mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-19 11:20:03 +00:00
chore: Add support for vector-stores files api for Milvus (#2582)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 4s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.13, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.13, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.13, post_training) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.13, inspect) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.13, agents) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 22s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 20s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 21s
Integration Tests / test-matrix (library, 3.13, inference) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.13, scoring) (push) Failing after 11s
Integration Tests / test-matrix (server, 3.12, agents) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.13, vector_io) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.12, datasets) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.13, tool_runtime) (push) Failing after 11s
Integration Tests / test-matrix (server, 3.12, post_training) (push) Failing after 8s
Integration Tests / test-matrix (server, 3.12, scoring) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.12, inference) (push) Failing after 8s
Integration Tests / test-matrix (server, 3.12, providers) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.12, vector_io) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.12, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, agents) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.13, inference) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.13, post_training) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.13, datasets) (push) Failing after 12s
Integration Tests / test-matrix (server, 3.13, scoring) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, inspect) (push) Failing after 13s
Integration Tests / test-matrix (server, 3.13, providers) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, vector_io) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.13, tool_runtime) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 24s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 18s
Test Llama Stack Build / generate-matrix (push) Successful in 20s
Python Package Build Test / build (3.13) (push) Failing after 1s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 28s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 4s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Unit Tests / unit-tests (3.13) (push) Failing after 9s
Python Package Build Test / build (3.12) (push) Failing after 51s
Test Llama Stack Build / build-single-provider (push) Failing after 55s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 54s
Pre-commit / pre-commit (push) Successful in 1m44s
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 4s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.13, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.13, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.13, post_training) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.13, inspect) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.13, agents) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 22s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 20s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 21s
Integration Tests / test-matrix (library, 3.13, inference) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.13, scoring) (push) Failing after 11s
Integration Tests / test-matrix (server, 3.12, agents) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.13, vector_io) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.12, datasets) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.13, tool_runtime) (push) Failing after 11s
Integration Tests / test-matrix (server, 3.12, post_training) (push) Failing after 8s
Integration Tests / test-matrix (server, 3.12, scoring) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.12, inference) (push) Failing after 8s
Integration Tests / test-matrix (server, 3.12, providers) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.12, vector_io) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.12, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, agents) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.13, inference) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.13, post_training) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.13, datasets) (push) Failing after 12s
Integration Tests / test-matrix (server, 3.13, scoring) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, inspect) (push) Failing after 13s
Integration Tests / test-matrix (server, 3.13, providers) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, vector_io) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.13, tool_runtime) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 24s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 18s
Test Llama Stack Build / generate-matrix (push) Successful in 20s
Python Package Build Test / build (3.13) (push) Failing after 1s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 28s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 4s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Unit Tests / unit-tests (3.13) (push) Failing after 9s
Python Package Build Test / build (3.12) (push) Failing after 51s
Test Llama Stack Build / build-single-provider (push) Failing after 55s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 54s
Pre-commit / pre-commit (push) Successful in 1m44s
# What does this PR do? ### Summary This pull request implements support for the OpenAI Vector Store Files API for the Milvus vector store provider in `llama_stack`. It enables storing, loading, updating, and deleting file metadata and file contents in Milvus collections, allowing OpenAI vector store files to be managed directly within Milvus. ### Main Changes - **Milvus Vector Store Files API Implementation** - Implements all required methods for storing, loading, updating, and deleting vector store file metadata and contents (`_save_openai_vector_store_file`, `_load_openai_vector_store_file`, `_load_openai_vector_store_file_contents`, `_update_openai_vector_store_file`, `_delete_openai_vector_store_file_from_storage`). - Uses two Milvus collections: `openai_vector_store_files` (for metadata) and `openai_vector_store_files_contents` (for chunked file contents). - Collections are created dynamically if they do not exist, with appropriate schema definitions. - **Collection Name Sanitization** - Adds a `sanitize_collection_name` utility to ensure Milvus collection names only contain valid characters (letters, numbers, underscores). - **Testing** - Updates test skip logic to include `"inline::milvus"` for cases where the OpenAI Vector Store Files API is not supported, improving integration test accuracy. - **Other Improvements** - Passes `kvstore` to `MilvusIndex` for consistency. - Removes obsolete NotImplementedErrors and legacy code for file storage. ## Test Plan CI and tested via a test script ## Notes - `VectorDB` currently uses the `name` as the `identifier` in `openai_create_vector_store`. We need to add `name` as a field to `VectorDB` and generate the `identifier` upon creation. OpenAI is not idempotent with respect to the `name` field that they pass (i.e., you can pass the same name multiple times and OpenAI will generate a new identifier). I'll add a follow up PR for this. - The `Files` api needs to use `files-` as a prefix in the identifier. I have updated the Vector Store to use the OpenAI prefix `vs_*`. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
dae1fcd3c2
commit
4afd619c56
2 changed files with 179 additions and 20 deletions
|
@ -8,10 +8,11 @@ import asyncio
|
|||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from pymilvus import MilvusClient
|
||||
from pymilvus import DataType, MilvusClient
|
||||
|
||||
from llama_stack.apis.files.files import Files
|
||||
from llama_stack.apis.inference import Inference, InterleavedContent
|
||||
|
@ -43,12 +44,20 @@ OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:milvus:{VERSION
|
|||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:milvus:{VERSION}::"
|
||||
|
||||
|
||||
def sanitize_collection_name(name: str) -> str:
|
||||
"""
|
||||
Sanitize collection name to ensure it only contains numbers, letters, and underscores.
|
||||
Any other characters are replaced with underscores.
|
||||
"""
|
||||
return re.sub(r"[^a-zA-Z0-9_]", "_", name)
|
||||
|
||||
|
||||
class MilvusIndex(EmbeddingIndex):
|
||||
def __init__(
|
||||
self, client: MilvusClient, collection_name: str, consistency_level="Strong", kvstore: KVStore | None = None
|
||||
):
|
||||
self.client = client
|
||||
self.collection_name = collection_name.replace("-", "_")
|
||||
self.collection_name = sanitize_collection_name(collection_name)
|
||||
self.consistency_level = consistency_level
|
||||
self.kvstore = kvstore
|
||||
|
||||
|
@ -196,7 +205,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=MilvusIndex(client=self.client, collection_name=vector_db.identifier),
|
||||
index=MilvusIndex(client=self.client, collection_name=vector_db.identifier, kvstore=self.kvstore),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_db_id] = index
|
||||
|
@ -251,16 +260,6 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.delete(key)
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to Milvus database."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=content_key, value=json.dumps(file_contents))
|
||||
|
||||
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
|
||||
"""Load all vector store metadata from persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
|
@ -273,20 +272,181 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
if store_id not in self.openai_vector_stores:
|
||||
store_info = await self._load_openai_vector_stores(store_id)
|
||||
if not store_info:
|
||||
logger.error(f"OpenAI vector store {store_id} not found")
|
||||
raise ValueError(f"No vector store found with id {store_id}")
|
||||
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
file_schema = MilvusClient.create_schema(
|
||||
auto_id=False,
|
||||
enable_dynamic_field=True,
|
||||
description="Metadata for OpenAI vector store files",
|
||||
)
|
||||
file_schema.add_field(
|
||||
field_name="store_file_id", datatype=DataType.VARCHAR, is_primary=True, max_length=512
|
||||
)
|
||||
file_schema.add_field(field_name="store_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
file_schema.add_field(field_name="file_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
file_schema.add_field(field_name="file_info", datatype=DataType.VARCHAR, max_length=65535)
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.client.create_collection,
|
||||
collection_name="openai_vector_store_files",
|
||||
schema=file_schema,
|
||||
)
|
||||
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
content_schema = MilvusClient.create_schema(
|
||||
auto_id=False,
|
||||
enable_dynamic_field=True,
|
||||
description="Contents for OpenAI vector store files",
|
||||
)
|
||||
content_schema.add_field(
|
||||
field_name="chunk_id", datatype=DataType.VARCHAR, is_primary=True, max_length=1024
|
||||
)
|
||||
content_schema.add_field(field_name="store_file_id", datatype=DataType.VARCHAR, max_length=1024)
|
||||
content_schema.add_field(field_name="store_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
content_schema.add_field(field_name="file_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
content_schema.add_field(field_name="content", datatype=DataType.VARCHAR, max_length=65535)
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.client.create_collection,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
schema=content_schema,
|
||||
)
|
||||
|
||||
file_data = [
|
||||
{
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"file_info": json.dumps(file_info),
|
||||
}
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files",
|
||||
data=file_data,
|
||||
)
|
||||
|
||||
# Save file contents
|
||||
contents_data = [
|
||||
{
|
||||
"chunk_id": content.get("chunk_metadata").get("chunk_id"),
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"content": json.dumps(content),
|
||||
}
|
||||
for content in file_contents
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
data=contents_data,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving openai vector store file {file_id} for store {store_id}: {e}")
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return {}
|
||||
|
||||
query_filter = f"store_file_id == '{store_id}_{file_id}'"
|
||||
results = await asyncio.to_thread(
|
||||
self.client.query,
|
||||
collection_name="openai_vector_store_files",
|
||||
filter=query_filter,
|
||||
output_fields=["file_info"],
|
||||
)
|
||||
|
||||
if results:
|
||||
try:
|
||||
return json.loads(results[0]["file_info"])
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Failed to decode file_info for store {store_id}, file {file_id}: {e}")
|
||||
return {}
|
||||
return {}
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading openai vector store file {file_id} for store {store_id}: {e}")
|
||||
return {}
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
return []
|
||||
|
||||
query_filter = (
|
||||
f"store_id == '{store_id}' AND file_id == '{file_id}' AND store_file_id == '{store_id}_{file_id}'"
|
||||
)
|
||||
results = await asyncio.to_thread(
|
||||
self.client.query,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
filter=query_filter,
|
||||
output_fields=["chunk_id", "store_id", "file_id", "content"],
|
||||
)
|
||||
|
||||
contents = []
|
||||
for result in results:
|
||||
try:
|
||||
content = json.loads(result["content"])
|
||||
contents.append(content)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Failed to decode content for store {store_id}, file {file_id}: {e}")
|
||||
return contents
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading openai vector store file contents for {file_id} in store {store_id}: {e}")
|
||||
return []
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return
|
||||
|
||||
file_data = [
|
||||
{
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"file_info": json.dumps(file_info),
|
||||
}
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files",
|
||||
data=file_data,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error updating openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return
|
||||
|
||||
query_filter = f"store_file_id in ['{store_id}_{file_id}']"
|
||||
await asyncio.to_thread(
|
||||
self.client.delete,
|
||||
collection_name="openai_vector_store_files",
|
||||
filter=query_filter,
|
||||
)
|
||||
if await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
await asyncio.to_thread(
|
||||
self.client.delete,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
filter=query_filter,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
|
|
@ -31,7 +31,7 @@ def skip_if_provider_doesnt_support_openai_vector_stores(client_with_models):
|
|||
def skip_if_provider_doesnt_support_openai_vector_store_files_api(client_with_models):
|
||||
vector_io_providers = [p for p in client_with_models.providers.list() if p.api == "vector_io"]
|
||||
for p in vector_io_providers:
|
||||
if p.provider_type in ["inline::faiss", "inline::sqlite-vec"]:
|
||||
if p.provider_type in ["inline::faiss", "inline::sqlite-vec", "inline::milvus"]:
|
||||
return
|
||||
|
||||
pytest.skip("OpenAI vector stores are not supported by any provider")
|
||||
|
@ -524,7 +524,6 @@ def test_openai_vector_store_attach_files_on_creation(compat_client_with_empty_s
|
|||
file_ids = valid_file_ids + [failed_file_id]
|
||||
num_failed = len(file_ids) - len(valid_file_ids)
|
||||
|
||||
# Create a vector store
|
||||
vector_store = compat_client.vector_stores.create(
|
||||
name="test_store",
|
||||
file_ids=file_ids,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue