mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
chore: fixed formatting issues
This commit is contained in:
parent
f60c3c4acf
commit
4b32cfa846
1 changed files with 11 additions and 25 deletions
|
@ -14,12 +14,11 @@ import pytest_asyncio
|
|||
from llama_stack.apis.inference import EmbeddingsResponse, Inference
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
|
||||
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.faiss import (
|
||||
FaissIndex,
|
||||
FaissVectorIOAdapter,
|
||||
)
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
|
||||
# This test is a unit test for the FaissVectorIOAdapter class. This should only contain
|
||||
# tests which are specific to this class. More general (API-level) tests should be placed in
|
||||
|
@ -51,16 +50,8 @@ def vector_db_id():
|
|||
@pytest.fixture
|
||||
def sample_chunks():
|
||||
return [
|
||||
Chunk(
|
||||
content="MOCK text content 1",
|
||||
mime_type="text/plain",
|
||||
metadata={"document_id": "mock-doc-1"}
|
||||
),
|
||||
Chunk(
|
||||
content="MOCK text content 1",
|
||||
mime_type="text/plain",
|
||||
metadata={"document_id": "mock-doc-2"}
|
||||
)
|
||||
Chunk(content="MOCK text content 1", mime_type="text/plain", metadata={"document_id": "mock-doc-1"}),
|
||||
Chunk(content="MOCK text content 1", mime_type="text/plain", metadata={"document_id": "mock-doc-2"}),
|
||||
]
|
||||
|
||||
|
||||
|
@ -107,28 +98,23 @@ async def faiss_adapter(faiss_config, mock_inference_api) -> FaissVectorIOAdapte
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_identical(faiss_index, sample_chunks, sample_embeddings, embedding_dimension):
|
||||
async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_identical(
|
||||
faiss_index, sample_chunks, sample_embeddings, embedding_dimension
|
||||
):
|
||||
await faiss_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
|
||||
|
||||
with patch.object(faiss_index.index, 'search') as mock_search:
|
||||
mock_search.return_value = (
|
||||
np.array([[0.0, 0.1]]),
|
||||
np.array([[0, 1]])
|
||||
)
|
||||
with patch.object(faiss_index.index, "search") as mock_search:
|
||||
mock_search.return_value = (np.array([[0.0, 0.1]]), np.array([[0, 1]]))
|
||||
|
||||
response = await faiss_index.query_vector(
|
||||
embedding=query_embedding,
|
||||
k=2,
|
||||
score_threshold=0.0
|
||||
)
|
||||
response = await faiss_index.query_vector(embedding=query_embedding, k=2, score_threshold=0.0)
|
||||
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 2
|
||||
assert len(response.scores) == 2
|
||||
|
||||
assert response.scores[0] == float("inf") # infinity (1.0 / 0.0)
|
||||
assert response.scores[1] == 10.0 # (1.0 / 0.1 = 10.0)
|
||||
assert response.scores[0] == float("inf") # infinity (1.0 / 0.0)
|
||||
assert response.scores[1] == 10.0 # (1.0 / 0.1 = 10.0)
|
||||
|
||||
assert response.chunks[0] == sample_chunks[0]
|
||||
assert response.chunks[1] == sample_chunks[1]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue