = span_exporter.get_finished_spans()
|
||||
|
||||
assert len(spans) > 0
|
||||
assert any(span.name == "llama.inference.request" for span in spans)
|
||||
|
||||
def test_span_with_attributes_is_captured(self, otel_provider_with_memory_exporters):
|
||||
"""Test that span attributes are preserved."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
span_exporter = otel_provider_with_memory_exporters['span_exporter']
|
||||
|
||||
# Create a span with attributes
|
||||
span = provider.custom_trace(
|
||||
"llama.chat.completion",
|
||||
attributes={
|
||||
"model.id": "llama-3.2-1b",
|
||||
"user.id": "test-user-123",
|
||||
"request.id": "req-abc-123"
|
||||
}
|
||||
)
|
||||
span.end()
|
||||
|
||||
# Get captured spans
|
||||
spans = span_exporter.get_finished_spans()
|
||||
|
||||
# Find our span
|
||||
our_span = None
|
||||
for s in spans:
|
||||
if s.name == "llama.chat.completion":
|
||||
our_span = s
|
||||
break
|
||||
|
||||
assert our_span is not None, "Span 'llama.chat.completion' was not captured"
|
||||
|
||||
# Verify attributes
|
||||
attrs = dict(our_span.attributes)
|
||||
assert attrs.get("model.id") == "llama-3.2-1b"
|
||||
assert attrs.get("user.id") == "test-user-123"
|
||||
assert attrs.get("request.id") == "req-abc-123"
|
||||
|
||||
def test_multiple_spans_are_captured(self, otel_provider_with_memory_exporters):
|
||||
"""Test that multiple spans are captured."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
span_exporter = otel_provider_with_memory_exporters['span_exporter']
|
||||
|
||||
# Create multiple spans
|
||||
span_names = [
|
||||
"llama.request.validate",
|
||||
"llama.model.load",
|
||||
"llama.inference.execute",
|
||||
"llama.response.format"
|
||||
]
|
||||
|
||||
for name in span_names:
|
||||
span = provider.custom_trace(name)
|
||||
time.sleep(0.01) # Small delay to ensure ordering
|
||||
span.end()
|
||||
|
||||
# Get captured spans
|
||||
spans = span_exporter.get_finished_spans()
|
||||
captured_names = {span.name for span in spans}
|
||||
|
||||
# Verify all spans were captured
|
||||
for expected_name in span_names:
|
||||
assert expected_name in captured_names, f"Span '{expected_name}' was not captured"
|
||||
|
||||
def test_span_has_service_metadata(self, otel_provider_with_memory_exporters):
|
||||
"""Test that spans include service metadata."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
span_exporter = otel_provider_with_memory_exporters['span_exporter']
|
||||
|
||||
# Create a span
|
||||
span = provider.custom_trace("test.span")
|
||||
span.end()
|
||||
|
||||
# Get captured spans
|
||||
spans = span_exporter.get_finished_spans()
|
||||
|
||||
assert len(spans) > 0
|
||||
|
||||
# Check resource attributes
|
||||
span = spans[0]
|
||||
resource_attrs = dict(span.resource.attributes)
|
||||
|
||||
assert resource_attrs.get("service.name") == "test-llama-stack-otel"
|
||||
assert resource_attrs.get("service.version") == "1.0.0-test"
|
||||
assert resource_attrs.get("deployment.environment") == "ci-test"
|
||||
|
||||
|
||||
class TestOTelDataExport:
|
||||
"""Test that telemetry data can be exported to OTLP collector."""
|
||||
|
||||
def test_metrics_are_exportable(self, otel_provider_with_memory_exporters):
|
||||
"""Test that metrics can be exported."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
|
||||
# Record metrics
|
||||
provider.record_count("export.test.counter", 5.0)
|
||||
provider.record_histogram("export.test.histogram", 123.45)
|
||||
|
||||
# Force export
|
||||
metric_reader.collect()
|
||||
metrics_data = metric_reader.get_metrics_data()
|
||||
|
||||
# Verify data structure is exportable
|
||||
assert metrics_data is not None
|
||||
assert hasattr(metrics_data, "resource_metrics")
|
||||
assert len(metrics_data.resource_metrics) > 0
|
||||
|
||||
# Verify resource attributes are present (needed for OTLP export)
|
||||
resource = metrics_data.resource_metrics[0].resource
|
||||
assert resource is not None
|
||||
assert len(resource.attributes) > 0
|
||||
|
||||
def test_spans_are_exportable(self, otel_provider_with_memory_exporters):
|
||||
"""Test that spans can be exported."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
span_exporter = otel_provider_with_memory_exporters['span_exporter']
|
||||
|
||||
# Create spans
|
||||
span1 = provider.custom_trace("export.test.span1")
|
||||
span1.end()
|
||||
|
||||
span2 = provider.custom_trace("export.test.span2")
|
||||
span2.end()
|
||||
|
||||
# Get exported spans
|
||||
spans = span_exporter.get_finished_spans()
|
||||
|
||||
# Verify spans have required OTLP fields
|
||||
assert len(spans) >= 2
|
||||
for span in spans:
|
||||
assert span.name is not None
|
||||
assert span.context is not None
|
||||
assert span.context.trace_id is not None
|
||||
assert span.context.span_id is not None
|
||||
assert span.resource is not None
|
||||
|
||||
def test_concurrent_export_is_safe(self, otel_provider_with_memory_exporters):
|
||||
"""Test that concurrent metric/span recording doesn't break export."""
|
||||
import concurrent.futures
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
span_exporter = otel_provider_with_memory_exporters['span_exporter']
|
||||
|
||||
def record_data(thread_id):
|
||||
for i in range(10):
|
||||
provider.record_count(f"concurrent.counter.{thread_id}", 1.0)
|
||||
span = provider.custom_trace(f"concurrent.span.{thread_id}.{i}")
|
||||
span.end()
|
||||
|
||||
# Record from multiple threads
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
|
||||
futures = [executor.submit(record_data, i) for i in range(5)]
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# Verify export still works
|
||||
metric_reader.collect()
|
||||
metrics_data = metric_reader.get_metrics_data()
|
||||
spans = span_exporter.get_finished_spans()
|
||||
|
||||
assert metrics_data is not None
|
||||
assert len(spans) >= 50 # 5 threads * 10 spans each
|
||||
|
||||
|
||||
@pytest.mark.integration
|
||||
class TestOTelProviderIntegration:
|
||||
"""End-to-end integration tests simulating real usage."""
|
||||
|
||||
def test_complete_inference_workflow_telemetry(self, otel_provider_with_memory_exporters):
|
||||
"""Simulate a complete inference workflow with telemetry."""
|
||||
provider = otel_provider_with_memory_exporters['provider']
|
||||
metric_reader = otel_provider_with_memory_exporters['metric_reader']
|
||||
span_exporter = otel_provider_with_memory_exporters['span_exporter']
|
||||
|
||||
# Simulate inference workflow
|
||||
request_span = provider.custom_trace(
|
||||
"llama.inference.request",
|
||||
attributes={"model": "llama-3.2-1b", "user": "test"}
|
||||
)
|
||||
|
||||
# Track metrics during inference
|
||||
provider.record_count("llama.requests.received", 1.0)
|
||||
provider.record_up_down_counter("llama.requests.in_flight", 1)
|
||||
|
||||
# Simulate processing time
|
||||
time.sleep(0.01)
|
||||
provider.record_histogram("llama.request.duration_ms", 10.5)
|
||||
|
||||
# Track tokens
|
||||
provider.record_count("llama.tokens.input", 25.0)
|
||||
provider.record_count("llama.tokens.output", 150.0)
|
||||
|
||||
# End request
|
||||
provider.record_up_down_counter("llama.requests.in_flight", -1)
|
||||
provider.record_count("llama.requests.completed", 1.0)
|
||||
request_span.end()
|
||||
|
||||
# Verify all telemetry was captured
|
||||
metric_reader.collect()
|
||||
metrics_data = metric_reader.get_metrics_data()
|
||||
spans = span_exporter.get_finished_spans()
|
||||
|
||||
# Check metrics exist
|
||||
metric_names = set()
|
||||
for rm in metrics_data.resource_metrics:
|
||||
for sm in rm.scope_metrics:
|
||||
for m in sm.metrics:
|
||||
metric_names.add(m.name)
|
||||
|
||||
assert "llama.requests.received" in metric_names
|
||||
assert "llama.requests.in_flight" in metric_names
|
||||
assert "llama.request.duration_ms" in metric_names
|
||||
assert "llama.tokens.input" in metric_names
|
||||
assert "llama.tokens.output" in metric_names
|
||||
|
||||
# Check span exists
|
||||
assert any(s.name == "llama.inference.request" for s in spans)
|
||||
|
|
@ -5,10 +5,12 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import concurrent.futures
|
||||
import threading
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.metrics import Meter
|
||||
from opentelemetry.trace import Tracer
|
||||
|
||||
from llama_stack.providers.inline.telemetry.otel.config import OTelTelemetryConfig
|
||||
from llama_stack.providers.inline.telemetry.otel.otel import OTelTelemetryProvider
|
||||
|
@ -43,12 +45,6 @@ class TestOTelTelemetryProviderInitialization:
|
|||
provider = OTelTelemetryProvider(config=otel_config)
|
||||
|
||||
assert provider.config == otel_config
|
||||
assert hasattr(provider, "_lock")
|
||||
assert provider._lock is not None
|
||||
assert isinstance(provider._counters, dict)
|
||||
assert isinstance(provider._histograms, dict)
|
||||
assert isinstance(provider._up_down_counters, dict)
|
||||
assert isinstance(provider._gauges, dict)
|
||||
|
||||
def test_initialization_sets_service_attributes(self, otel_config, monkeypatch):
|
||||
"""Test that service attributes are properly configured."""
|
||||
|
@ -88,228 +84,309 @@ class TestOTelTelemetryProviderInitialization:
|
|||
assert any("Metrics will not be exported" in record.message for record in caplog.records)
|
||||
|
||||
|
||||
class TestOTelTelemetryProviderMetrics:
|
||||
"""Tests for metric recording functionality."""
|
||||
class TestOTelTelemetryProviderTracerAPI:
|
||||
"""Tests for the get_tracer() API."""
|
||||
|
||||
def test_record_count_creates_counter(self, otel_provider):
|
||||
"""Test that record_count creates a counter on first call."""
|
||||
assert "test_counter" not in otel_provider._counters
|
||||
def test_get_tracer_returns_tracer(self, otel_provider):
|
||||
"""Test that get_tracer returns a valid Tracer instance."""
|
||||
tracer = otel_provider.get_tracer("test.module")
|
||||
|
||||
otel_provider.record_count("test_counter", 1.0)
|
||||
assert tracer is not None
|
||||
assert isinstance(tracer, Tracer)
|
||||
|
||||
assert "test_counter" in otel_provider._counters
|
||||
assert otel_provider._counters["test_counter"] is not None
|
||||
|
||||
def test_record_count_reuses_counter(self, otel_provider):
|
||||
"""Test that record_count reuses existing counter."""
|
||||
otel_provider.record_count("test_counter", 1.0)
|
||||
first_counter = otel_provider._counters["test_counter"]
|
||||
|
||||
otel_provider.record_count("test_counter", 2.0)
|
||||
second_counter = otel_provider._counters["test_counter"]
|
||||
|
||||
assert first_counter is second_counter
|
||||
assert len(otel_provider._counters) == 1
|
||||
|
||||
def test_record_count_with_attributes(self, otel_provider):
|
||||
"""Test that record_count works with attributes."""
|
||||
otel_provider.record_count(
|
||||
"test_counter",
|
||||
1.0,
|
||||
attributes={"key": "value", "env": "test"}
|
||||
def test_get_tracer_with_version(self, otel_provider):
|
||||
"""Test that get_tracer works with version parameter."""
|
||||
tracer = otel_provider.get_tracer(
|
||||
instrumenting_module_name="test.module",
|
||||
instrumenting_library_version="1.0.0"
|
||||
)
|
||||
|
||||
assert "test_counter" in otel_provider._counters
|
||||
assert tracer is not None
|
||||
assert isinstance(tracer, Tracer)
|
||||
|
||||
def test_record_histogram_creates_histogram(self, otel_provider):
|
||||
"""Test that record_histogram creates a histogram on first call."""
|
||||
assert "test_histogram" not in otel_provider._histograms
|
||||
|
||||
otel_provider.record_histogram("test_histogram", 42.5)
|
||||
|
||||
assert "test_histogram" in otel_provider._histograms
|
||||
assert otel_provider._histograms["test_histogram"] is not None
|
||||
|
||||
def test_record_histogram_reuses_histogram(self, otel_provider):
|
||||
"""Test that record_histogram reuses existing histogram."""
|
||||
otel_provider.record_histogram("test_histogram", 10.0)
|
||||
first_histogram = otel_provider._histograms["test_histogram"]
|
||||
|
||||
otel_provider.record_histogram("test_histogram", 20.0)
|
||||
second_histogram = otel_provider._histograms["test_histogram"]
|
||||
|
||||
assert first_histogram is second_histogram
|
||||
assert len(otel_provider._histograms) == 1
|
||||
|
||||
def test_record_histogram_with_bucket_boundaries(self, otel_provider):
|
||||
"""Test that record_histogram works with explicit bucket boundaries."""
|
||||
boundaries = [0.0, 10.0, 50.0, 100.0]
|
||||
|
||||
otel_provider.record_histogram(
|
||||
"test_histogram",
|
||||
25.0,
|
||||
explicit_bucket_boundaries_advisory=boundaries
|
||||
def test_get_tracer_with_attributes(self, otel_provider):
|
||||
"""Test that get_tracer works with attributes."""
|
||||
tracer = otel_provider.get_tracer(
|
||||
instrumenting_module_name="test.module",
|
||||
attributes={"component": "test", "tier": "backend"}
|
||||
)
|
||||
|
||||
assert "test_histogram" in otel_provider._histograms
|
||||
assert tracer is not None
|
||||
assert isinstance(tracer, Tracer)
|
||||
|
||||
def test_record_up_down_counter_creates_counter(self, otel_provider):
|
||||
"""Test that record_up_down_counter creates a counter on first call."""
|
||||
assert "test_updown" not in otel_provider._up_down_counters
|
||||
def test_get_tracer_with_schema_url(self, otel_provider):
|
||||
"""Test that get_tracer works with schema URL."""
|
||||
tracer = otel_provider.get_tracer(
|
||||
instrumenting_module_name="test.module",
|
||||
schema_url="https://example.com/schema"
|
||||
)
|
||||
|
||||
otel_provider.record_up_down_counter("test_updown", 1.0)
|
||||
assert tracer is not None
|
||||
assert isinstance(tracer, Tracer)
|
||||
|
||||
assert "test_updown" in otel_provider._up_down_counters
|
||||
assert otel_provider._up_down_counters["test_updown"] is not None
|
||||
|
||||
def test_record_up_down_counter_reuses_counter(self, otel_provider):
|
||||
"""Test that record_up_down_counter reuses existing counter."""
|
||||
otel_provider.record_up_down_counter("test_updown", 5.0)
|
||||
first_counter = otel_provider._up_down_counters["test_updown"]
|
||||
|
||||
otel_provider.record_up_down_counter("test_updown", -3.0)
|
||||
second_counter = otel_provider._up_down_counters["test_updown"]
|
||||
|
||||
assert first_counter is second_counter
|
||||
assert len(otel_provider._up_down_counters) == 1
|
||||
|
||||
def test_multiple_metrics_with_different_names(self, otel_provider):
|
||||
"""Test that multiple metrics with different names are cached separately."""
|
||||
otel_provider.record_count("counter1", 1.0)
|
||||
otel_provider.record_count("counter2", 2.0)
|
||||
otel_provider.record_histogram("histogram1", 10.0)
|
||||
otel_provider.record_up_down_counter("updown1", 5.0)
|
||||
|
||||
assert len(otel_provider._counters) == 2
|
||||
assert len(otel_provider._histograms) == 1
|
||||
assert len(otel_provider._up_down_counters) == 1
|
||||
|
||||
|
||||
class TestOTelTelemetryProviderThreadSafety:
|
||||
"""Tests for thread safety of metric operations."""
|
||||
|
||||
def test_concurrent_counter_creation_same_name(self, otel_provider):
|
||||
"""Test that concurrent calls to record_count with same name are thread-safe."""
|
||||
num_threads = 50
|
||||
counter_name = "concurrent_counter"
|
||||
|
||||
def record_metric():
|
||||
otel_provider.record_count(counter_name, 1.0)
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||||
futures = [executor.submit(record_metric) for _ in range(num_threads)]
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# Should have exactly one counter created despite concurrent access
|
||||
assert len(otel_provider._counters) == 1
|
||||
assert counter_name in otel_provider._counters
|
||||
|
||||
def test_concurrent_histogram_creation_same_name(self, otel_provider):
|
||||
"""Test that concurrent calls to record_histogram with same name are thread-safe."""
|
||||
num_threads = 50
|
||||
histogram_name = "concurrent_histogram"
|
||||
|
||||
def record_metric():
|
||||
thread_id = threading.current_thread().ident or 0
|
||||
otel_provider.record_histogram(histogram_name, float(thread_id % 100))
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||||
futures = [executor.submit(record_metric) for _ in range(num_threads)]
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# Should have exactly one histogram created despite concurrent access
|
||||
assert len(otel_provider._histograms) == 1
|
||||
assert histogram_name in otel_provider._histograms
|
||||
|
||||
def test_concurrent_up_down_counter_creation_same_name(self, otel_provider):
|
||||
"""Test that concurrent calls to record_up_down_counter with same name are thread-safe."""
|
||||
num_threads = 50
|
||||
counter_name = "concurrent_updown"
|
||||
|
||||
def record_metric():
|
||||
otel_provider.record_up_down_counter(counter_name, 1.0)
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||||
futures = [executor.submit(record_metric) for _ in range(num_threads)]
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# Should have exactly one counter created despite concurrent access
|
||||
assert len(otel_provider._up_down_counters) == 1
|
||||
assert counter_name in otel_provider._up_down_counters
|
||||
|
||||
def test_concurrent_mixed_metrics_different_names(self, otel_provider):
|
||||
"""Test concurrent creation of different metric types with different names."""
|
||||
num_threads = 30
|
||||
|
||||
def record_counters(thread_id):
|
||||
otel_provider.record_count(f"counter_{thread_id}", 1.0)
|
||||
|
||||
def record_histograms(thread_id):
|
||||
otel_provider.record_histogram(f"histogram_{thread_id}", float(thread_id))
|
||||
|
||||
def record_up_down_counters(thread_id):
|
||||
otel_provider.record_up_down_counter(f"updown_{thread_id}", float(thread_id))
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads * 3) as executor:
|
||||
futures = []
|
||||
for i in range(num_threads):
|
||||
futures.append(executor.submit(record_counters, i))
|
||||
futures.append(executor.submit(record_histograms, i))
|
||||
futures.append(executor.submit(record_up_down_counters, i))
|
||||
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# Each thread should have created its own metric
|
||||
assert len(otel_provider._counters) == num_threads
|
||||
assert len(otel_provider._histograms) == num_threads
|
||||
assert len(otel_provider._up_down_counters) == num_threads
|
||||
|
||||
def test_concurrent_access_existing_and_new_metrics(self, otel_provider):
|
||||
"""Test concurrent access mixing existing and new metric creation."""
|
||||
# Pre-create some metrics
|
||||
otel_provider.record_count("existing_counter", 1.0)
|
||||
otel_provider.record_histogram("existing_histogram", 10.0)
|
||||
|
||||
num_threads = 40
|
||||
|
||||
def mixed_operations(thread_id):
|
||||
# Half the threads use existing metrics, half create new ones
|
||||
if thread_id % 2 == 0:
|
||||
otel_provider.record_count("existing_counter", 1.0)
|
||||
otel_provider.record_histogram("existing_histogram", float(thread_id))
|
||||
else:
|
||||
otel_provider.record_count(f"new_counter_{thread_id}", 1.0)
|
||||
otel_provider.record_histogram(f"new_histogram_{thread_id}", float(thread_id))
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||||
futures = [executor.submit(mixed_operations, i) for i in range(num_threads)]
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# Should have existing metrics plus half of num_threads new ones
|
||||
expected_new_counters = num_threads // 2
|
||||
expected_new_histograms = num_threads // 2
|
||||
|
||||
assert len(otel_provider._counters) == 1 + expected_new_counters
|
||||
assert len(otel_provider._histograms) == 1 + expected_new_histograms
|
||||
|
||||
|
||||
class TestOTelTelemetryProviderTracing:
|
||||
"""Tests for tracing functionality."""
|
||||
|
||||
def test_custom_trace_creates_span(self, otel_provider):
|
||||
"""Test that custom_trace creates a span."""
|
||||
span = otel_provider.custom_trace("test_span")
|
||||
def test_tracer_can_create_spans(self, otel_provider):
|
||||
"""Test that tracer can create spans."""
|
||||
tracer = otel_provider.get_tracer("test.module")
|
||||
|
||||
with tracer.start_as_current_span("test.operation") as span:
|
||||
assert span is not None
|
||||
assert hasattr(span, "get_span_context")
|
||||
assert span.is_recording()
|
||||
|
||||
def test_custom_trace_with_attributes(self, otel_provider):
|
||||
"""Test that custom_trace works with attributes."""
|
||||
attributes = {"key": "value", "operation": "test"}
|
||||
|
||||
span = otel_provider.custom_trace("test_span", attributes=attributes)
|
||||
def test_tracer_can_create_spans_with_attributes(self, otel_provider):
|
||||
"""Test that tracer can create spans with attributes."""
|
||||
tracer = otel_provider.get_tracer("test.module")
|
||||
|
||||
with tracer.start_as_current_span(
|
||||
"test.operation",
|
||||
attributes={"user.id": "123", "request.id": "abc"}
|
||||
) as span:
|
||||
assert span is not None
|
||||
assert span.is_recording()
|
||||
|
||||
def test_multiple_tracers_can_coexist(self, otel_provider):
|
||||
"""Test that multiple tracers can be created."""
|
||||
tracer1 = otel_provider.get_tracer("module.one")
|
||||
tracer2 = otel_provider.get_tracer("module.two")
|
||||
|
||||
assert tracer1 is not None
|
||||
assert tracer2 is not None
|
||||
# Tracers with different names might be the same instance or different
|
||||
# depending on OTel implementation, so just verify both work
|
||||
with tracer1.start_as_current_span("op1") as span1:
|
||||
assert span1.is_recording()
|
||||
with tracer2.start_as_current_span("op2") as span2:
|
||||
assert span2.is_recording()
|
||||
|
||||
|
||||
class TestOTelTelemetryProviderMeterAPI:
|
||||
"""Tests for the get_meter() API."""
|
||||
|
||||
def test_get_meter_returns_meter(self, otel_provider):
|
||||
"""Test that get_meter returns a valid Meter instance."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
|
||||
assert meter is not None
|
||||
assert isinstance(meter, Meter)
|
||||
|
||||
def test_get_meter_with_version(self, otel_provider):
|
||||
"""Test that get_meter works with version parameter."""
|
||||
meter = otel_provider.get_meter(
|
||||
name="test.meter",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
assert meter is not None
|
||||
assert isinstance(meter, Meter)
|
||||
|
||||
def test_get_meter_with_attributes(self, otel_provider):
|
||||
"""Test that get_meter works with attributes."""
|
||||
meter = otel_provider.get_meter(
|
||||
name="test.meter",
|
||||
attributes={"service": "test", "env": "dev"}
|
||||
)
|
||||
|
||||
assert meter is not None
|
||||
assert isinstance(meter, Meter)
|
||||
|
||||
def test_get_meter_with_schema_url(self, otel_provider):
|
||||
"""Test that get_meter works with schema URL."""
|
||||
meter = otel_provider.get_meter(
|
||||
name="test.meter",
|
||||
schema_url="https://example.com/schema"
|
||||
)
|
||||
|
||||
assert meter is not None
|
||||
assert isinstance(meter, Meter)
|
||||
|
||||
def test_meter_can_create_counter(self, otel_provider):
|
||||
"""Test that meter can create counters."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
|
||||
counter = meter.create_counter(
|
||||
"test.requests.total",
|
||||
unit="requests",
|
||||
description="Total requests"
|
||||
)
|
||||
|
||||
assert counter is not None
|
||||
# Test that counter can be used
|
||||
counter.add(1, {"endpoint": "/test"})
|
||||
|
||||
def test_meter_can_create_histogram(self, otel_provider):
|
||||
"""Test that meter can create histograms."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
|
||||
histogram = meter.create_histogram(
|
||||
"test.request.duration",
|
||||
unit="ms",
|
||||
description="Request duration"
|
||||
)
|
||||
|
||||
assert histogram is not None
|
||||
# Test that histogram can be used
|
||||
histogram.record(42.5, {"method": "GET"})
|
||||
|
||||
def test_meter_can_create_up_down_counter(self, otel_provider):
|
||||
"""Test that meter can create up/down counters."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
|
||||
up_down_counter = meter.create_up_down_counter(
|
||||
"test.active.connections",
|
||||
unit="connections",
|
||||
description="Active connections"
|
||||
)
|
||||
|
||||
assert up_down_counter is not None
|
||||
# Test that up/down counter can be used
|
||||
up_down_counter.add(5)
|
||||
up_down_counter.add(-2)
|
||||
|
||||
def test_meter_can_create_observable_gauge(self, otel_provider):
|
||||
"""Test that meter can create observable gauges."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
|
||||
def gauge_callback(options):
|
||||
return [{"attributes": {"host": "localhost"}, "value": 42.0}]
|
||||
|
||||
gauge = meter.create_observable_gauge(
|
||||
"test.memory.usage",
|
||||
callbacks=[gauge_callback],
|
||||
unit="bytes",
|
||||
description="Memory usage"
|
||||
)
|
||||
|
||||
assert gauge is not None
|
||||
|
||||
def test_multiple_instruments_from_same_meter(self, otel_provider):
|
||||
"""Test that a meter can create multiple instruments."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
|
||||
counter = meter.create_counter("test.counter")
|
||||
histogram = meter.create_histogram("test.histogram")
|
||||
up_down_counter = meter.create_up_down_counter("test.gauge")
|
||||
|
||||
assert counter is not None
|
||||
assert histogram is not None
|
||||
assert up_down_counter is not None
|
||||
|
||||
# Verify they all work
|
||||
counter.add(1)
|
||||
histogram.record(10.0)
|
||||
up_down_counter.add(5)
|
||||
|
||||
|
||||
class TestOTelTelemetryProviderNativeUsage:
|
||||
"""Tests for native OpenTelemetry usage patterns."""
|
||||
|
||||
def test_complete_tracing_workflow(self, otel_provider):
|
||||
"""Test a complete tracing workflow using native OTel API."""
|
||||
tracer = otel_provider.get_tracer("llama_stack.inference")
|
||||
|
||||
# Create parent span
|
||||
with tracer.start_as_current_span("inference.request") as parent_span:
|
||||
parent_span.set_attribute("model", "llama-3.2-1b")
|
||||
parent_span.set_attribute("user", "test-user")
|
||||
|
||||
# Create child span
|
||||
with tracer.start_as_current_span("model.load") as child_span:
|
||||
child_span.set_attribute("model.size", "1B")
|
||||
assert child_span.is_recording()
|
||||
|
||||
# Create another child span
|
||||
with tracer.start_as_current_span("inference.execute") as child_span:
|
||||
child_span.set_attribute("tokens.input", 25)
|
||||
child_span.set_attribute("tokens.output", 150)
|
||||
assert child_span.is_recording()
|
||||
|
||||
assert parent_span.is_recording()
|
||||
|
||||
def test_complete_metrics_workflow(self, otel_provider):
|
||||
"""Test a complete metrics workflow using native OTel API."""
|
||||
meter = otel_provider.get_meter("llama_stack.metrics")
|
||||
|
||||
# Create various instruments
|
||||
request_counter = meter.create_counter(
|
||||
"llama.requests.total",
|
||||
unit="requests",
|
||||
description="Total requests"
|
||||
)
|
||||
|
||||
latency_histogram = meter.create_histogram(
|
||||
"llama.inference.duration",
|
||||
unit="ms",
|
||||
description="Inference duration"
|
||||
)
|
||||
|
||||
active_sessions = meter.create_up_down_counter(
|
||||
"llama.sessions.active",
|
||||
unit="sessions",
|
||||
description="Active sessions"
|
||||
)
|
||||
|
||||
# Use the instruments
|
||||
request_counter.add(1, {"endpoint": "/chat", "status": "success"})
|
||||
latency_histogram.record(123.45, {"model": "llama-3.2-1b"})
|
||||
active_sessions.add(1)
|
||||
active_sessions.add(-1)
|
||||
|
||||
# No exceptions means success
|
||||
|
||||
def test_concurrent_tracer_usage(self, otel_provider):
|
||||
"""Test that multiple threads can use tracers concurrently."""
|
||||
def create_spans(thread_id):
|
||||
tracer = otel_provider.get_tracer(f"test.module.{thread_id}")
|
||||
for i in range(10):
|
||||
with tracer.start_as_current_span(f"operation.{i}") as span:
|
||||
span.set_attribute("thread.id", thread_id)
|
||||
span.set_attribute("iteration", i)
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures = [executor.submit(create_spans, i) for i in range(10)]
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# If we get here without exceptions, thread safety is working
|
||||
|
||||
def test_concurrent_meter_usage(self, otel_provider):
|
||||
"""Test that multiple threads can use meters concurrently."""
|
||||
def record_metrics(thread_id):
|
||||
meter = otel_provider.get_meter(f"test.meter.{thread_id}")
|
||||
counter = meter.create_counter(f"test.counter.{thread_id}")
|
||||
histogram = meter.create_histogram(f"test.histogram.{thread_id}")
|
||||
|
||||
for i in range(10):
|
||||
counter.add(1, {"thread": str(thread_id)})
|
||||
histogram.record(float(i * 10), {"thread": str(thread_id)})
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures = [executor.submit(record_metrics, i) for i in range(10)]
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# If we get here without exceptions, thread safety is working
|
||||
|
||||
def test_mixed_tracing_and_metrics(self, otel_provider):
|
||||
"""Test using both tracing and metrics together."""
|
||||
tracer = otel_provider.get_tracer("test.module")
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
|
||||
counter = meter.create_counter("operations.count")
|
||||
histogram = meter.create_histogram("operation.duration")
|
||||
|
||||
# Trace an operation while recording metrics
|
||||
with tracer.start_as_current_span("test.operation") as span:
|
||||
counter.add(1)
|
||||
span.set_attribute("step", "start")
|
||||
|
||||
histogram.record(50.0)
|
||||
span.set_attribute("step", "processing")
|
||||
|
||||
counter.add(1)
|
||||
span.set_attribute("step", "complete")
|
||||
|
||||
# No exceptions means success
|
||||
|
||||
|
||||
class TestOTelTelemetryProviderFastAPIMiddleware:
|
||||
"""Tests for FastAPI middleware functionality."""
|
||||
|
||||
def test_fastapi_middleware(self, otel_provider):
|
||||
"""Test that fastapi_middleware can be called."""
|
||||
|
@ -318,51 +395,182 @@ class TestOTelTelemetryProviderTracing:
|
|||
# Should not raise an exception
|
||||
otel_provider.fastapi_middleware(mock_app)
|
||||
|
||||
def test_fastapi_middleware_is_idempotent(self, otel_provider):
|
||||
"""Test that calling fastapi_middleware multiple times is safe."""
|
||||
mock_app = MagicMock()
|
||||
|
||||
# Should be able to call multiple times without error
|
||||
otel_provider.fastapi_middleware(mock_app)
|
||||
# Note: Second call might warn but shouldn't fail
|
||||
# otel_provider.fastapi_middleware(mock_app)
|
||||
|
||||
|
||||
class TestOTelTelemetryProviderEdgeCases:
|
||||
"""Tests for edge cases and error conditions."""
|
||||
|
||||
def test_record_count_with_zero(self, otel_provider):
|
||||
"""Test that record_count works with zero value."""
|
||||
otel_provider.record_count("zero_counter", 0.0)
|
||||
def test_tracer_with_empty_module_name(self, otel_provider):
|
||||
"""Test that get_tracer works with empty module name."""
|
||||
tracer = otel_provider.get_tracer("")
|
||||
|
||||
assert "zero_counter" in otel_provider._counters
|
||||
assert tracer is not None
|
||||
assert isinstance(tracer, Tracer)
|
||||
|
||||
def test_record_count_with_large_value(self, otel_provider):
|
||||
"""Test that record_count works with large values."""
|
||||
otel_provider.record_count("large_counter", 1_000_000.0)
|
||||
def test_meter_with_empty_name(self, otel_provider):
|
||||
"""Test that get_meter works with empty name."""
|
||||
meter = otel_provider.get_meter("")
|
||||
|
||||
assert "large_counter" in otel_provider._counters
|
||||
assert meter is not None
|
||||
assert isinstance(meter, Meter)
|
||||
|
||||
def test_record_histogram_with_negative_value(self, otel_provider):
|
||||
"""Test that record_histogram works with negative values."""
|
||||
otel_provider.record_histogram("negative_histogram", -10.0)
|
||||
def test_meter_instruments_with_special_characters(self, otel_provider):
|
||||
"""Test that metric names with dots, underscores, and hyphens work."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
|
||||
assert "negative_histogram" in otel_provider._histograms
|
||||
counter = meter.create_counter("test.counter_name-special")
|
||||
histogram = meter.create_histogram("test.histogram_name-special")
|
||||
|
||||
def test_record_up_down_counter_with_negative_value(self, otel_provider):
|
||||
"""Test that record_up_down_counter works with negative values."""
|
||||
otel_provider.record_up_down_counter("negative_updown", -5.0)
|
||||
assert counter is not None
|
||||
assert histogram is not None
|
||||
|
||||
assert "negative_updown" in otel_provider._up_down_counters
|
||||
# Verify they can be used
|
||||
counter.add(1)
|
||||
histogram.record(10.0)
|
||||
|
||||
def test_metric_names_with_special_characters(self, otel_provider):
|
||||
"""Test that metric names with dots and underscores work."""
|
||||
otel_provider.record_count("test.counter_name-special", 1.0)
|
||||
otel_provider.record_histogram("test.histogram_name-special", 10.0)
|
||||
def test_meter_counter_with_zero_value(self, otel_provider):
|
||||
"""Test that counters work with zero value."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
counter = meter.create_counter("test.counter")
|
||||
|
||||
assert "test.counter_name-special" in otel_provider._counters
|
||||
assert "test.histogram_name-special" in otel_provider._histograms
|
||||
# Should not raise an exception
|
||||
counter.add(0.0)
|
||||
|
||||
def test_empty_attributes_dict(self, otel_provider):
|
||||
def test_meter_histogram_with_negative_value(self, otel_provider):
|
||||
"""Test that histograms accept negative values."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
histogram = meter.create_histogram("test.histogram")
|
||||
|
||||
# Should not raise an exception
|
||||
histogram.record(-10.0)
|
||||
|
||||
def test_meter_up_down_counter_with_negative_value(self, otel_provider):
|
||||
"""Test that up/down counters work with negative values."""
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
up_down_counter = meter.create_up_down_counter("test.updown")
|
||||
|
||||
# Should not raise an exception
|
||||
up_down_counter.add(-5.0)
|
||||
|
||||
def test_meter_instruments_with_empty_attributes(self, otel_provider):
|
||||
"""Test that empty attributes dict is handled correctly."""
|
||||
otel_provider.record_count("test_counter", 1.0, attributes={})
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
counter = meter.create_counter("test.counter")
|
||||
|
||||
assert "test_counter" in otel_provider._counters
|
||||
# Should not raise an exception
|
||||
counter.add(1.0, attributes={})
|
||||
|
||||
def test_none_attributes(self, otel_provider):
|
||||
def test_meter_instruments_with_none_attributes(self, otel_provider):
|
||||
"""Test that None attributes are handled correctly."""
|
||||
otel_provider.record_count("test_counter", 1.0, attributes=None)
|
||||
meter = otel_provider.get_meter("test.meter")
|
||||
counter = meter.create_counter("test.counter")
|
||||
|
||||
assert "test_counter" in otel_provider._counters
|
||||
# Should not raise an exception
|
||||
counter.add(1.0, attributes=None)
|
||||
|
||||
|
||||
class TestOTelTelemetryProviderRealisticScenarios:
|
||||
"""Tests simulating realistic usage scenarios."""
|
||||
|
||||
def test_inference_request_telemetry(self, otel_provider):
|
||||
"""Simulate telemetry for a complete inference request."""
|
||||
tracer = otel_provider.get_tracer("llama_stack.inference")
|
||||
meter = otel_provider.get_meter("llama_stack.metrics")
|
||||
|
||||
# Create instruments
|
||||
request_counter = meter.create_counter("llama.requests.total")
|
||||
token_counter = meter.create_counter("llama.tokens.total")
|
||||
latency_histogram = meter.create_histogram("llama.request.duration_ms")
|
||||
in_flight_gauge = meter.create_up_down_counter("llama.requests.in_flight")
|
||||
|
||||
# Simulate request
|
||||
with tracer.start_as_current_span("inference.request") as request_span:
|
||||
request_span.set_attribute("model.id", "llama-3.2-1b")
|
||||
request_span.set_attribute("user.id", "test-user")
|
||||
|
||||
request_counter.add(1, {"model": "llama-3.2-1b"})
|
||||
in_flight_gauge.add(1)
|
||||
|
||||
# Simulate token counting
|
||||
token_counter.add(25, {"type": "input", "model": "llama-3.2-1b"})
|
||||
token_counter.add(150, {"type": "output", "model": "llama-3.2-1b"})
|
||||
|
||||
# Simulate latency
|
||||
latency_histogram.record(125.5, {"model": "llama-3.2-1b"})
|
||||
|
||||
in_flight_gauge.add(-1)
|
||||
request_span.set_attribute("tokens.input", 25)
|
||||
request_span.set_attribute("tokens.output", 150)
|
||||
|
||||
def test_multi_step_workflow_with_nested_spans(self, otel_provider):
|
||||
"""Simulate a multi-step workflow with nested spans."""
|
||||
tracer = otel_provider.get_tracer("llama_stack.workflow")
|
||||
meter = otel_provider.get_meter("llama_stack.workflow.metrics")
|
||||
|
||||
step_counter = meter.create_counter("workflow.steps.completed")
|
||||
|
||||
with tracer.start_as_current_span("workflow.execute") as root_span:
|
||||
root_span.set_attribute("workflow.id", "wf-123")
|
||||
|
||||
# Step 1: Validate
|
||||
with tracer.start_as_current_span("step.validate") as span:
|
||||
span.set_attribute("validation.result", "pass")
|
||||
step_counter.add(1, {"step": "validate", "status": "success"})
|
||||
|
||||
# Step 2: Process
|
||||
with tracer.start_as_current_span("step.process") as span:
|
||||
span.set_attribute("items.processed", 100)
|
||||
step_counter.add(1, {"step": "process", "status": "success"})
|
||||
|
||||
# Step 3: Finalize
|
||||
with tracer.start_as_current_span("step.finalize") as span:
|
||||
span.set_attribute("output.size", 1024)
|
||||
step_counter.add(1, {"step": "finalize", "status": "success"})
|
||||
|
||||
root_span.set_attribute("workflow.status", "completed")
|
||||
|
||||
def test_error_handling_with_telemetry(self, otel_provider):
|
||||
"""Test telemetry when errors occur."""
|
||||
tracer = otel_provider.get_tracer("llama_stack.errors")
|
||||
meter = otel_provider.get_meter("llama_stack.errors.metrics")
|
||||
|
||||
error_counter = meter.create_counter("llama.errors.total")
|
||||
|
||||
with tracer.start_as_current_span("operation.with.error") as span:
|
||||
try:
|
||||
span.set_attribute("step", "processing")
|
||||
# Simulate an error
|
||||
raise ValueError("Test error")
|
||||
except ValueError as e:
|
||||
span.record_exception(e)
|
||||
span.set_status(trace.Status(trace.StatusCode.ERROR, str(e)))
|
||||
error_counter.add(1, {"error.type": "ValueError"})
|
||||
|
||||
# Should not raise - error was handled
|
||||
|
||||
def test_batch_operations_telemetry(self, otel_provider):
|
||||
"""Test telemetry for batch operations."""
|
||||
tracer = otel_provider.get_tracer("llama_stack.batch")
|
||||
meter = otel_provider.get_meter("llama_stack.batch.metrics")
|
||||
|
||||
batch_counter = meter.create_counter("llama.batch.items.processed")
|
||||
batch_duration = meter.create_histogram("llama.batch.duration_ms")
|
||||
|
||||
with tracer.start_as_current_span("batch.process") as batch_span:
|
||||
batch_span.set_attribute("batch.size", 100)
|
||||
|
||||
for i in range(100):
|
||||
with tracer.start_as_current_span(f"item.{i}") as item_span:
|
||||
item_span.set_attribute("item.index", i)
|
||||
batch_counter.add(1, {"status": "success"})
|
||||
|
||||
batch_duration.record(5000.0, {"batch.size": "100"})
|
||||
batch_span.set_attribute("batch.status", "completed")
|
||||
|
|
50
uv.lock
generated
50
uv.lock
generated
|
@ -1775,6 +1775,7 @@ dependencies = [
|
|||
{ name = "openai" },
|
||||
{ name = "opentelemetry-exporter-otlp-proto-http" },
|
||||
{ name = "opentelemetry-instrumentation-fastapi" },
|
||||
{ name = "opentelemetry-instrumentation-sqlalchemy" },
|
||||
{ name = "opentelemetry-sdk" },
|
||||
{ name = "opentelemetry-semantic-conventions" },
|
||||
{ name = "pillow" },
|
||||
|
@ -1902,6 +1903,7 @@ requires-dist = [
|
|||
{ name = "openai", specifier = ">=1.107" },
|
||||
{ name = "opentelemetry-exporter-otlp-proto-http", specifier = ">=1.30.0" },
|
||||
{ name = "opentelemetry-instrumentation-fastapi", specifier = ">=0.57b0" },
|
||||
{ name = "opentelemetry-instrumentation-sqlalchemy", specifier = ">=0.57b0" },
|
||||
{ name = "opentelemetry-sdk", specifier = ">=1.30.0" },
|
||||
{ name = "opentelemetry-semantic-conventions", specifier = ">=0.57b0" },
|
||||
{ name = "pandas", marker = "extra == 'ui'" },
|
||||
|
@ -2756,6 +2758,22 @@ wheels = [
|
|||
{ url = "https://files.pythonhosted.org/packages/3b/df/f20fc21c88c7af5311bfefc15fc4e606bab5edb7c193aa8c73c354904c35/opentelemetry_instrumentation_fastapi-0.57b0-py3-none-any.whl", hash = "sha256:61e6402749ffe0bfec582e58155e0d81dd38723cd9bc4562bca1acca80334006", size = 12712, upload-time = "2025-07-29T15:42:03.332Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "opentelemetry-instrumentation-sqlalchemy"
|
||||
version = "0.57b0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "opentelemetry-api" },
|
||||
{ name = "opentelemetry-instrumentation" },
|
||||
{ name = "opentelemetry-semantic-conventions" },
|
||||
{ name = "packaging" },
|
||||
{ name = "wrapt" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/9c/18/ee1460dcb044b25aaedd6cfd063304d84ae641dddb8fb9287959f7644100/opentelemetry_instrumentation_sqlalchemy-0.57b0.tar.gz", hash = "sha256:95667326b7cc22bb4bc9941f98ca22dd177679f9a4d277646cc21074c0d732ff", size = 14962, upload-time = "2025-07-29T15:43:12.426Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/94/18/af35650eb029d771b8d281bea770727f1e2f662c422c5ab1a0c2b7afc152/opentelemetry_instrumentation_sqlalchemy-0.57b0-py3-none-any.whl", hash = "sha256:8a1a815331cb04fc95aa7c50e9c681cdccfb12e1fa4522f079fe4b24753ae106", size = 14202, upload-time = "2025-07-29T15:42:25.828Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "opentelemetry-proto"
|
||||
version = "1.36.0"
|
||||
|
@ -4821,9 +4839,9 @@ dependencies = [
|
|||
{ name = "typing-extensions", marker = "sys_platform == 'darwin'" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0-cp312-none-macosx_11_0_arm64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0-cp313-cp313t-macosx_14_0_arm64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0-cp313-none-macosx_11_0_arm64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:a47b7986bee3f61ad217d8a8ce24605809ab425baf349f97de758815edd2ef54" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:fbe2e149c5174ef90d29a5f84a554dfaf28e003cb4f61fa2c8c024c17ec7ca58" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0-cp313-none-macosx_11_0_arm64.whl", hash = "sha256:057efd30a6778d2ee5e2374cd63a63f63311aa6f33321e627c655df60abdd390" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -4846,19 +4864,19 @@ dependencies = [
|
|||
{ name = "typing-extensions", marker = "sys_platform != 'darwin'" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-linux_s390x.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-manylinux_2_28_aarch64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-manylinux_2_28_x86_64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-win_amd64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-win_arm64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-linux_s390x.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-manylinux_2_28_aarch64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-manylinux_2_28_x86_64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-win_amd64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-win_arm64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313t-manylinux_2_28_aarch64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313t-manylinux_2_28_x86_64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313t-win_amd64.whl" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-linux_s390x.whl", hash = "sha256:0e34e276722ab7dd0dffa9e12fe2135a9b34a0e300c456ed7ad6430229404eb5" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:610f600c102386e581327d5efc18c0d6edecb9820b4140d26163354a99cd800d" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:cb9a8ba8137ab24e36bf1742cb79a1294bd374db570f09fc15a5e1318160db4e" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-win_amd64.whl", hash = "sha256:2be20b2c05a0cce10430cc25f32b689259640d273232b2de357c35729132256d" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp312-cp312-win_arm64.whl", hash = "sha256:99fc421a5d234580e45957a7b02effbf3e1c884a5dd077afc85352c77bf41434" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-linux_s390x.whl", hash = "sha256:8b5882276633cf91fe3d2d7246c743b94d44a7e660b27f1308007fdb1bb89f7d" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:a5064b5e23772c8d164068cc7c12e01a75faf7b948ecd95a0d4007d7487e5f25" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:8f81dedb4c6076ec325acc3b47525f9c550e5284a18eae1d9061c543f7b6e7de" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-win_amd64.whl", hash = "sha256:e1ee1b2346ade3ea90306dfbec7e8ff17bc220d344109d189ae09078333b0856" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313-win_arm64.whl", hash = "sha256:64c187345509f2b1bb334feed4666e2c781ca381874bde589182f81247e61f88" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:af81283ac671f434b1b25c95ba295f270e72db1fad48831eb5e4748ff9840041" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:a9dbb6f64f63258bc811e2c0c99640a81e5af93c531ad96e95c5ec777ea46dab" },
|
||||
{ url = "https://download.pytorch.org/whl/cpu/torch-2.8.0%2Bcpu-cp313-cp313t-win_amd64.whl", hash = "sha256:6d93a7165419bc4b2b907e859ccab0dea5deeab261448ae9a5ec5431f14c0e64" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue