mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-09 19:58:29 +00:00
updated docstring
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
2f017b8590
commit
4b34603995
1 changed files with 4 additions and 3 deletions
|
@ -72,8 +72,9 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
"""
|
||||
Add new chunks along with their embeddings using batch inserts.
|
||||
First inserts all chunk metadata in a batch, then inserts all embeddings in a batch,
|
||||
using the assigned rowids. If any insert fails, the transaction is rolled back.
|
||||
For each chunk, we insert its JSON into the metadata table and then insert its
|
||||
embedding (serialized to raw bytes) into the virtual table using the assigned rowid.
|
||||
If any insert fails, the transaction is rolled back.
|
||||
"""
|
||||
cur = self.connection.cursor()
|
||||
try:
|
||||
|
@ -89,7 +90,7 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
# Insert embeddings using the retrieved row IDs
|
||||
embedding_data = [
|
||||
(row_id, serialize_vector(emb.tolist() if isinstance(emb, np.ndarray) else list(emb)))
|
||||
for row_id, emb in zip(row_ids, embeddings)
|
||||
for row_id, emb in zip(row_ids, embeddings, strict=True)
|
||||
]
|
||||
cur.executemany(f"INSERT INTO {self.vector_table} (rowid, embedding) VALUES (?, ?)", embedding_data)
|
||||
# Commit transaction if all inserts succeed
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue