Merge branch 'main' into clarifai-inference-provider
10
.flake8
|
|
@ -21,11 +21,11 @@ ignore =
|
|||
optional-ascii-coding = True
|
||||
exclude =
|
||||
./.git,
|
||||
./docs
|
||||
./build
|
||||
./docs/*,
|
||||
./build,
|
||||
./scripts,
|
||||
./venv,
|
||||
*.pyi
|
||||
.pre-commit-config.yaml
|
||||
*.md
|
||||
*.pyi,
|
||||
.pre-commit-config.yaml,
|
||||
*.md,
|
||||
.flake8
|
||||
|
|
|
|||
77
.github/ISSUE_TEMPLATE/bug.yml
vendored
Normal file
|
|
@ -0,0 +1,77 @@
|
|||
name: 🐛 Bug Report
|
||||
description: Create a report to help us reproduce and fix the bug
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting a bug, please make sure the issue hasn't been already addressed by searching through [the
|
||||
existing and past issues](https://github.com/meta-llama/llama-stack/issues).
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us. You can use the following command to capture your environment information
|
||||
python -m "torch.utils.collect_env"
|
||||
|
||||
placeholder: |
|
||||
PyTorch version, CUDA version, GPU type, #num of GPUs...
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: checkboxes
|
||||
id: information-scripts-examples
|
||||
attributes:
|
||||
label: Information
|
||||
description: 'The problem arises when using:'
|
||||
options:
|
||||
- label: "The official example scripts"
|
||||
- label: "My own modified scripts"
|
||||
|
||||
- type: textarea
|
||||
id: bug-description
|
||||
attributes:
|
||||
label: 🐛 Describe the bug
|
||||
description: |
|
||||
Please provide a clear and concise description of what the bug is.
|
||||
|
||||
Please also paste or describe the results you observe instead of the expected results.
|
||||
placeholder: |
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
```llama stack
|
||||
# Command that you used for running the examples
|
||||
```
|
||||
Description of the results
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Error logs
|
||||
description: |
|
||||
If you observe an error, please paste the error message including the **full** traceback of the exception. It may be relevant to wrap error messages in ```` ```triple quotes blocks``` ````.
|
||||
|
||||
placeholder: |
|
||||
```
|
||||
The error message you got, with the full traceback.
|
||||
```
|
||||
|
||||
validations:
|
||||
required: true
|
||||
|
||||
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: "A clear and concise description of what you would expect to happen."
|
||||
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
||||
28
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
Normal file
|
|
@ -0,0 +1,28 @@
|
|||
name: 🚀 Feature request
|
||||
description: Request a new llama-stack feature
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
id: feature-pitch
|
||||
attributes:
|
||||
label: 🚀 Describe the new functionality needed
|
||||
description: >
|
||||
A clear and concise description of _what_ needs to be built.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: feature-motivation
|
||||
attributes:
|
||||
label: 💡 Why is this needed? What if we don't build it?
|
||||
description: >
|
||||
A clear and concise description of _why_ this functionality is needed.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: other-thoughts
|
||||
attributes:
|
||||
label: Other thoughts
|
||||
description: >
|
||||
Any thoughts about how this may result in complexity in the codebase, or other trade-offs.
|
||||
27
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
# What does this PR do?
|
||||
|
||||
In short, provide a summary of what this PR does and why. Usually, the relevant context should be present in a linked issue.
|
||||
|
||||
- [ ] Addresses issue (#issue)
|
||||
|
||||
|
||||
## Test Plan
|
||||
|
||||
Please describe:
|
||||
- tests you ran to verify your changes with result summaries.
|
||||
- provide instructions so it can be reproduced.
|
||||
|
||||
|
||||
## Sources
|
||||
|
||||
Please link relevant resources if necessary.
|
||||
|
||||
|
||||
## Before submitting
|
||||
|
||||
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
|
||||
- [ ] Ran pre-commit to handle lint / formatting issues.
|
||||
- [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
|
||||
Pull Request section?
|
||||
- [ ] Updated relevant documentation.
|
||||
- [ ] Wrote necessary unit or integration tests.
|
||||
25
.github/workflows/pre-commit.yml
vendored
Normal file
|
|
@ -0,0 +1,25 @@
|
|||
name: Pre-commit
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@d632683dd7b4114ad314bca15554477dd762a938 # v4.2.0
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3 # v5.2.0
|
||||
with:
|
||||
python-version: '3.11'
|
||||
cache: pip
|
||||
cache-dependency-path: |
|
||||
**/requirements*.txt
|
||||
.pre-commit-config.yaml
|
||||
|
||||
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd #v3.0.1
|
||||
4
.gitignore
vendored
|
|
@ -14,3 +14,7 @@ Package.resolved
|
|||
*.pte
|
||||
*.ipynb_checkpoints*
|
||||
.idea
|
||||
.venv/
|
||||
.vscode
|
||||
_build
|
||||
docs/src
|
||||
|
|
|
|||
2
.gitmodules
vendored
|
|
@ -1,3 +1,3 @@
|
|||
[submodule "llama_stack/providers/impls/ios/inference/executorch"]
|
||||
path = llama_stack/providers/impls/ios/inference/executorch
|
||||
path = llama_stack/providers/inline/ios/inference/executorch
|
||||
url = https://github.com/pytorch/executorch
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
exclude: 'build'
|
||||
exclude: 'build/'
|
||||
|
||||
default_language_version:
|
||||
python: python3
|
||||
|
|
@ -57,3 +57,17 @@ repos:
|
|||
# hooks:
|
||||
# - id: markdown-link-check
|
||||
# args: ['--quiet']
|
||||
|
||||
# - repo: local
|
||||
# hooks:
|
||||
# - id: distro-codegen
|
||||
# name: Distribution Template Codegen
|
||||
# additional_dependencies:
|
||||
# - rich
|
||||
# - pydantic
|
||||
# entry: python -m llama_stack.scripts.distro_codegen
|
||||
# language: python
|
||||
# pass_filenames: false
|
||||
# require_serial: true
|
||||
# files: ^llama_stack/templates/.*$
|
||||
# stages: [manual]
|
||||
|
|
|
|||
32
.readthedocs.yaml
Normal file
|
|
@ -0,0 +1,32 @@
|
|||
# .readthedocs.yaml
|
||||
# Read the Docs configuration file
|
||||
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
|
||||
|
||||
# Required
|
||||
version: 2
|
||||
|
||||
# Set the OS, Python version and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.12"
|
||||
# You can also specify other tool versions:
|
||||
# nodejs: "19"
|
||||
# rust: "1.64"
|
||||
# golang: "1.19"
|
||||
|
||||
# Build documentation in the "docs/" directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/source/conf.py
|
||||
|
||||
# Optionally build your docs in additional formats such as PDF and ePub
|
||||
# formats:
|
||||
# - pdf
|
||||
# - epub
|
||||
|
||||
# Optional but recommended, declare the Python requirements required
|
||||
# to build your documentation
|
||||
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
|
||||
python:
|
||||
install:
|
||||
- requirements: docs/requirements.txt
|
||||
35
CHANGELOG.md
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
# Changelog
|
||||
|
||||
## 0.0.53
|
||||
|
||||
### Added
|
||||
- Resource-oriented design for models, shields, memory banks, datasets and eval tasks
|
||||
- Persistence for registered objects with distribution
|
||||
- Ability to persist memory banks created for FAISS
|
||||
- PostgreSQL KVStore implementation
|
||||
- Environment variable placeholder support in run.yaml files
|
||||
- Comprehensive Zero-to-Hero notebooks and quickstart guides
|
||||
- Support for quantized models in Ollama
|
||||
- Vision models support for Together, Fireworks, Meta-Reference, and Ollama, and vLLM
|
||||
- Bedrock distribution with safety shields support
|
||||
- Evals API with task registration and scoring functions
|
||||
- MMLU and SimpleQA benchmark scoring functions
|
||||
- Huggingface dataset provider integration for benchmarks
|
||||
- Support for custom dataset registration from local paths
|
||||
- Benchmark evaluation CLI tools with visualization tables
|
||||
- RAG evaluation scoring functions and metrics
|
||||
- Local persistence for datasets and eval tasks
|
||||
|
||||
### Changed
|
||||
- Split safety into distinct providers (llama-guard, prompt-guard, code-scanner)
|
||||
- Changed provider naming convention (`impls` → `inline`, `adapters` → `remote`)
|
||||
- Updated API signatures for dataset and eval task registration
|
||||
- Restructured folder organization for providers
|
||||
- Enhanced Docker build configuration
|
||||
- Added version prefixing for REST API routes
|
||||
- Enhanced evaluation task registration workflow
|
||||
- Improved benchmark evaluation output formatting
|
||||
- Restructured evals folder organization for better modularity
|
||||
|
||||
### Removed
|
||||
- `llama stack configure` command
|
||||
|
|
@ -12,6 +12,38 @@ We actively welcome your pull requests.
|
|||
5. Make sure your code lints.
|
||||
6. If you haven't already, complete the Contributor License Agreement ("CLA").
|
||||
|
||||
|
||||
### Updating Provider Configurations
|
||||
|
||||
If you have made changes to a provider's configuration in any form (introducing a new config key, or changing models, etc.), you should run `python llama_stack/scripts/distro_codegen.py` to re-generate various YAML files as well as the documentation. You should not change `docs/source/.../distributions/` files manually as they are auto-generated.
|
||||
|
||||
### Building the Documentation
|
||||
|
||||
If you are making changes to the documentation at [https://llama-stack.readthedocs.io/en/latest/](https://llama-stack.readthedocs.io/en/latest/), you can use the following command to build the documentation and preview your changes. You will need [Sphinx](https://www.sphinx-doc.org/en/master/) and the readthedocs theme.
|
||||
|
||||
```bash
|
||||
cd llama-stack/docs
|
||||
pip install -r requirements.txt
|
||||
pip install sphinx-autobuild
|
||||
|
||||
# This will start a local server (usually at http://127.0.0.1:8000) that automatically rebuilds and refreshes when you make changes to the documentation.
|
||||
make html
|
||||
sphinx-autobuild source build/html
|
||||
```
|
||||
|
||||
## Pre-commit Hooks
|
||||
|
||||
We use [pre-commit](https://pre-commit.com/) to run linting and formatting checks on your code. You can install the pre-commit hooks by running:
|
||||
|
||||
```bash
|
||||
$ cd llama-stack
|
||||
$ conda activate <your-environment>
|
||||
$ pip install pre-commit
|
||||
$ pre-commit install
|
||||
```
|
||||
|
||||
After that, pre-commit hooks will run automatically before each commit.
|
||||
|
||||
## Contributor License Agreement ("CLA")
|
||||
In order to accept your pull request, we need you to submit a CLA. You only need
|
||||
to do this once to work on any of Meta's open source projects.
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
include requirements.txt
|
||||
include distributions/dependencies.json
|
||||
include llama_stack/distribution/*.sh
|
||||
include llama_stack/cli/scripts/*.sh
|
||||
include llama_stack/distribution/templates/*.yaml
|
||||
include llama_stack/templates/*/*.yaml
|
||||
|
|
|
|||
108
README.md
|
|
@ -4,46 +4,79 @@
|
|||
[](https://pypi.org/project/llama-stack/)
|
||||
[](https://discord.gg/llama-stack)
|
||||
|
||||
This repository contains the Llama Stack API specifications as well as API Providers and Llama Stack Distributions.
|
||||
[**Quick Start**](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) | [**Documentation**](https://llama-stack.readthedocs.io/en/latest/index.html) | [**Zero-to-Hero Guide**](https://github.com/meta-llama/llama-stack/tree/main/docs/zero_to_hero_guide)
|
||||
|
||||
The Llama Stack defines and standardizes the building blocks needed to bring generative AI applications to market. These blocks span the entire development lifecycle: from model training and fine-tuning, through product evaluation, to building and running AI agents in production. Beyond definition, we are building providers for the Llama Stack APIs. These were developing open-source versions and partnering with providers, ensuring developers can assemble AI solutions using consistent, interlocking pieces across platforms. The ultimate goal is to accelerate innovation in the AI space.
|
||||
Llama Stack defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.
|
||||
|
||||
The Stack APIs are rapidly improving, but still very much work in progress and we invite feedback as well as direct contributions.
|
||||
<div style="text-align: center;">
|
||||
<img
|
||||
src="https://github.com/user-attachments/assets/33d9576d-95ea-468d-95e2-8fa233205a50"
|
||||
width="480"
|
||||
title="Llama Stack"
|
||||
alt="Llama Stack"
|
||||
/>
|
||||
</div>
|
||||
|
||||
Our goal is to provide pre-packaged implementations which can be operated in a variety of deployment environments: developers start iterating with Desktops or their mobile devices and can seamlessly transition to on-prem or public cloud deployments. At every point in this transition, the same set of APIs and the same developer experience is available.
|
||||
|
||||
> ⚠️ **Note**
|
||||
> The Stack APIs are rapidly improving, but still very much work in progress and we invite feedback as well as direct contributions.
|
||||
|
||||
|
||||
## APIs
|
||||
|
||||
The Llama Stack consists of the following set of APIs:
|
||||
|
||||
We have working implementations of the following APIs today:
|
||||
- Inference
|
||||
- Safety
|
||||
- Memory
|
||||
- Agentic System
|
||||
- Evaluation
|
||||
- Agents
|
||||
- Eval
|
||||
- Telemetry
|
||||
|
||||
Alongside these APIs, we also related APIs for operating with associated resources (see [Concepts](https://llama-stack.readthedocs.io/en/latest/concepts/index.html#resources)):
|
||||
|
||||
- Models
|
||||
- Shields
|
||||
- Memory Banks
|
||||
- EvalTasks
|
||||
- Datasets
|
||||
- Scoring Functions
|
||||
|
||||
We are also working on the following APIs which will be released soon:
|
||||
|
||||
- Post Training
|
||||
- Synthetic Data Generation
|
||||
- Reward Scoring
|
||||
|
||||
Each of the APIs themselves is a collection of REST endpoints.
|
||||
|
||||
## Philosophy
|
||||
|
||||
## API Providers
|
||||
### Service-oriented design
|
||||
|
||||
A Provider is what makes the API real -- they provide the actual implementation backing the API.
|
||||
Unlike other frameworks, Llama Stack is built with a service-oriented, REST API-first approach. Such a design not only allows for seamless transitions from a local to remote deployments, but also forces the design to be more declarative. We believe this restriction can result in a much simpler, robust developer experience. This will necessarily trade-off against expressivity however if we get the APIs right, it can lead to a very powerful platform.
|
||||
|
||||
As an example, for Inference, we could have the implementation be backed by open source libraries like `[ torch | vLLM | TensorRT ]` as possible options.
|
||||
### Composability
|
||||
|
||||
A provider can also be just a pointer to a remote REST service -- for example, cloud providers or dedicated inference providers could serve these APIs.
|
||||
We expect the set of APIs we design to be composable. An Agent abstractly depends on { Inference, Memory, Safety } APIs but does not care about the actual implementation details. Safety itself may require model inference and hence can depend on the Inference API.
|
||||
|
||||
### Turnkey one-stop solutions
|
||||
|
||||
## Llama Stack Distribution
|
||||
We expect to provide turnkey solutions for popular deployment scenarios. It should be easy to deploy a Llama Stack server on AWS or on a private data center. Either of these should allow a developer to get started with powerful agentic apps, model evaluations or fine-tuning services in a matter of minutes. They should all result in the same uniform observability and developer experience.
|
||||
|
||||
### Focus on Llama models
|
||||
|
||||
As a Meta initiated project, we have started by explicitly focusing on Meta's Llama series of models. Supporting the broad set of open models is no easy task and we want to start with models we understand best.
|
||||
|
||||
### Supporting the Ecosystem
|
||||
|
||||
There is a vibrant ecosystem of Providers which provide efficient inference or scalable vector stores or powerful observability solutions. We want to make sure it is easy for developers to pick and choose the best implementations for their use cases. We also want to make sure it is easy for new Providers to onboard and participate in the ecosystem.
|
||||
|
||||
Additionally, we have designed every element of the Stack such that APIs as well as Resources (like Models) can be federated.
|
||||
|
||||
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
|
||||
|
||||
## Supported Llama Stack Implementations
|
||||
### API Providers
|
||||
|
||||
|
||||
| **API Provider Builder** | **Environments** | **Agents** | **Inference** | **Memory** | **Safety** | **Telemetry** |
|
||||
| :----: | :----: | :----: | :----: | :----: | :----: | :----: |
|
||||
| Meta Reference | Single Node | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
|
||||
|
|
@ -58,18 +91,28 @@ A Distribution is where APIs and Providers are assembled together to provide a c
|
|||
| PyTorch ExecuTorch | On-device iOS | :heavy_check_mark: | :heavy_check_mark: | | |
|
||||
|
||||
### Distributions
|
||||
| **Distribution Provider** | **Docker** | **Inference** | **Memory** | **Safety** | **Telemetry** |
|
||||
| :----: | :----: | :----: | :----: | :----: | :----: |
|
||||
| Meta Reference | [Local GPU](https://hub.docker.com/repository/docker/llamastack/llamastack-local-gpu/general), [Local CPU](https://hub.docker.com/repository/docker/llamastack/llamastack-local-cpu/general) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
|
||||
| Dell-TGI | [Local TGI + Chroma](https://hub.docker.com/repository/docker/llamastack/llamastack-local-tgi-chroma/general) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
|
||||
|
||||
| **Distribution** | **Llama Stack Docker** | Start This Distribution |
|
||||
|:----------------: |:------------------------------------------: |:-----------------------: |
|
||||
| Meta Reference | [llamastack/distribution-meta-reference-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/self_hosted_distro/meta-reference-gpu.html) |
|
||||
| Meta Reference Quantized | [llamastack/distribution-meta-reference-quantized-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-quantized-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/self_hosted_distro/meta-reference-quantized-gpu.html) |
|
||||
| Ollama | [llamastack/distribution-ollama](https://hub.docker.com/repository/docker/llamastack/distribution-ollama/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/self_hosted_distro/ollama.html) |
|
||||
| TGI | [llamastack/distribution-tgi](https://hub.docker.com/repository/docker/llamastack/distribution-tgi/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/self_hosted_distro/tgi.html) |
|
||||
| Together | [llamastack/distribution-together](https://hub.docker.com/repository/docker/llamastack/distribution-together/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/remote_hosted_distro/together.html) |
|
||||
| Fireworks | [llamastack/distribution-fireworks](https://hub.docker.com/repository/docker/llamastack/distribution-fireworks/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/remote_hosted_distro/fireworks.html) |
|
||||
|
||||
## Installation
|
||||
|
||||
You can install this repository as a [package](https://pypi.org/project/llama-stack/) with `pip install llama-stack`
|
||||
You have two ways to install this repository:
|
||||
|
||||
If you want to install from source:
|
||||
1. **Install as a package**:
|
||||
You can install the repository directly from [PyPI](https://pypi.org/project/llama-stack/) by running the following command:
|
||||
```bash
|
||||
pip install llama-stack
|
||||
```
|
||||
|
||||
2. **Install from source**:
|
||||
If you prefer to install from the source code, follow these steps:
|
||||
```bash
|
||||
mkdir -p ~/local
|
||||
cd ~/local
|
||||
|
|
@ -82,24 +125,29 @@ cd llama-stack
|
|||
$CONDA_PREFIX/bin/pip install -e .
|
||||
```
|
||||
|
||||
## Documentations
|
||||
## Documentation
|
||||
|
||||
The `llama` CLI makes it easy to work with the Llama Stack set of tools. Please find the following docs for details.
|
||||
Please checkout our [Documentation](https://llama-stack.readthedocs.io/en/latest/index.html) page for more details.
|
||||
|
||||
* [CLI reference](docs/cli_reference.md)
|
||||
* [CLI reference](https://llama-stack.readthedocs.io/en/latest/cli_reference/index.html)
|
||||
* Guide using `llama` CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution.
|
||||
* [Getting Started](docs/getting_started.md)
|
||||
* Guide to build and run a Llama Stack server.
|
||||
* [Getting Started](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html)
|
||||
* Quick guide to start a Llama Stack server.
|
||||
* [Jupyter notebook](./docs/getting_started.ipynb) to walk-through how to use simple text and vision inference llama_stack_client APIs
|
||||
* The complete Llama Stack lesson [Colab notebook](https://colab.research.google.com/drive/1dtVmxotBsI4cGZQNsJRYPrLiDeT0Wnwt) of the new [Llama 3.2 course on Deeplearning.ai](https://learn.deeplearning.ai/courses/introducing-multimodal-llama-3-2/lesson/8/llama-stack).
|
||||
* A [Zero-to-Hero Guide](https://github.com/meta-llama/llama-stack/tree/main/docs/zero_to_hero_guide) that guide you through all the key components of llama stack with code samples.
|
||||
* [Contributing](CONTRIBUTING.md)
|
||||
* [Adding a new API Provider](https://llama-stack.readthedocs.io/en/latest/api_providers/new_api_provider.html) to walk-through how to add a new API provider.
|
||||
|
||||
|
||||
## Llama Stack Client SDK
|
||||
## Llama Stack Client SDKs
|
||||
|
||||
| **Language** | **Client SDK** | **Package** |
|
||||
| :----: | :----: | :----: |
|
||||
| Python | [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python) | [](https://pypi.org/project/llama_stack_client/)
|
||||
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift) |
|
||||
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift) | [](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
|
||||
| Node | [llama-stack-client-node](https://github.com/meta-llama/llama-stack-client-node) | [](https://npmjs.org/package/llama-stack-client)
|
||||
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) |
|
||||
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) | [](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)
|
||||
|
||||
Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [node](https://github.com/meta-llama/llama-stack-client-node), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
||||
|
|
|
|||
1
distributions/bedrock/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/bedrock/build.yaml
|
||||
15
distributions/bedrock/compose.yaml
Normal file
|
|
@ -0,0 +1,15 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: distribution-bedrock
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/llamastack-run-bedrock.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-bedrock.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
1
distributions/bedrock/run.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/bedrock/run.yaml
|
||||
50
distributions/dell-tgi/compose.yaml
Normal file
|
|
@ -0,0 +1,50 @@
|
|||
services:
|
||||
text-generation-inference:
|
||||
image: registry.dell.huggingface.co/enterprise-dell-inference-meta-llama-meta-llama-3.1-8b-instruct
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
ports:
|
||||
- "5009:5009"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0,1,2,3,4
|
||||
- NUM_SHARD=4
|
||||
- MAX_BATCH_PREFILL_TOKENS=32768
|
||||
- MAX_INPUT_TOKENS=8000
|
||||
- MAX_TOTAL_TOKENS=8192
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: all
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
llamastack:
|
||||
depends_on:
|
||||
text-generation-inference:
|
||||
condition: service_healthy
|
||||
image: llamastack/distribution-tgi
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to TGI run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for TGI server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
44
distributions/dell-tgi/run.yaml
Normal file
|
|
@ -0,0 +1,44 @@
|
|||
version: '2'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:80
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
- provider_id: meta1
|
||||
provider_type: inline::prompt-guard
|
||||
config:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::faiss
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
315
distributions/dependencies.json
Normal file
|
|
@ -0,0 +1,315 @@
|
|||
{
|
||||
"hf-serverless": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"together": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"vllm-gpu": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"vllm",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"remote-vllm": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"fireworks": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"tgi": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"bedrock": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"boto3",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"meta-reference-gpu": [
|
||||
"accelerate",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"fairscale",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"lm-format-enforcer",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"torch",
|
||||
"torchvision",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"zmq",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"meta-reference-quantized-gpu": [
|
||||
"accelerate",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"fairscale",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fbgemm-gpu",
|
||||
"fire",
|
||||
"httpx",
|
||||
"lm-format-enforcer",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"torch",
|
||||
"torchao==0.5.0",
|
||||
"torchvision",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"zmq",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"ollama": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"ollama",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"hf-endpoint": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
]
|
||||
}
|
||||
1
distributions/fireworks/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/fireworks/build.yaml
|
||||
16
distributions/fireworks/compose.yaml
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-fireworks
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/llamastack-run-fireworks.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-fireworks.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
1
distributions/fireworks/run.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/fireworks/run.yaml
|
||||
1
distributions/meta-reference-gpu/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/meta-reference-gpu/build.yaml
|
||||
34
distributions/meta-reference-gpu/compose.yaml
Normal file
|
|
@ -0,0 +1,34 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-meta-reference-gpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
runtime: nvidia
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
1
distributions/meta-reference-gpu/run-with-safety.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/meta-reference-gpu/run-with-safety.yaml
|
||||
1
distributions/meta-reference-gpu/run.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/meta-reference-gpu/run.yaml
|
||||
1
distributions/meta-reference-quantized-gpu/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/meta-reference-quantized-gpu/build.yaml
|
||||
35
distributions/meta-reference-quantized-gpu/compose.yaml
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-meta-reference-quantized-gpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
58
distributions/meta-reference-quantized-gpu/run.yaml
Normal file
|
|
@ -0,0 +1,58 @@
|
|||
version: '2'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference-quantized
|
||||
config:
|
||||
model: Llama3.2-3B-Instruct:int4-qlora-eo8
|
||||
quantization:
|
||||
type: int4
|
||||
torch_seed: null
|
||||
max_seq_len: 2048
|
||||
max_batch_size: 1
|
||||
- provider_id: meta1
|
||||
provider_type: inline::meta-reference-quantized
|
||||
config:
|
||||
# not a quantized model !
|
||||
model: Llama-Guard-3-1B
|
||||
quantization: null
|
||||
torch_seed: null
|
||||
max_seq_len: 2048
|
||||
max_batch_size: 1
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
- provider_id: meta1
|
||||
provider_type: inline::prompt-guard
|
||||
config:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
1
distributions/ollama/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/ollama/build.yaml
|
||||
71
distributions/ollama/compose.yaml
Normal file
|
|
@ -0,0 +1,71 @@
|
|||
services:
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
network_mode: ${NETWORK_MODE:-bridge}
|
||||
volumes:
|
||||
- ~/.ollama:/root/.ollama
|
||||
ports:
|
||||
- "11434:11434"
|
||||
environment:
|
||||
OLLAMA_DEBUG: 1
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
limits:
|
||||
memory: 8G # Set maximum memory
|
||||
reservations:
|
||||
memory: 8G # Set minimum memory reservation
|
||||
# healthcheck:
|
||||
# # ugh, no CURL in ollama image
|
||||
# test: ["CMD", "curl", "-f", "http://ollama:11434"]
|
||||
# interval: 10s
|
||||
# timeout: 5s
|
||||
# retries: 5
|
||||
|
||||
ollama-init:
|
||||
image: ollama/ollama:latest
|
||||
depends_on:
|
||||
- ollama
|
||||
# condition: service_healthy
|
||||
network_mode: ${NETWORK_MODE:-bridge}
|
||||
environment:
|
||||
- OLLAMA_HOST=ollama
|
||||
- INFERENCE_MODEL=${INFERENCE_MODEL}
|
||||
- SAFETY_MODEL=${SAFETY_MODEL:-}
|
||||
volumes:
|
||||
- ~/.ollama:/root/.ollama
|
||||
- ./pull-models.sh:/pull-models.sh
|
||||
entrypoint: ["/pull-models.sh"]
|
||||
|
||||
llamastack:
|
||||
depends_on:
|
||||
ollama:
|
||||
condition: service_started
|
||||
ollama-init:
|
||||
condition: service_started
|
||||
image: ${LLAMA_STACK_IMAGE:-llamastack/distribution-ollama}
|
||||
network_mode: ${NETWORK_MODE:-bridge}
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ~/local/llama-stack/:/app/llama-stack-source
|
||||
- ./run${SAFETY_MODEL:+-with-safety}.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}"
|
||||
environment:
|
||||
- INFERENCE_MODEL=${INFERENCE_MODEL}
|
||||
- SAFETY_MODEL=${SAFETY_MODEL:-}
|
||||
- OLLAMA_URL=http://ollama:11434
|
||||
entrypoint: >
|
||||
python -m llama_stack.distribution.server.server /root/my-run.yaml \
|
||||
--port ${LLAMA_STACK_PORT:-5001}
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 10s
|
||||
max_attempts: 3
|
||||
window: 60s
|
||||
volumes:
|
||||
ollama:
|
||||
ollama-init:
|
||||
llamastack:
|
||||
18
distributions/ollama/pull-models.sh
Executable file
|
|
@ -0,0 +1,18 @@
|
|||
#!/bin/sh
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
echo "Preloading (${INFERENCE_MODEL}, ${SAFETY_MODEL})..."
|
||||
for model in ${INFERENCE_MODEL} ${SAFETY_MODEL}; do
|
||||
echo "Preloading $model..."
|
||||
if ! ollama run "$model"; then
|
||||
echo "Failed to pull and run $model"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
|
||||
echo "All models pulled successfully"
|
||||
1
distributions/ollama/run-with-safety.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/ollama/run-with-safety.yaml
|
||||
1
distributions/ollama/run.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/ollama/run.yaml
|
||||
1
distributions/remote-vllm/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/remote-vllm/build.yaml
|
||||
100
distributions/remote-vllm/compose.yaml
Normal file
|
|
@ -0,0 +1,100 @@
|
|||
services:
|
||||
vllm-inference:
|
||||
image: vllm/vllm-openai:latest
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/root/.cache/huggingface
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
ports:
|
||||
- "${VLLM_INFERENCE_PORT:-5100}:${VLLM_INFERENCE_PORT:-5100}"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=${VLLM_INFERENCE_GPU:-0}
|
||||
- HUGGING_FACE_HUB_TOKEN=$HF_TOKEN
|
||||
command: >
|
||||
--gpu-memory-utilization 0.75
|
||||
--model ${VLLM_INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
--enforce-eager
|
||||
--max-model-len 8192
|
||||
--max-num-seqs 16
|
||||
--port ${VLLM_INFERENCE_PORT:-5100}
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:${VLLM_INFERENCE_PORT:-5100}/v1/health"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 5
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
|
||||
# A little trick:
|
||||
# if VLLM_SAFETY_MODEL is set, we will create a service for the safety model
|
||||
# otherwise, the entry will end in a hyphen which gets ignored by docker compose
|
||||
vllm-${VLLM_SAFETY_MODEL:+safety}:
|
||||
image: vllm/vllm-openai:latest
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/root/.cache/huggingface
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
ports:
|
||||
- "${VLLM_SAFETY_PORT:-5101}:${VLLM_SAFETY_PORT:-5101}"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=${VLLM_SAFETY_GPU:-1}
|
||||
- HUGGING_FACE_HUB_TOKEN=$HF_TOKEN
|
||||
command: >
|
||||
--gpu-memory-utilization 0.75
|
||||
--model ${VLLM_SAFETY_MODEL}
|
||||
--enforce-eager
|
||||
--max-model-len 8192
|
||||
--max-num-seqs 16
|
||||
--port ${VLLM_SAFETY_PORT:-5101}
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:${VLLM_SAFETY_PORT:-5101}/v1/health"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 5
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
llamastack:
|
||||
depends_on:
|
||||
- vllm-inference:
|
||||
condition: service_healthy
|
||||
- vllm-${VLLM_SAFETY_MODEL:+safety}:
|
||||
condition: service_healthy
|
||||
# image: llamastack/distribution-remote-vllm
|
||||
image: llamastack/distribution-remote-vllm:test-0.0.52rc3
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run${VLLM_SAFETY_MODEL:+-with-safety}.yaml:/root/llamastack-run-remote-vllm.yaml
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
environment:
|
||||
- VLLM_URL=http://vllm-inference:${VLLM_INFERENCE_PORT:-5100}/v1
|
||||
- VLLM_SAFETY_URL=http://vllm-safety:${VLLM_SAFETY_PORT:-5101}/v1
|
||||
- INFERENCE_MODEL=${INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
- MAX_TOKENS=${MAX_TOKENS:-4096}
|
||||
- SQLITE_STORE_DIR=${SQLITE_STORE_DIR:-$HOME/.llama/distributions/remote-vllm}
|
||||
- SAFETY_MODEL=${SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
|
||||
ports:
|
||||
- "${LLAMASTACK_PORT:-5001}:${LLAMASTACK_PORT:-5001}"
|
||||
# Hack: wait for vLLM server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-remote-vllm.yaml --port 5001"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
volumes:
|
||||
vllm-inference:
|
||||
vllm-safety:
|
||||
llamastack:
|
||||
1
distributions/remote-vllm/run-with-safety.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/remote-vllm/run-with-safety.yaml
|
||||
1
distributions/remote-vllm/run.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/remote-vllm/run.yaml
|
||||
1
distributions/tgi/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/tgi/build.yaml
|
||||
103
distributions/tgi/compose.yaml
Normal file
|
|
@ -0,0 +1,103 @@
|
|||
services:
|
||||
tgi-inference:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
ports:
|
||||
- "${TGI_INFERENCE_PORT:-8080}:${TGI_INFERENCE_PORT:-8080}"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=${TGI_INFERENCE_GPU:-0}
|
||||
- HF_TOKEN=$HF_TOKEN
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: >
|
||||
--dtype bfloat16
|
||||
--usage-stats off
|
||||
--sharded false
|
||||
--model-id ${TGI_INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
--port ${TGI_INFERENCE_PORT:-8080}
|
||||
--cuda-memory-fraction 0.75
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://tgi-inference:${TGI_INFERENCE_PORT:-8080}/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
|
||||
tgi-${TGI_SAFETY_MODEL:+safety}:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
ports:
|
||||
- "${TGI_SAFETY_PORT:-8081}:${TGI_SAFETY_PORT:-8081}"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=${TGI_SAFETY_GPU:-1}
|
||||
- HF_TOKEN=$HF_TOKEN
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: >
|
||||
--dtype bfloat16
|
||||
--usage-stats off
|
||||
--sharded false
|
||||
--model-id ${TGI_SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
|
||||
--port ${TGI_SAFETY_PORT:-8081}
|
||||
--cuda-memory-fraction 0.75
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://tgi-safety:${TGI_SAFETY_PORT:-8081}/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
|
||||
llamastack:
|
||||
depends_on:
|
||||
tgi-inference:
|
||||
condition: service_healthy
|
||||
tgi-${TGI_SAFETY_MODEL:+safety}:
|
||||
condition: service_healthy
|
||||
image: llamastack/distribution-tgi:test-0.0.52rc3
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run${TGI_SAFETY_MODEL:+-with-safety}.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}"
|
||||
# Hack: wait for TGI server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
environment:
|
||||
- TGI_URL=http://tgi-inference:${TGI_INFERENCE_PORT:-8080}
|
||||
- SAFETY_TGI_URL=http://tgi-safety:${TGI_SAFETY_PORT:-8081}
|
||||
- INFERENCE_MODEL=${INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
- SAFETY_MODEL=${SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
|
||||
|
||||
volumes:
|
||||
tgi-inference:
|
||||
tgi-safety:
|
||||
llamastack:
|
||||
1
distributions/tgi/run-with-safety.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/tgi/run-with-safety.yaml
|
||||
1
distributions/tgi/run.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/tgi/run.yaml
|
||||
65
distributions/together/README.md
Normal file
|
|
@ -0,0 +1,65 @@
|
|||
# Together Distribution
|
||||
|
||||
### Connect to a Llama Stack Together Endpoint
|
||||
- You may connect to a hosted endpoint `https://llama-stack.together.ai`, serving a Llama Stack distribution
|
||||
|
||||
The `llamastack/distribution-together` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::together | meta-reference | meta-reference, remote::weaviate | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Docker: Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have an hosted endpoint at Together with API Key.
|
||||
|
||||
```
|
||||
$ cd distributions/together
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Together URL server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: <optional api key>
|
||||
```
|
||||
|
||||
### Conda llama stack run (Single Node CPU)
|
||||
|
||||
```bash
|
||||
llama stack build --template together --image-type conda
|
||||
# -- modify run.yaml to a valid Together server endpoint
|
||||
llama stack run ./run.yaml
|
||||
```
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
|
||||
Use `llama-stack-client models list` to check the available models served by together.
|
||||
|
||||
```
|
||||
$ llama-stack-client models list
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+==============================+==============================+===============+============+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | together0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-70B-Instruct | Llama3.1-70B-Instruct | together0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-405B-Instruct | Llama3.1-405B-Instruct | together0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-3B-Instruct | Llama3.2-3B-Instruct | together0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-11B-Vision-Instruct | Llama3.2-11B-Vision-Instruct | together0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-90B-Vision-Instruct | Llama3.2-90B-Vision-Instruct | together0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
```
|
||||
1
distributions/together/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/together/build.yaml
|
||||
16
distributions/together/compose.yaml
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-together
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/llamastack-run-together.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-together.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
1
distributions/together/run.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/together/run.yaml
|
||||
1
distributions/vllm-gpu/build.yaml
Symbolic link
|
|
@ -0,0 +1 @@
|
|||
../../llama_stack/templates/inline-vllm/build.yaml
|
||||
35
distributions/vllm-gpu/compose.yaml
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-inline-vllm
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
66
distributions/vllm-gpu/run.yaml
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
version: '2'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: vllm-inference
|
||||
provider_type: inline::vllm
|
||||
config:
|
||||
model: Llama3.2-3B-Instruct
|
||||
tensor_parallel_size: 1
|
||||
gpu_memory_utilization: 0.4
|
||||
enforce_eager: true
|
||||
max_tokens: 4096
|
||||
- provider_id: vllm-inference-safety
|
||||
provider_type: inline::vllm
|
||||
config:
|
||||
model: Llama-Guard-3-1B
|
||||
tensor_parallel_size: 1
|
||||
gpu_memory_utilization: 0.2
|
||||
enforce_eager: true
|
||||
max_tokens: 4096
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
# Uncomment to use prompt guard
|
||||
# - provider_id: meta1
|
||||
# provider_type: inline::prompt-guard
|
||||
# config:
|
||||
# model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
# Uncomment to use pgvector
|
||||
# - provider_id: pgvector
|
||||
# provider_type: remote::pgvector
|
||||
# config:
|
||||
# host: 127.0.0.1
|
||||
# port: 5432
|
||||
# db: postgres
|
||||
# user: postgres
|
||||
# password: mysecretpassword
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
20
docs/Makefile
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = _build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
14
docs/_static/css/my_theme.css
vendored
Normal file
|
|
@ -0,0 +1,14 @@
|
|||
@import url("theme.css");
|
||||
|
||||
.wy-nav-content {
|
||||
max-width: 90%;
|
||||
}
|
||||
|
||||
.wy-nav-side {
|
||||
/* background: linear-gradient(45deg, #2980B9, #16A085); */
|
||||
background: linear-gradient(90deg, #332735, #1b263c);
|
||||
}
|
||||
|
||||
.wy-side-nav-search {
|
||||
background-color: transparent !important;
|
||||
}
|
||||
BIN
docs/_static/llama-stack-logo.png
vendored
Normal file
|
After Width: | Height: | Size: 70 KiB |
BIN
docs/_static/llama-stack.png
vendored
Normal file
|
After Width: | Height: | Size: 196 KiB |
BIN
docs/_static/remote_or_local.gif
vendored
Normal file
|
After Width: | Height: | Size: 204 KiB |
BIN
docs/_static/safety_system.webp
vendored
Normal file
|
After Width: | Height: | Size: 31 KiB |
|
|
@ -1,486 +0,0 @@
|
|||
# Llama CLI Reference
|
||||
|
||||
The `llama` CLI tool helps you setup and use the Llama Stack & agentic systems. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
### Subcommands
|
||||
1. `download`: `llama` cli tools supports downloading the model from Meta or Hugging Face.
|
||||
2. `model`: Lists available models and their properties.
|
||||
3. `stack`: Allows you to build and run a Llama Stack server. You can read more about this [here](cli_reference.md#step-3-building-and-configuring-llama-stack-distributions).
|
||||
|
||||
### Sample Usage
|
||||
|
||||
```
|
||||
llama --help
|
||||
```
|
||||
<pre style="font-family: monospace;">
|
||||
usage: llama [-h] {download,model,stack} ...
|
||||
|
||||
Welcome to the Llama CLI
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
|
||||
subcommands:
|
||||
{download,model,stack}
|
||||
</pre>
|
||||
|
||||
## Step 1. Get the models
|
||||
|
||||
You first need to have models downloaded locally.
|
||||
|
||||
To download any model you need the **Model Descriptor**.
|
||||
This can be obtained by running the command
|
||||
```
|
||||
llama model list
|
||||
```
|
||||
|
||||
You should see a table like this:
|
||||
|
||||
<pre style="font-family: monospace;">
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Model Descriptor | Hugging Face Repo | Context Length |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-8B | meta-llama/Llama-3.1-8B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-70B | meta-llama/Llama-3.1-70B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B:bf16-mp8 | meta-llama/Llama-3.1-405B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B | meta-llama/Llama-3.1-405B-FP8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B:bf16-mp16 | meta-llama/Llama-3.1-405B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-8B-Instruct | meta-llama/Llama-3.1-8B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-70B-Instruct | meta-llama/Llama-3.1-70B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct:bf16-mp8 | meta-llama/Llama-3.1-405B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct | meta-llama/Llama-3.1-405B-Instruct-FP8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-1B | meta-llama/Llama-3.2-1B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-3B | meta-llama/Llama-3.2-3B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-11B-Vision | meta-llama/Llama-3.2-11B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-90B-Vision | meta-llama/Llama-3.2-90B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-1B-Instruct | meta-llama/Llama-3.2-1B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-3B-Instruct | meta-llama/Llama-3.2-3B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-11B-Vision-Instruct | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-90B-Vision-Instruct | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-11B-Vision | meta-llama/Llama-Guard-3-11B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-1B:int4-mp1 | meta-llama/Llama-Guard-3-1B-INT4 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-1B | meta-llama/Llama-Guard-3-1B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-2-8B | meta-llama/Llama-Guard-2-8B | 4K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
</pre>
|
||||
|
||||
To download models, you can use the llama download command.
|
||||
|
||||
#### Downloading from [Meta](https://llama.meta.com/llama-downloads/)
|
||||
|
||||
Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from [here](https://llama.meta.com/docs/getting_the_models/meta/)
|
||||
|
||||
Download the required checkpoints using the following commands:
|
||||
```bash
|
||||
# download the 8B model, this can be run on a single GPU
|
||||
llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL
|
||||
|
||||
# you can also get the 70B model, this will require 8 GPUs however
|
||||
llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL
|
||||
|
||||
# llama-agents have safety enabled by default. For this, you will need
|
||||
# safety models -- Llama-Guard and Prompt-Guard
|
||||
llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL
|
||||
llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL
|
||||
```
|
||||
|
||||
#### Downloading from [Hugging Face](https://huggingface.co/meta-llama)
|
||||
|
||||
Essentially, the same commands above work, just replace `--source meta` with `--source huggingface`.
|
||||
|
||||
```bash
|
||||
llama download --source huggingface --model-id Llama3.1-8B-Instruct --hf-token <HF_TOKEN>
|
||||
|
||||
llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token <HF_TOKEN>
|
||||
|
||||
llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original*
|
||||
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*
|
||||
```
|
||||
|
||||
**Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
|
||||
|
||||
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
|
||||
|
||||
#### Downloading via Ollama
|
||||
|
||||
If you're already using ollama, we also have a supported Llama Stack distribution `local-ollama` and you can continue to use ollama for managing model downloads.
|
||||
|
||||
```
|
||||
ollama pull llama3.1:8b-instruct-fp16
|
||||
ollama pull llama3.1:70b-instruct-fp16
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Only the above two models are currently supported by Ollama.
|
||||
|
||||
|
||||
## Step 2: Understand the models
|
||||
The `llama model` command helps you explore the model’s interface.
|
||||
|
||||
### 2.1 Subcommands
|
||||
1. `download`: Download the model from different sources. (meta, huggingface)
|
||||
2. `list`: Lists all the models available for download with hardware requirements to deploy the models.
|
||||
3. `prompt-format`: Show llama model message formats.
|
||||
4. `describe`: Describes all the properties of the model.
|
||||
|
||||
### 2.2 Sample Usage
|
||||
|
||||
`llama model <subcommand> <options>`
|
||||
|
||||
```
|
||||
llama model --help
|
||||
```
|
||||
<pre style="font-family: monospace;">
|
||||
usage: llama model [-h] {download,list,prompt-format,describe} ...
|
||||
|
||||
Work with llama models
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
|
||||
model_subcommands:
|
||||
{download,list,prompt-format,describe}
|
||||
</pre>
|
||||
|
||||
You can use the describe command to know more about a model:
|
||||
```
|
||||
llama model describe -m Llama3.2-3B-Instruct
|
||||
```
|
||||
### 2.3 Describe
|
||||
|
||||
<pre style="font-family: monospace;">
|
||||
+-----------------------------+----------------------------------+
|
||||
| Model | Llama3.2-3B-Instruct |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Hugging Face ID | meta-llama/Llama-3.2-3B-Instruct |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Description | Llama 3.2 3b instruct model |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Context Length | 128K tokens |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Weights format | bf16 |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Model params.json | { |
|
||||
| | "dim": 3072, |
|
||||
| | "n_layers": 28, |
|
||||
| | "n_heads": 24, |
|
||||
| | "n_kv_heads": 8, |
|
||||
| | "vocab_size": 128256, |
|
||||
| | "ffn_dim_multiplier": 1.0, |
|
||||
| | "multiple_of": 256, |
|
||||
| | "norm_eps": 1e-05, |
|
||||
| | "rope_theta": 500000.0, |
|
||||
| | "use_scaled_rope": true |
|
||||
| | } |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Recommended sampling params | { |
|
||||
| | "strategy": "top_p", |
|
||||
| | "temperature": 1.0, |
|
||||
| | "top_p": 0.9, |
|
||||
| | "top_k": 0 |
|
||||
| | } |
|
||||
+-----------------------------+----------------------------------+
|
||||
</pre>
|
||||
### 2.4 Prompt Format
|
||||
You can even run `llama model prompt-format` see all of the templates and their tokens:
|
||||
|
||||
```
|
||||
llama model prompt-format -m Llama3.2-3B-Instruct
|
||||
```
|
||||
<p align="center">
|
||||
<img width="719" alt="image" src="https://github.com/user-attachments/assets/c5332026-8c0b-4edc-b438-ec60cd7ca554">
|
||||
</p>
|
||||
|
||||
|
||||
You will be shown a Markdown formatted description of the model interface and how prompts / messages are formatted for various scenarios.
|
||||
|
||||
**NOTE**: Outputs in terminal are color printed to show special tokens.
|
||||
|
||||
|
||||
## Step 3: Building, and Configuring Llama Stack Distributions
|
||||
|
||||
- Please see our [Getting Started](getting_started.md) guide for more details on how to build and start a Llama Stack distribution.
|
||||
|
||||
### Step 3.1 Build
|
||||
In the following steps, imagine we'll be working with a `Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `8b-instruct`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
|
||||
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
#### Building from scratch
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
```
|
||||
|
||||
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
|
||||
|
||||
```
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): my-local-llama-stack
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/my-local-llama-stack-build.yaml
|
||||
```
|
||||
|
||||
#### Building from templates
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
```
|
||||
llama stack build --list-templates
|
||||
```
|
||||
|
||||

|
||||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
```
|
||||
llama stack build --template local-tgi --name my-tgi-stack
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack build --template local-tgi --name my-tgi-stack
|
||||
...
|
||||
...
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml
|
||||
You may now run `llama stack configure my-tgi-stack` or `llama stack configure ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml`
|
||||
```
|
||||
|
||||
#### Building from config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
|
||||
name: local-ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
```
|
||||
|
||||
```
|
||||
llama stack build --config llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
```
|
||||
|
||||
#### How to build distribution with Docker image
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template local --image-type docker --name docker-0
|
||||
```
|
||||
|
||||
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
|
||||
|
||||
```
|
||||
name: local-docker-example
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference-faiss
|
||||
safety: meta-reference
|
||||
agentic_system: meta-reference
|
||||
telemetry: console
|
||||
image_type: docker
|
||||
```
|
||||
|
||||
The following command allows you to build a Docker image with the name `<name>`
|
||||
```
|
||||
llama stack build --config <name>-build.yaml
|
||||
|
||||
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
|
||||
WORKDIR /app
|
||||
...
|
||||
...
|
||||
You can run it with: podman run -p 8000:8000 llamastack-docker-local
|
||||
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
|
||||
```
|
||||
|
||||
|
||||
### Step 3.2 Configure
|
||||
After our distribution is built (either in form of docker or conda environment), we will run the following command to
|
||||
```
|
||||
llama stack configure [ <name> | <docker-image-name> | <path/to/name.build.yaml>]
|
||||
```
|
||||
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
|
||||
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
|
||||
- Run `docker images` to check list of available images on your machine.
|
||||
|
||||
```
|
||||
$ llama stack configure ~/.llama/distributions/conda/8b-instruct-build.yaml
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (existing: Llama3.1-8B-Instruct) (required):
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (existing: 4096) (required):
|
||||
Enter value for max_batch_size (existing: 1) (required):
|
||||
|
||||
Configuring API: memory (meta-reference-faiss)
|
||||
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (default: Llama-Guard-3-1B) (required):
|
||||
Enter value for excluded_categories (default: []) (required):
|
||||
Enter value for disable_input_check (default: False) (required):
|
||||
Enter value for disable_output_check (default: False) (required):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (default: Prompt-Guard-86M) (required):
|
||||
|
||||
Configuring API: agentic_system (meta-reference)
|
||||
Enter value for brave_search_api_key (optional):
|
||||
Enter value for bing_search_api_key (optional):
|
||||
Enter value for wolfram_api_key (optional):
|
||||
|
||||
Configuring API: telemetry (console)
|
||||
|
||||
YAML configuration has been written to ~/.llama/builds/conda/8b-instruct-run.yaml
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/8b-instruct-run.yaml` with the following contents. You may edit this file to change the settings.
|
||||
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-1B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
|
||||
### Step 3.3 Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
|
||||
|
||||
```
|
||||
llama stack run ~/.llama/builds/conda/8b-instruct-run.yaml
|
||||
```
|
||||
|
||||
You should see the Llama Stack server start and print the APIs that it is supporting
|
||||
|
||||
```
|
||||
$ llama stack run ~/.llama/builds/local/conda/8b-instruct.yaml
|
||||
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
Loaded in 19.28 seconds
|
||||
NCCL version 2.20.5+cuda12.4
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/batch_chat_completion
|
||||
Serving POST /inference/batch_completion
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/memory_bank/attach
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/memory_bank/detach
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Listening on :::5000
|
||||
INFO: Started server process [453333]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/8b-instruct-run.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
> [!TIP]
|
||||
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
||||
### Step 3.4 Test with Client
|
||||
Once the server is setup, we can test it with a client to see the example outputs.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env> # any environment containing the llama-stack pip package will work
|
||||
|
||||
python -m llama_stack.apis.inference.client localhost 5000
|
||||
```
|
||||
|
||||
This will run the chat completion client and query the distribution’s /inference/chat_completion API.
|
||||
|
||||
Here is an example output:
|
||||
```
|
||||
User>hello world, write me a 2 sentence poem about the moon
|
||||
Assistant> Here's a 2-sentence poem about the moon:
|
||||
|
||||
The moon glows softly in the midnight sky,
|
||||
A beacon of wonder, as it passes by.
|
||||
```
|
||||
|
||||
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
|
||||
|
||||
```
|
||||
python -m llama_stack.apis.safety.client localhost 5000
|
||||
```
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
||||
7
docs/contbuild.sh
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
sphinx-autobuild --write-all source build/html --watch source/
|
||||
|
|
@ -36,18 +36,16 @@
|
|||
"1. Get Docker container\n",
|
||||
"```\n",
|
||||
"$ docker login\n",
|
||||
"$ docker pull llamastack/llamastack-local-gpu\n",
|
||||
"$ docker pull llamastack/llamastack-meta-reference-gpu\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"2. pip install the llama stack client package \n",
|
||||
"For this purpose, we will directly work with pre-built docker containers and use the python SDK\n",
|
||||
"```\n",
|
||||
"$ git clone https://github.com/meta-llama/llama-stack-apps.git\n",
|
||||
"\n",
|
||||
"$ cd llama-stack-apps\n",
|
||||
"$ yes | conda create -n stack-test python=3.10 \n",
|
||||
"$ conda activate stack-test\n",
|
||||
"\n",
|
||||
"$ pip install llama_stack llama_stack_client\n",
|
||||
"```\n",
|
||||
"This will install `llama_stack` and `llama_stack_client` packages. \n",
|
||||
|
|
@ -63,50 +61,7 @@
|
|||
"```\n",
|
||||
"For GPU inference, you need to set these environment variables for specifying local directory containing your model checkpoints, and enable GPU inference to start running docker container.\n",
|
||||
"$ export LLAMA_CHECKPOINT_DIR=~/.llama\n",
|
||||
"$ llama stack configure llamastack-local-gpu\n",
|
||||
"```\n",
|
||||
"Follow the prompts as part of configure.\n",
|
||||
"Here is a sample output \n",
|
||||
"```\n",
|
||||
"$ llama stack configure llamastack-local-gpu\n",
|
||||
"\n",
|
||||
"Could not find llamastack-local-gpu. Trying conda build name instead...\n",
|
||||
"Could not find /home/hjshah/.conda/envs/llamastack-llamastack-local-gpu/llamastack-local-gpu-build.yaml. Trying docker image name instead...\n",
|
||||
"+ podman run --network host -it -v /home/hjshah/.llama/builds/docker:/app/builds llamastack-local-gpu llama stack configure ./llamastack-build.yaml --output-dir /app/builds\n",
|
||||
"\n",
|
||||
"Configuring API `inference`...\n",
|
||||
"=== Configuring provider `meta-reference` for API inference...\n",
|
||||
"Enter value for model (default: Llama3.1-8B-Instruct) (required): Llama3.2-11B-Vision-Instruct\n",
|
||||
"Do you want to configure quantization? (y/n): n\n",
|
||||
"Enter value for torch_seed (optional): \n",
|
||||
"Enter value for max_seq_len (default: 4096) (required): \n",
|
||||
"Enter value for max_batch_size (default: 1) (required): \n",
|
||||
"\n",
|
||||
"Configuring API `safety`...\n",
|
||||
"=== Configuring provider `meta-reference` for API safety...\n",
|
||||
"Do you want to configure llama_guard_shield? (y/n): n\n",
|
||||
"Do you want to configure prompt_guard_shield? (y/n): n\n",
|
||||
"\n",
|
||||
"Configuring API `agents`...\n",
|
||||
"=== Configuring provider `meta-reference` for API agents...\n",
|
||||
"Enter `type` for persistence_store (options: redis, sqlite, postgres) (default: sqlite): \n",
|
||||
"\n",
|
||||
"Configuring SqliteKVStoreConfig:\n",
|
||||
"Enter value for namespace (optional): \n",
|
||||
"Enter value for db_path (default: /root/.llama/runtime/kvstore.db) (required): \n",
|
||||
"\n",
|
||||
"Configuring API `memory`...\n",
|
||||
"=== Configuring provider `meta-reference` for API memory...\n",
|
||||
"> Please enter the supported memory bank type your provider has for memory: vector\n",
|
||||
"\n",
|
||||
"Configuring API `telemetry`...\n",
|
||||
"=== Configuring provider `meta-reference` for API telemetry...\n",
|
||||
"\n",
|
||||
"> YAML configuration has been written to /app/builds/local-gpu-run.yaml.\n",
|
||||
"You can now run `llama stack run local-gpu --port PORT`\n",
|
||||
"YAML configuration has been written to /home/hjshah/.llama/builds/docker/local-gpu-run.yaml. You can now run `llama stack run /home/hjshah/.llama/builds/docker/local-gpu-run.yaml`\n",
|
||||
"```\n",
|
||||
"NOTE: For this example, we use all local meta-reference implementations and have not setup safety. \n",
|
||||
"\n",
|
||||
"5. Run the Stack Server\n",
|
||||
"```\n",
|
||||
|
|
|
|||
|
|
@ -1,448 +0,0 @@
|
|||
# llama-stack
|
||||
|
||||
[](https://pypi.org/project/llama-stack/)
|
||||
[](https://discord.gg/llama-stack)
|
||||
|
||||
This repository contains the specifications and implementations of the APIs which are part of the Llama Stack.
|
||||
|
||||
The Llama Stack defines and standardizes the building blocks needed to bring generative AI applications to market. These blocks span the entire development lifecycle: from model training and fine-tuning, through product evaluation, to invoking AI agents in production. Beyond definition, we're developing open-source versions and partnering with cloud providers, ensuring developers can assemble AI solutions using consistent, interlocking pieces across platforms. The ultimate goal is to accelerate innovation in the AI space.
|
||||
|
||||
The Stack APIs are rapidly improving, but still very much work in progress and we invite feedback as well as direct contributions.
|
||||
|
||||
|
||||
## APIs
|
||||
|
||||
The Llama Stack consists of the following set of APIs:
|
||||
|
||||
- Inference
|
||||
- Safety
|
||||
- Memory
|
||||
- Agentic System
|
||||
- Evaluation
|
||||
- Post Training
|
||||
- Synthetic Data Generation
|
||||
- Reward Scoring
|
||||
|
||||
Each of the APIs themselves is a collection of REST endpoints.
|
||||
|
||||
## API Providers
|
||||
|
||||
A Provider is what makes the API real -- they provide the actual implementation backing the API.
|
||||
|
||||
As an example, for Inference, we could have the implementation be backed by open source libraries like `[ torch | vLLM | TensorRT ]` as possible options.
|
||||
|
||||
A provider can also be just a pointer to a remote REST service -- for example, cloud providers or dedicated inference providers could serve these APIs.
|
||||
|
||||
|
||||
## Llama Stack Distribution
|
||||
|
||||
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
You can install this repository as a [package](https://pypi.org/project/llama-stack/) with `pip install llama-stack`
|
||||
|
||||
If you want to install from source:
|
||||
|
||||
```bash
|
||||
mkdir -p ~/local
|
||||
cd ~/local
|
||||
git clone git@github.com:meta-llama/llama-stack.git
|
||||
|
||||
conda create -n stack python=3.10
|
||||
conda activate stack
|
||||
|
||||
cd llama-stack
|
||||
$CONDA_PREFIX/bin/pip install -e .
|
||||
```
|
||||
|
||||
# Getting Started
|
||||
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
This guides allows you to quickly get started with building and running a Llama Stack server in < 5 minutes!
|
||||
|
||||
You may also checkout this [notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb) for trying out out demo scripts.
|
||||
|
||||
## Quick Cheatsheet
|
||||
|
||||
#### Via docker
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama --gpus=all llamastack-local-gpu
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
#### Via conda
|
||||
**`llama stack build`**
|
||||
- You'll be prompted to enter build information interactively.
|
||||
```
|
||||
llama stack build
|
||||
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): my-local-stack
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-stack/my-local-stack-build.yaml
|
||||
You can now run `llama stack configure my-local-stack`
|
||||
```
|
||||
|
||||
**`llama stack configure`**
|
||||
- Run `llama stack configure <name>` with the name you have previously defined in `build` step.
|
||||
```
|
||||
llama stack configure <name>
|
||||
```
|
||||
- You will be prompted to enter configurations for your Llama Stack
|
||||
|
||||
```
|
||||
$ llama stack configure my-local-stack
|
||||
|
||||
Could not find my-local-stack. Trying conda build name instead...
|
||||
Configuring API `inference`...
|
||||
=== Configuring provider `meta-reference` for API inference...
|
||||
Enter value for model (default: Llama3.1-8B-Instruct) (required):
|
||||
Do you want to configure quantization? (y/n): n
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (default: 4096) (required):
|
||||
Enter value for max_batch_size (default: 1) (required):
|
||||
|
||||
Configuring API `safety`...
|
||||
=== Configuring provider `meta-reference` for API safety...
|
||||
Do you want to configure llama_guard_shield? (y/n): n
|
||||
Do you want to configure prompt_guard_shield? (y/n): n
|
||||
|
||||
Configuring API `agents`...
|
||||
=== Configuring provider `meta-reference` for API agents...
|
||||
Enter `type` for persistence_store (options: redis, sqlite, postgres) (default: sqlite):
|
||||
|
||||
Configuring SqliteKVStoreConfig:
|
||||
Enter value for namespace (optional):
|
||||
Enter value for db_path (default: /home/xiyan/.llama/runtime/kvstore.db) (required):
|
||||
|
||||
Configuring API `memory`...
|
||||
=== Configuring provider `meta-reference` for API memory...
|
||||
> Please enter the supported memory bank type your provider has for memory: vector
|
||||
|
||||
Configuring API `telemetry`...
|
||||
=== Configuring provider `meta-reference` for API telemetry...
|
||||
|
||||
> YAML configuration has been written to ~/.llama/builds/conda/my-local-stack-run.yaml.
|
||||
You can now run `llama stack run my-local-stack --port PORT`
|
||||
```
|
||||
|
||||
**`llama stack run`**
|
||||
- Run `llama stack run <name>` with the name you have previously defined.
|
||||
```
|
||||
llama stack run my-local-stack
|
||||
|
||||
...
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
...
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /inference/embeddings
|
||||
Serving POST /memory_banks/create
|
||||
Serving DELETE /memory_bank/documents/delete
|
||||
Serving DELETE /memory_banks/drop
|
||||
Serving GET /memory_bank/documents/get
|
||||
Serving GET /memory_banks/get
|
||||
Serving POST /memory_bank/insert
|
||||
Serving GET /memory_banks/list
|
||||
Serving POST /memory_bank/query
|
||||
Serving POST /memory_bank/update
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Serving GET /telemetry/get_trace
|
||||
Serving POST /telemetry/log_event
|
||||
Listening on :::5000
|
||||
INFO: Started server process [587053]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
|
||||
## Step 1. Build
|
||||
In the following steps, imagine we'll be working with a `Meta-Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `8b-instruct`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
|
||||
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
#### Building from scratch
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
```
|
||||
|
||||
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
|
||||
|
||||
```
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): 8b-instruct
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/8b-instruct-build.yaml
|
||||
```
|
||||
|
||||
**Ollama (optional)**
|
||||
|
||||
If you plan to use Ollama for inference, you'll need to install the server [via these instructions](https://ollama.com/download).
|
||||
|
||||
|
||||
#### Building from templates
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
```
|
||||
llama stack build --list-templates
|
||||
```
|
||||
|
||||

|
||||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
```
|
||||
llama stack build --template local-tgi --name my-tgi-stack
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack build --template local-tgi --name my-tgi-stack
|
||||
...
|
||||
...
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml
|
||||
You may now run `llama stack configure my-tgi-stack` or `llama stack configure ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml`
|
||||
```
|
||||
|
||||
#### Building from config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
|
||||
name: local-ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
```
|
||||
|
||||
```
|
||||
llama stack build --config llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
```
|
||||
|
||||
#### How to build distribution with Docker image
|
||||
|
||||
> [!TIP]
|
||||
> Podman is supported as an alternative to Docker. Set `DOCKER_BINARY` to `podman` in your environment to use Podman.
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template local --image-type docker --name docker-0
|
||||
```
|
||||
|
||||
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
|
||||
|
||||
```
|
||||
name: local-docker-example
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference-faiss
|
||||
safety: meta-reference
|
||||
agentic_system: meta-reference
|
||||
telemetry: console
|
||||
image_type: docker
|
||||
```
|
||||
|
||||
The following command allows you to build a Docker image with the name `<name>`
|
||||
```
|
||||
llama stack build --config <name>-build.yaml
|
||||
|
||||
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
|
||||
WORKDIR /app
|
||||
...
|
||||
...
|
||||
You can run it with: podman run -p 8000:8000 llamastack-docker-local
|
||||
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
|
||||
```
|
||||
|
||||
|
||||
## Step 2. Configure
|
||||
After our distribution is built (either in form of docker or conda environment), we will run the following command to
|
||||
```
|
||||
llama stack configure [ <name> | <docker-image-name> | <path/to/name.build.yaml>]
|
||||
```
|
||||
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
|
||||
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
|
||||
- Run `docker images` to check list of available images on your machine.
|
||||
|
||||
```
|
||||
$ llama stack configure 8b-instruct
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (existing: Meta-Llama3.1-8B-Instruct) (required):
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (existing: 4096) (required):
|
||||
Enter value for max_batch_size (existing: 1) (required):
|
||||
|
||||
Configuring API: memory (meta-reference-faiss)
|
||||
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (default: Llama-Guard-3-1B) (required):
|
||||
Enter value for excluded_categories (default: []) (required):
|
||||
Enter value for disable_input_check (default: False) (required):
|
||||
Enter value for disable_output_check (default: False) (required):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (default: Prompt-Guard-86M) (required):
|
||||
|
||||
Configuring API: agentic_system (meta-reference)
|
||||
Enter value for brave_search_api_key (optional):
|
||||
Enter value for bing_search_api_key (optional):
|
||||
Enter value for wolfram_api_key (optional):
|
||||
|
||||
Configuring API: telemetry (console)
|
||||
|
||||
YAML configuration has been written to ~/.llama/builds/conda/8b-instruct-run.yaml
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/8b-instruct-run.yaml` with the following contents. You may edit this file to change the settings.
|
||||
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Meta-Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-1B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
|
||||
## Step 3. Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
|
||||
|
||||
```
|
||||
llama stack run 8b-instruct
|
||||
```
|
||||
|
||||
You should see the Llama Stack server start and print the APIs that it is supporting
|
||||
|
||||
```
|
||||
$ llama stack run 8b-instruct
|
||||
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
Loaded in 19.28 seconds
|
||||
NCCL version 2.20.5+cuda12.4
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/batch_chat_completion
|
||||
Serving POST /inference/batch_completion
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/memory_bank/attach
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/memory_bank/detach
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Listening on :::5000
|
||||
INFO: Started server process [453333]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/8b-instruct-run.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
> [!TIP]
|
||||
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
||||
## Step 4. Test with Client
|
||||
Once the server is setup, we can test it with a client to see the example outputs.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env> # any environment containing the llama-stack pip package will work
|
||||
|
||||
python -m llama_stack.apis.inference.client localhost 5000
|
||||
```
|
||||
|
||||
This will run the chat completion client and query the distribution’s /inference/chat_completion API.
|
||||
|
||||
Here is an example output:
|
||||
```
|
||||
User>hello world, write me a 2 sentence poem about the moon
|
||||
Assistant> Here's a 2-sentence poem about the moon:
|
||||
|
||||
The moon glows softly in the midnight sky,
|
||||
A beacon of wonder, as it passes by.
|
||||
```
|
||||
|
||||
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
|
||||
|
||||
```
|
||||
python -m llama_stack.apis.safety.client localhost 5000
|
||||
```
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
||||
35
docs/make.bat
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=.
|
||||
set BUILDDIR=_build
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.https://www.sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
|
||||
:end
|
||||
popd
|
||||
|
|
@ -31,56 +31,10 @@ from .strong_typing.schema import json_schema_type
|
|||
|
||||
schema_utils.json_schema_type = json_schema_type
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.agents import * # noqa: F403
|
||||
from llama_stack.apis.dataset import * # noqa: F403
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.batch_inference import * # noqa: F403
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
from llama_stack.apis.telemetry import * # noqa: F403
|
||||
from llama_stack.apis.post_training import * # noqa: F403
|
||||
from llama_stack.apis.reward_scoring import * # noqa: F403
|
||||
from llama_stack.apis.synthetic_data_generation import * # noqa: F403
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
from llama_stack.apis.models import * # noqa: F403
|
||||
from llama_stack.apis.memory_banks import * # noqa: F403
|
||||
from llama_stack.apis.shields import * # noqa: F403
|
||||
from llama_stack.apis.inspect import * # noqa: F403
|
||||
|
||||
|
||||
class LlamaStack(
|
||||
MemoryBanks,
|
||||
Inference,
|
||||
BatchInference,
|
||||
Agents,
|
||||
RewardScoring,
|
||||
Safety,
|
||||
SyntheticDataGeneration,
|
||||
Datasets,
|
||||
Telemetry,
|
||||
PostTraining,
|
||||
Memory,
|
||||
Evaluations,
|
||||
Models,
|
||||
Shields,
|
||||
Inspect,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
# TODO: this should be fixed in the generator itself so it reads appropriate annotations
|
||||
STREAMING_ENDPOINTS = [
|
||||
"/agentic_system/turn/create",
|
||||
"/inference/chat_completion",
|
||||
]
|
||||
|
||||
|
||||
def patch_sse_stream_responses(spec: Specification):
|
||||
for path, path_item in spec.document.paths.items():
|
||||
if path in STREAMING_ENDPOINTS:
|
||||
content = path_item.post.responses["200"].content.pop("application/json")
|
||||
path_item.post.responses["200"].content["text/event-stream"] = content
|
||||
# this line needs to be here to ensure json_schema_type has been altered before
|
||||
# the imports use the annotation
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_VERSION # noqa: E402
|
||||
from llama_stack.distribution.stack import LlamaStack # noqa: E402
|
||||
|
||||
|
||||
def main(output_dir: str):
|
||||
|
|
@ -98,19 +52,15 @@ def main(output_dir: str):
|
|||
Options(
|
||||
server=Server(url="http://any-hosted-llama-stack.com"),
|
||||
info=Info(
|
||||
title="[DRAFT] Llama Stack Specification",
|
||||
version="0.0.1",
|
||||
description="""This is the specification of the llama stack that provides
|
||||
title="Llama Stack Specification",
|
||||
version=LLAMA_STACK_API_VERSION,
|
||||
description="""This is the specification of the Llama Stack that provides
|
||||
a set of endpoints and their corresponding interfaces that are tailored to
|
||||
best leverage Llama Models. The specification is still in draft and subject to change.
|
||||
Generated at """
|
||||
+ now,
|
||||
best leverage Llama Models.""",
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
patch_sse_stream_responses(spec)
|
||||
|
||||
with open(output_dir / "llama-stack-spec.yaml", "w", encoding="utf-8") as fp:
|
||||
yaml.dump(spec.get_json(), fp, allow_unicode=True)
|
||||
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import collections
|
||||
import hashlib
|
||||
import ipaddress
|
||||
import typing
|
||||
|
|
@ -176,9 +177,20 @@ class ContentBuilder:
|
|||
) -> Dict[str, MediaType]:
|
||||
"Creates the content subtree for a request or response."
|
||||
|
||||
def has_iterator_type(t):
|
||||
if typing.get_origin(t) is typing.Union:
|
||||
return any(has_iterator_type(a) for a in typing.get_args(t))
|
||||
else:
|
||||
# TODO: needs a proper fix where we let all types correctly flow upwards
|
||||
# and then test against AsyncIterator
|
||||
return "StreamChunk" in str(t)
|
||||
|
||||
if is_generic_list(payload_type):
|
||||
media_type = "application/jsonl"
|
||||
item_type = unwrap_generic_list(payload_type)
|
||||
elif has_iterator_type(payload_type):
|
||||
item_type = payload_type
|
||||
media_type = "text/event-stream"
|
||||
else:
|
||||
media_type = "application/json"
|
||||
item_type = payload_type
|
||||
|
|
@ -190,7 +202,9 @@ class ContentBuilder:
|
|||
) -> MediaType:
|
||||
schema = self.schema_builder.classdef_to_ref(item_type)
|
||||
if self.schema_transformer:
|
||||
schema_transformer: Callable[[SchemaOrRef], SchemaOrRef] = self.schema_transformer # type: ignore
|
||||
schema_transformer: Callable[[SchemaOrRef], SchemaOrRef] = (
|
||||
self.schema_transformer
|
||||
)
|
||||
schema = schema_transformer(schema)
|
||||
|
||||
if not examples:
|
||||
|
|
@ -424,6 +438,14 @@ class Generator:
|
|||
return extra_tags
|
||||
|
||||
def _build_operation(self, op: EndpointOperation) -> Operation:
|
||||
if op.defining_class.__name__ in [
|
||||
"SyntheticDataGeneration",
|
||||
"PostTraining",
|
||||
"BatchInference",
|
||||
]:
|
||||
op.defining_class.__name__ = f"{op.defining_class.__name__} (Coming Soon)"
|
||||
print(op.defining_class.__name__)
|
||||
|
||||
doc_string = parse_type(op.func_ref)
|
||||
doc_params = dict(
|
||||
(param.name, param.description) for param in doc_string.params.values()
|
||||
|
|
@ -618,6 +640,7 @@ class Generator:
|
|||
raise NotImplementedError(f"unknown HTTP method: {op.http_method}")
|
||||
|
||||
route = op.get_route()
|
||||
print(f"route: {route}")
|
||||
if route in paths:
|
||||
paths[route].update(pathItem)
|
||||
else:
|
||||
|
|
@ -671,6 +694,8 @@ class Generator:
|
|||
for extra_tag_group in extra_tag_groups.values():
|
||||
tags.extend(extra_tag_group)
|
||||
|
||||
tags = sorted(tags, key=lambda t: t.name)
|
||||
|
||||
tag_groups = []
|
||||
if operation_tags:
|
||||
tag_groups.append(
|
||||
|
|
|
|||
|
|
@ -12,6 +12,8 @@ import uuid
|
|||
from dataclasses import dataclass
|
||||
from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_VERSION
|
||||
|
||||
from termcolor import colored
|
||||
|
||||
from ..strong_typing.inspection import (
|
||||
|
|
@ -111,9 +113,12 @@ class EndpointOperation:
|
|||
|
||||
def get_route(self) -> str:
|
||||
if self.route is not None:
|
||||
return self.route
|
||||
assert (
|
||||
"_" not in self.route
|
||||
), f"route should not contain underscores: {self.route}"
|
||||
return "/".join(["", LLAMA_STACK_API_VERSION, self.route.lstrip("/")])
|
||||
|
||||
route_parts = ["", self.name]
|
||||
route_parts = ["", LLAMA_STACK_API_VERSION, self.name]
|
||||
for param_name, _ in self.path_params:
|
||||
route_parts.append("{" + param_name + "}")
|
||||
return "/".join(route_parts)
|
||||
|
|
@ -315,7 +320,20 @@ def get_endpoint_operations(
|
|||
)
|
||||
else:
|
||||
event_type = None
|
||||
response_type = return_type
|
||||
|
||||
def process_type(t):
|
||||
if typing.get_origin(t) is collections.abc.AsyncIterator:
|
||||
# NOTE(ashwin): this is SSE and there is no way to represent it. either we make it a List
|
||||
# or the item type. I am choosing it to be the latter
|
||||
args = typing.get_args(t)
|
||||
return args[0]
|
||||
elif typing.get_origin(t) is typing.Union:
|
||||
types = [process_type(a) for a in typing.get_args(t)]
|
||||
return typing._UnionGenericAlias(typing.Union, tuple(types))
|
||||
else:
|
||||
return t
|
||||
|
||||
response_type = process_type(return_type)
|
||||
|
||||
# set HTTP request method based on type of request and presence of payload
|
||||
if not request_params:
|
||||
|
|
|
|||
|
|
@ -358,6 +358,7 @@ def unwrap_union_types(typ: object) -> Tuple[object, ...]:
|
|||
:returns: The inner types `T1`, `T2`, etc.
|
||||
"""
|
||||
|
||||
typ = unwrap_annotated_type(typ)
|
||||
return _unwrap_union_types(typ)
|
||||
|
||||
|
||||
|
|
|
|||
11
docs/requirements.txt
Normal file
|
|
@ -0,0 +1,11 @@
|
|||
sphinx
|
||||
myst-parser
|
||||
linkify
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
|
||||
sphinx-rtd-theme>=1.0.0
|
||||
sphinx-pdj-theme
|
||||
sphinx-copybutton
|
||||
sphinx-tabs
|
||||
sphinx-design
|
||||
sphinxcontrib-openapi
|
||||
sphinxcontrib-redoc
|
||||
BIN
docs/resources/prompt-format.png
Normal file
|
After Width: | Height: | Size: 170 KiB |
15
docs/source/building_applications/index.md
Normal file
|
|
@ -0,0 +1,15 @@
|
|||
# Building Applications
|
||||
|
||||
```{admonition} Work in Progress
|
||||
:class: warning
|
||||
|
||||
## What can you do with the Stack?
|
||||
|
||||
- Agents
|
||||
- what is a turn? session?
|
||||
- inference
|
||||
- memory / RAG; pre-ingesting content or attaching content in a turn
|
||||
- how does tool calling work
|
||||
- can you do evaluation?
|
||||
|
||||
```
|
||||
64
docs/source/concepts/index.md
Normal file
|
|
@ -0,0 +1,64 @@
|
|||
# Core Concepts
|
||||
|
||||
Given Llama Stack's service-oriented philosophy, a few concepts and workflows arise which may not feel completely natural in the LLM landscape, especially if you are coming with a background in other frameworks.
|
||||
|
||||
|
||||
## APIs
|
||||
|
||||
A Llama Stack API is described as a collection of REST endpoints. We currently support the following APIs:
|
||||
|
||||
- **Inference**: run inference with a LLM
|
||||
- **Safety**: apply safety policies to the output at a Systems (not only model) level
|
||||
- **Agents**: run multi-step agentic workflows with LLMs with tool usage, memory (RAG), etc.
|
||||
- **Memory**: store and retrieve data for RAG, chat history, etc.
|
||||
- **DatasetIO**: interface with datasets and data loaders
|
||||
- **Scoring**: evaluate outputs of the system
|
||||
- **Eval**: generate outputs (via Inference or Agents) and perform scoring
|
||||
- **Telemetry**: collect telemetry data from the system
|
||||
|
||||
We are working on adding a few more APIs to complete the application lifecycle. These will include:
|
||||
- **Batch Inference**: run inference on a dataset of inputs
|
||||
- **Batch Agents**: run agents on a dataset of inputs
|
||||
- **Post Training**: fine-tune a Llama model
|
||||
- **Synthetic Data Generation**: generate synthetic data for model development
|
||||
|
||||
## API Providers
|
||||
|
||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Obvious examples for these include
|
||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, etc.),
|
||||
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
||||
|
||||
Providers come in two flavors:
|
||||
- **Remote**: the provider runs as a separate service external to the Llama Stack codebase. Llama Stack contains a small amount of adapter code.
|
||||
- **Inline**: the provider is fully specified and implemented within the Llama Stack codebase. It may be a simple wrapper around an existing library, or a full fledged implementation within Llama Stack.
|
||||
|
||||
## Resources
|
||||
|
||||
Some of these APIs are associated with a set of **Resources**. Here is the mapping of APIs to resources:
|
||||
|
||||
- **Inference**, **Eval** and **Post Training** are associated with `Model` resources.
|
||||
- **Safety** is associated with `Shield` resources.
|
||||
- **Memory** is associated with `Memory Bank` resources.
|
||||
- **DatasetIO** is associated with `Dataset` resources.
|
||||
- **Scoring** is associated with `ScoringFunction` resources.
|
||||
- **Eval** is associated with `Model` and `EvalTask` resources.
|
||||
|
||||
Furthermore, we allow these resources to be **federated** across multiple providers. For example, you may have some Llama models served by Fireworks while others are served by AWS Bedrock. Regardless, they will all work seamlessly with the same uniform Inference API provided by Llama Stack.
|
||||
|
||||
```{admonition} Registering Resources
|
||||
:class: tip
|
||||
|
||||
Given this architecture, it is necessary for the Stack to know which provider to use for a given resource. This means you need to explicitly _register_ resources (including models) before you can use them with the associated APIs.
|
||||
```
|
||||
|
||||
## Distributions
|
||||
|
||||
While there is a lot of flexibility to mix-and-match providers, often users will work with a specific set of providers (hardware support, contractual obligations, etc.) We therefore need to provide a _convenient shorthand_ for such collections. We call this shorthand a **Llama Stack Distribution** or a **Distro**. One can think of it as specific pre-packaged versions of the Llama Stack. Here are some examples:
|
||||
|
||||
**Remotely Hosted Distro**: These are the simplest to consume from a user perspective. You can simply obtain the API key for these providers, point to a URL and have _all_ Llama Stack APIs working out of the box. Currently, [Fireworks](https://fireworks.ai/) and [Together](https://together.xyz/) provide such easy-to-consume Llama Stack distributions.
|
||||
|
||||
**Locally Hosted Distro**: You may want to run Llama Stack on your own hardware. Typically though, you still need to use Inference via an external service. You can use providers like HuggingFace TGI, Cerebras, Fireworks, Together, etc. for this purpose. Or you may have access to GPUs and can run a [vLLM](https://github.com/vllm-project/vllm) instance. If you "just" have a regular desktop machine, you can use [Ollama](https://ollama.com/) for inference. To provide convenient quick access to these options, we provide a number of such pre-configured locally-hosted Distros.
|
||||
|
||||
|
||||
**On-device Distro**: Finally, you may want to run Llama Stack directly on an edge device (mobile phone or a tablet.) We provide Distros for iOS and Android (coming soon.)
|
||||
129
docs/source/conf.py
Normal file
|
|
@ -0,0 +1,129 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# For the full list of built-in configuration values, see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
|
||||
|
||||
from docutils import nodes
|
||||
|
||||
project = "llama-stack"
|
||||
copyright = "2024, Meta"
|
||||
author = "Meta"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
||||
|
||||
extensions = [
|
||||
"myst_parser",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinx_copybutton",
|
||||
"sphinx_tabs.tabs",
|
||||
"sphinx_design",
|
||||
"sphinxcontrib.redoc",
|
||||
]
|
||||
myst_enable_extensions = ["colon_fence"]
|
||||
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
html_use_relative_paths = True
|
||||
|
||||
# html_theme = "sphinx_pdj_theme"
|
||||
# html_theme_path = [sphinx_pdj_theme.get_html_theme_path()]
|
||||
|
||||
# html_theme = "pytorch_sphinx_theme"
|
||||
# html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
|
||||
|
||||
|
||||
templates_path = ["_templates"]
|
||||
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
|
||||
myst_enable_extensions = [
|
||||
"amsmath",
|
||||
"attrs_inline",
|
||||
"colon_fence",
|
||||
"deflist",
|
||||
"dollarmath",
|
||||
"fieldlist",
|
||||
"html_admonition",
|
||||
"html_image",
|
||||
# "linkify",
|
||||
"replacements",
|
||||
"smartquotes",
|
||||
"strikethrough",
|
||||
"substitution",
|
||||
"tasklist",
|
||||
]
|
||||
|
||||
myst_substitutions = {
|
||||
"docker_hub": "https://hub.docker.com/repository/docker/llamastack",
|
||||
}
|
||||
|
||||
# Copy button settings
|
||||
copybutton_prompt_text = "$ " # for bash prompts
|
||||
copybutton_prompt_is_regexp = True
|
||||
copybutton_remove_prompts = True
|
||||
copybutton_line_continuation_character = "\\"
|
||||
|
||||
# Source suffix
|
||||
source_suffix = {
|
||||
".rst": "restructuredtext",
|
||||
".md": "markdown",
|
||||
}
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
|
||||
|
||||
# html_theme = "alabaster"
|
||||
html_theme_options = {
|
||||
"canonical_url": "https://github.com/meta-llama/llama-stack",
|
||||
# "style_nav_header_background": "#c3c9d4",
|
||||
}
|
||||
|
||||
html_static_path = ["../_static"]
|
||||
# html_logo = "../_static/llama-stack-logo.png"
|
||||
html_style = "../_static/css/my_theme.css"
|
||||
|
||||
redoc = [
|
||||
{
|
||||
"name": "Llama Stack API",
|
||||
"page": "references/api_reference/index",
|
||||
"spec": "../resources/llama-stack-spec.yaml",
|
||||
"opts": {
|
||||
"suppress-warnings": True,
|
||||
# "expand-responses": ["200", "201"],
|
||||
},
|
||||
"embed": True,
|
||||
},
|
||||
]
|
||||
|
||||
redoc_uri = "https://cdn.redoc.ly/redoc/latest/bundles/redoc.standalone.js"
|
||||
|
||||
|
||||
def setup(app):
|
||||
def dockerhub_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
|
||||
url = f"https://hub.docker.com/r/llamastack/{text}"
|
||||
node = nodes.reference(rawtext, text, refuri=url, **options)
|
||||
return [node], []
|
||||
|
||||
def repopath_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
|
||||
parts = text.split("::")
|
||||
if len(parts) == 2:
|
||||
link_text = parts[0]
|
||||
url_path = parts[1]
|
||||
else:
|
||||
link_text = text
|
||||
url_path = text
|
||||
|
||||
url = f"https://github.com/meta-llama/llama-stack/tree/main/{url_path}"
|
||||
node = nodes.reference(rawtext, link_text, refuri=url, **options)
|
||||
return [node], []
|
||||
|
||||
app.add_role("dockerhub", dockerhub_role)
|
||||
app.add_role("repopath", repopath_role)
|
||||
9
docs/source/contributing/index.md
Normal file
|
|
@ -0,0 +1,9 @@
|
|||
# Contributing to Llama Stack
|
||||
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
new_api_provider
|
||||
memory_api
|
||||
```
|
||||
53
docs/source/contributing/memory_api.md
Normal file
|
|
@ -0,0 +1,53 @@
|
|||
# Memory API Providers
|
||||
|
||||
This guide gives you references to switch between different memory API providers.
|
||||
|
||||
##### pgvector
|
||||
1. Start running the pgvector server:
|
||||
|
||||
```
|
||||
$ docker run --network host --name mypostgres -it -p 5432:5432 -e POSTGRES_PASSWORD=mysecretpassword -e POSTGRES_USER=postgres -e POSTGRES_DB=postgres pgvector/pgvector:pg16
|
||||
```
|
||||
|
||||
2. Edit the `run.yaml` file to point to the pgvector server.
|
||||
```
|
||||
memory:
|
||||
- provider_id: pgvector
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: 127.0.0.1
|
||||
port: 5432
|
||||
db: postgres
|
||||
user: postgres
|
||||
password: mysecretpassword
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> If you get a `RuntimeError: Vector extension is not installed.`. You will need to run `CREATE EXTENSION IF NOT EXISTS vector;` to include the vector extension. E.g.
|
||||
|
||||
```
|
||||
docker exec -it mypostgres ./bin/psql -U postgres
|
||||
postgres=# CREATE EXTENSION IF NOT EXISTS vector;
|
||||
postgres=# SELECT extname from pg_extension;
|
||||
extname
|
||||
```
|
||||
|
||||
3. Run `docker compose up` with the updated `run.yaml` file.
|
||||
|
||||
##### chromadb
|
||||
1. Start running chromadb server
|
||||
```
|
||||
docker run -it --network host --name chromadb -p 6000:6000 -v ./chroma_vdb:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest
|
||||
```
|
||||
|
||||
2. Edit the `run.yaml` file to point to the chromadb server.
|
||||
```
|
||||
memory:
|
||||
- provider_id: remote::chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
host: localhost
|
||||
port: 6000
|
||||
```
|
||||
|
||||
3. Run `docker compose up` with the updated `run.yaml` file.
|
||||
26
docs/source/contributing/new_api_provider.md
Normal file
|
|
@ -0,0 +1,26 @@
|
|||
# Adding a New API Provider
|
||||
|
||||
This guide contains references to walk you through adding a new API provider.
|
||||
|
||||
1. First, decide which API your provider falls into (e.g. Inference, Safety, Agents, Memory).
|
||||
2. Decide whether your provider is a remote provider, or inline implmentation. A remote provider is a provider that makes a remote request to an service. An inline provider is a provider where implementation is executed locally. Checkout the examples, and follow the structure to add your own API provider. Please find the following code pointers:
|
||||
|
||||
- {repopath}`Remote Providers::llama_stack/providers/remote`
|
||||
- {repopath}`Inline Providers::llama_stack/providers/inline`
|
||||
|
||||
3. [Build a Llama Stack distribution](https://llama-stack.readthedocs.io/en/latest/distribution_dev/building_distro.html) with your API provider.
|
||||
4. Test your code!
|
||||
|
||||
## Testing your newly added API providers
|
||||
|
||||
1. Start with an _integration test_ for your provider. That means we will instantiate the real provider, pass it real configuration and if it is a remote service, we will actually hit the remote service. We **strongly** discourage mocking for these tests at the provider level. Llama Stack is first and foremost about integration so we need to make sure stuff works end-to-end. See {repopath}`llama_stack/providers/tests/inference/test_text_inference.py` for an example.
|
||||
|
||||
2. In addition, if you want to unit test functionality within your provider, feel free to do so. You can find some tests in `tests/` but they aren't well supported so far.
|
||||
|
||||
3. Test with a client-server Llama Stack setup. (a) Start a Llama Stack server with your own distribution which includes the new provider. (b) Send a client request to the server. See `llama_stack/apis/<api>/client.py` for how this is done. These client scripts can serve as lightweight tests.
|
||||
|
||||
You can find more complex client scripts [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) repo. Note down which scripts works and do not work with your distribution.
|
||||
|
||||
## Submit your PR
|
||||
|
||||
After you have fully tested your newly added API provider, submit a PR with the attached test plan. You must have a Test Plan in the summary section of your PR.
|
||||
123
docs/source/cookbooks/evals.md
Normal file
|
|
@ -0,0 +1,123 @@
|
|||
# Evaluations
|
||||
|
||||
The Llama Stack Evaluation flow allows you to run evaluations on your GenAI application datasets or pre-registered benchmarks.
|
||||
|
||||
We introduce a set of APIs in Llama Stack for supporting running evaluations of LLM applications.
|
||||
- `/datasetio` + `/datasets` API
|
||||
- `/scoring` + `/scoring_functions` API
|
||||
- `/eval` + `/eval_tasks` API
|
||||
|
||||
This guide goes over the sets of APIs and developer experience flow of using Llama Stack to run evaluations for different use cases.
|
||||
|
||||
## Evaluation Concepts
|
||||
|
||||
The Evaluation APIs are associated with a set of Resources as shown in the following diagram. Please visit the Resources section in our [Core Concepts](../concepts/index.md) guide for better high-level understanding.
|
||||
|
||||

|
||||
|
||||
- **DatasetIO**: defines interface with datasets and data loaders.
|
||||
- Associated with `Dataset` resource.
|
||||
- **Scoring**: evaluate outputs of the system.
|
||||
- Associated with `ScoringFunction` resource. We provide a suite of out-of-the box scoring functions and also the ability for you to add custom evaluators. These scoring functions are the core part of defining an evaluation task to output evaluation metrics.
|
||||
- **Eval**: generate outputs (via Inference or Agents) and perform scoring.
|
||||
- Associated with `EvalTask` resource.
|
||||
|
||||
|
||||
## Running Evaluations
|
||||
Use the following decision tree to decide how to use LlamaStack Evaluation flow.
|
||||

|
||||
|
||||
|
||||
```{admonition} Note on Benchmark v.s. Application Evaluation
|
||||
:class: tip
|
||||
- **Benchmark Evaluation** is a well-defined eval-task consisting of `dataset` and `scoring_function`. The generation (inference or agent) will be done as part of evaluation.
|
||||
- **Application Evaluation** assumes users already have app inputs & generated outputs. Evaluation will purely focus on scoring the generated outputs via scoring functions (e.g. LLM-as-judge).
|
||||
```
|
||||
|
||||
The following examples give the quick steps to start running evaluations using the llama-stack-client CLI.
|
||||
|
||||
#### Benchmark Evaluation CLI
|
||||
Usage: There are 2 inputs necessary for running a benchmark eval
|
||||
- `eval-task-id`: the identifier associated with the eval task. Each `EvalTask` is parametrized by
|
||||
- `dataset_id`: the identifier associated with the dataset.
|
||||
- `List[scoring_function_id]`: list of scoring function identifiers.
|
||||
- `eval-task-config`: specifies the configuration of the model / agent to evaluate on.
|
||||
|
||||
|
||||
```
|
||||
llama-stack-client eval run_benchmark <eval-task-id> \
|
||||
--eval-task-config ~/eval_task_config.json \
|
||||
--visualize
|
||||
```
|
||||
|
||||
|
||||
#### Application Evaluation CLI
|
||||
Usage: For running application evals, you will already have available datasets in hand from your application. You will need to specify:
|
||||
- `scoring-fn-id`: List of ScoringFunction identifiers you wish to use to run on your application.
|
||||
- `Dataset` used for evaluation:
|
||||
- (1) `--dataset-path`: path to local file system containing datasets to run evaluation on
|
||||
- (2) `--dataset-id`: pre-registered dataset in Llama Stack
|
||||
- (Optional) `--scoring-params-config`: optionally parameterize scoring functions with custom params (e.g. `judge_prompt`, `judge_model`, `parsing_regexes`).
|
||||
|
||||
|
||||
```
|
||||
llama-stack-client eval run_scoring <scoring_fn_id_1> <scoring_fn_id_2> ... <scoring_fn_id_n>
|
||||
--dataset-path <path-to-local-dataset> \
|
||||
--output-dir ./
|
||||
```
|
||||
|
||||
#### Defining EvalTaskConfig
|
||||
The `EvalTaskConfig` are user specified config to define:
|
||||
1. `EvalCandidate` to run generation on:
|
||||
- `ModelCandidate`: The model will be used for generation through LlamaStack /inference API.
|
||||
- `AgentCandidate`: The agentic system specified by AgentConfig will be used for generation through LlamaStack /agents API.
|
||||
2. Optionally scoring function params to allow customization of scoring function behaviour. This is useful to parameterize generic scoring functions such as LLMAsJudge with custom `judge_model` / `judge_prompt`.
|
||||
|
||||
|
||||
**Example Benchmark EvalTaskConfig**
|
||||
```json
|
||||
{
|
||||
"type": "benchmark",
|
||||
"eval_candidate": {
|
||||
"type": "model",
|
||||
"model": "Llama3.2-3B-Instruct",
|
||||
"sampling_params": {
|
||||
"strategy": "greedy",
|
||||
"temperature": 0,
|
||||
"top_p": 0.95,
|
||||
"top_k": 0,
|
||||
"max_tokens": 0,
|
||||
"repetition_penalty": 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Example Application EvalTaskConfig**
|
||||
```json
|
||||
{
|
||||
"type": "app",
|
||||
"eval_candidate": {
|
||||
"type": "model",
|
||||
"model": "Llama3.1-405B-Instruct",
|
||||
"sampling_params": {
|
||||
"strategy": "greedy",
|
||||
"temperature": 0,
|
||||
"top_p": 0.95,
|
||||
"top_k": 0,
|
||||
"max_tokens": 0,
|
||||
"repetition_penalty": 1.0
|
||||
}
|
||||
},
|
||||
"scoring_params": {
|
||||
"llm-as-judge::llm_as_judge_base": {
|
||||
"type": "llm_as_judge",
|
||||
"judge_model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"prompt_template": "Your job is to look at a question, a gold target ........",
|
||||
"judge_score_regexes": [
|
||||
"(A|B|C)"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
9
docs/source/cookbooks/index.md
Normal file
|
|
@ -0,0 +1,9 @@
|
|||
# Cookbooks
|
||||
|
||||
- [Evaluations Flow](evals.md)
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
evals.md
|
||||
```
|
||||
BIN
docs/source/cookbooks/resources/eval-concept.png
Normal file
|
After Width: | Height: | Size: 68 KiB |
BIN
docs/source/cookbooks/resources/eval-flow.png
Normal file
|
After Width: | Height: | Size: 249 KiB |
289
docs/source/distributions/building_distro.md
Normal file
|
|
@ -0,0 +1,289 @@
|
|||
# Build your own Distribution
|
||||
|
||||
|
||||
This guide will walk you through the steps to get started with building a Llama Stack distribution from scratch with your choice of API providers.
|
||||
|
||||
|
||||
## Llama Stack Build
|
||||
|
||||
In order to build your own distribution, we recommend you clone the `llama-stack` repository.
|
||||
|
||||
|
||||
```
|
||||
git clone git@github.com:meta-llama/llama-stack.git
|
||||
cd llama-stack
|
||||
pip install -e .
|
||||
|
||||
llama stack build -h
|
||||
```
|
||||
|
||||
We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `my-stack`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
::::{tab-set}
|
||||
:::{tab-item} Building from Scratch
|
||||
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
|
||||
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
|
||||
> Enter the image type you want your Llama Stack to be built as (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's select
|
||||
the provider types (implementations) you want to use for these APIs.
|
||||
|
||||
Tip: use <TAB> to see options for the providers.
|
||||
|
||||
> Enter provider for API inference: inline::meta-reference
|
||||
> Enter provider for API safety: inline::llama-guard
|
||||
> Enter provider for API agents: inline::meta-reference
|
||||
> Enter provider for API memory: inline::faiss
|
||||
> Enter provider for API datasetio: inline::meta-reference
|
||||
> Enter provider for API scoring: inline::meta-reference
|
||||
> Enter provider for API eval: inline::meta-reference
|
||||
> Enter provider for API telemetry: inline::meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack:
|
||||
|
||||
You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml`
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Building from a template
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
```
|
||||
llama stack build --list-templates
|
||||
```
|
||||
|
||||
```
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| Template Name | Providers | Description |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| hf-serverless | { | Like local, but use Hugging Face Inference API (serverless) for running LLM |
|
||||
| | "inference": "remote::hf::serverless", | inference. |
|
||||
| | "memory": "meta-reference", | See https://hf.co/docs/api-inference. |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| together | { | Use Together.ai for running LLM inference |
|
||||
| | "inference": "remote::together", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::weaviate" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| fireworks | { | Use Fireworks.ai for running LLM inference |
|
||||
| | "inference": "remote::fireworks", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::weaviate", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| databricks | { | Use Databricks for running LLM inference |
|
||||
| | "inference": "remote::databricks", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| vllm | { | Like local, but use vLLM for running LLM inference |
|
||||
| | "inference": "vllm", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| tgi | { | Use TGI for running LLM inference |
|
||||
| | "inference": "remote::tgi", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| bedrock | { | Use Amazon Bedrock APIs. |
|
||||
| | "inference": "remote::bedrock", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| meta-reference-gpu | { | Use code from `llama_stack` itself to serve all llama stack APIs |
|
||||
| | "inference": "meta-reference", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| meta-reference-quantized-gpu | { | Use code from `llama_stack` itself to serve all llama stack APIs |
|
||||
| | "inference": "meta-reference-quantized", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| ollama | { | Use ollama for running LLM inference |
|
||||
| | "inference": "remote::ollama", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| hf-endpoint | { | Like local, but use Hugging Face Inference Endpoints for running LLM inference. |
|
||||
| | "inference": "remote::hf::endpoint", | See https://hf.co/docs/api-endpoints. |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
For example, to build a distribution with TGI as the inference provider, you can run:
|
||||
```
|
||||
llama stack build --template tgi
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack build --template tgi
|
||||
...
|
||||
You can now edit ~/.llama/distributions/llamastack-tgi/tgi-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-tgi/tgi-run.yaml`
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Building from a pre-existing build config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/templates/*build.yaml`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/templates/ollama/build.yaml
|
||||
|
||||
name: ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: inline::faiss
|
||||
safety: inline::llama-guard
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
```
|
||||
|
||||
```
|
||||
llama stack build --config llama_stack/templates/ollama/build.yaml
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Building Docker
|
||||
> [!TIP]
|
||||
> Podman is supported as an alternative to Docker. Set `DOCKER_BINARY` to `podman` in your environment to use Podman.
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template ollama --image-type docker
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack build --template ollama --image-type docker
|
||||
...
|
||||
Dockerfile created successfully in /tmp/tmp.viA3a3Rdsg/DockerfileFROM python:3.10-slim
|
||||
...
|
||||
|
||||
You can now edit ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml and run `llama stack run ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml`
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find the built docker image and test it with `llama stack run <path/to/run.yaml>`.
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
|
||||
## Running your Stack server
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack build` step.
|
||||
|
||||
```
|
||||
llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
|
||||
|
||||
Serving API inspect
|
||||
GET /health
|
||||
GET /providers/list
|
||||
GET /routes/list
|
||||
Serving API inference
|
||||
POST /inference/chat_completion
|
||||
POST /inference/completion
|
||||
POST /inference/embeddings
|
||||
...
|
||||
Serving API agents
|
||||
POST /agents/create
|
||||
POST /agents/session/create
|
||||
POST /agents/turn/create
|
||||
POST /agents/delete
|
||||
POST /agents/session/delete
|
||||
POST /agents/session/get
|
||||
POST /agents/step/get
|
||||
POST /agents/turn/get
|
||||
|
||||
Listening on ['::', '0.0.0.0']:5000
|
||||
INFO: Started server process [2935911]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
|
||||
INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK
|
||||
```
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
If you encounter any issues, search through our [GitHub Issues](https://github.com/meta-llama/llama-stack/issues), or file an new issue.
|
||||
164
docs/source/distributions/configuration.md
Normal file
|
|
@ -0,0 +1,164 @@
|
|||
# Configuring a Stack
|
||||
|
||||
The Llama Stack runtime configuration is specified as a YAML file. Here is a simplied version of an example configuration file for the Ollama distribution:
|
||||
|
||||
```{dropdown} Sample Configuration File
|
||||
|
||||
```yaml
|
||||
version: 2
|
||||
conda_env: ollama
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ollama
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:http://localhost:11434}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
```
|
||||
|
||||
Let's break this down into the different sections. The first section specifies the set of APIs that the stack server will serve:
|
||||
```yaml
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
```
|
||||
|
||||
## Providers
|
||||
Next up is the most critical part: the set of providers that the stack will use to serve the above APIs. Consider the `inference` API:
|
||||
```yaml
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ollama
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:http://localhost:11434}
|
||||
```
|
||||
A few things to note:
|
||||
- A _provider instance_ is identified with an (identifier, type, configuration) tuple. The identifier is a string you can choose freely.
|
||||
- You can instantiate any number of provider instances of the same type.
|
||||
- The configuration dictionary is provider-specific. Notice that configuration can reference environment variables (with default values), which are expanded at runtime. When you run a stack server (via docker or via `llama stack run`), you can specify `--env OLLAMA_URL=http://my-server:11434` to override the default value.
|
||||
|
||||
## Resources
|
||||
Finally, let's look at the `models` section:
|
||||
```yaml
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
```
|
||||
A Model is an instance of a "Resource" (see [Concepts](../concepts/index)) and is associated with a specific inference provider (in this case, the provider with identifier `ollama`). This is an instance of a "pre-registered" model. While we always encourage the clients to always register models before using them, some Stack servers may come up a list of "already known and available" models.
|
||||
|
||||
What's with the `provider_model_id` field? This is an identifier for the model inside the provider's model catalog. Contrast it with `model_id` which is the identifier for the same model for Llama Stack's purposes. For example, you may want to name "llama3.2:vision-11b" as "image_captioning_model" when you use it in your Stack interactions. When omitted, the server will set `provider_model_id` to be the same as `model_id`.
|
||||
|
||||
## Extending to handle Safety
|
||||
|
||||
Configuring Safety can be a little involved so it is instructive to go through an example.
|
||||
|
||||
The Safety API works with the associated Resource called a `Shield`. Providers can support various kinds of Shields. Good examples include the [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) system-safety models, or [Bedrock Guardrails](https://aws.amazon.com/bedrock/guardrails/).
|
||||
|
||||
To configure a Bedrock Shield, you would need to add:
|
||||
- A Safety API provider instance with type `remote::bedrock`
|
||||
- A Shield resource served by this provider.
|
||||
|
||||
```yaml
|
||||
...
|
||||
providers:
|
||||
safety:
|
||||
- provider_id: bedrock
|
||||
provider_type: remote::bedrock
|
||||
config:
|
||||
aws_access_key_id: ${env.AWS_ACCESS_KEY_ID}
|
||||
aws_secret_access_key: ${env.AWS_SECRET_ACCESS_KEY}
|
||||
...
|
||||
shields:
|
||||
- provider_id: bedrock
|
||||
params:
|
||||
guardrailVersion: ${env.GUARDRAIL_VERSION}
|
||||
provider_shield_id: ${env.GUARDRAIL_ID}
|
||||
...
|
||||
```
|
||||
|
||||
The situation is more involved if the Shield needs _Inference_ of an associated model. This is the case with Llama Guard. In that case, you would need to add:
|
||||
- A Safety API provider instance with type `inline::llama-guard`
|
||||
- An Inference API provider instance for serving the model.
|
||||
- A Model resource associated with this provider.
|
||||
- A Shield resource served by the Safety provider.
|
||||
|
||||
The yaml configuration for this setup, assuming you were using vLLM as your inference server, would look like:
|
||||
```yaml
|
||||
...
|
||||
providers:
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
inference:
|
||||
# this vLLM server serves the "normal" inference model (e.g., llama3.2:3b)
|
||||
- provider_id: vllm-0
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:http://localhost:8000}
|
||||
# this vLLM server serves the llama-guard model (e.g., llama-guard:3b)
|
||||
- provider_id: vllm-1
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.SAFETY_VLLM_URL:http://localhost:8001}
|
||||
...
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: vllm-0
|
||||
provider_model_id: null
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: vllm-1
|
||||
provider_model_id: null
|
||||
shields:
|
||||
- provider_id: llama-guard
|
||||
shield_id: ${env.SAFETY_MODEL} # Llama Guard shields are identified by the corresponding LlamaGuard model
|
||||
provider_shield_id: null
|
||||
...
|
||||
```
|
||||
36
docs/source/distributions/importing_as_library.md
Normal file
|
|
@ -0,0 +1,36 @@
|
|||
# Using Llama Stack as a Library
|
||||
|
||||
If you are planning to use an external service for Inference (even Ollama or TGI counts as external), it is often easier to use Llama Stack as a library. This avoids the overhead of setting up a server. For [example](https://github.com/meta-llama/llama-stack-client-python/blob/main/src/llama_stack_client/lib/direct/test.py):
|
||||
|
||||
```python
|
||||
from llama_stack_client.lib.direct.direct import LlamaStackDirectClient
|
||||
|
||||
client = await LlamaStackDirectClient.from_template('ollama')
|
||||
await client.initialize()
|
||||
```
|
||||
|
||||
This will parse your config and set up any inline implementations and remote clients needed for your implementation.
|
||||
|
||||
Then, you can access the APIs like `models` and `inference` on the client and call their methods directly:
|
||||
|
||||
```python
|
||||
response = await client.models.list()
|
||||
print(response)
|
||||
```
|
||||
|
||||
```python
|
||||
response = await client.inference.chat_completion(
|
||||
messages=[UserMessage(content="What is the capital of France?", role="user")],
|
||||
model="Llama3.1-8B-Instruct",
|
||||
stream=False,
|
||||
)
|
||||
print("\nChat completion response:")
|
||||
print(response)
|
||||
```
|
||||
|
||||
If you've created a [custom distribution](https://llama-stack.readthedocs.io/en/latest/distributions/building_distro.html), you can also use the run.yaml configuration file directly:
|
||||
|
||||
```python
|
||||
client = await LlamaStackDirectClient.from_config(config_path)
|
||||
await client.initialize()
|
||||
```
|
||||
40
docs/source/distributions/index.md
Normal file
|
|
@ -0,0 +1,40 @@
|
|||
# Starting a Llama Stack
|
||||
```{toctree}
|
||||
:maxdepth: 3
|
||||
:hidden:
|
||||
|
||||
importing_as_library
|
||||
building_distro
|
||||
configuration
|
||||
```
|
||||
|
||||
<!-- self_hosted_distro/index -->
|
||||
<!-- remote_hosted_distro/index -->
|
||||
<!-- ondevice_distro/index -->
|
||||
|
||||
You can instantiate a Llama Stack in one of the following ways:
|
||||
- **As a Library**: this is the simplest, especially if you are using an external inference service. See [Using Llama Stack as a Library](importing_as_library)
|
||||
- **Docker**: we provide a number of pre-built Docker containers so you can start a Llama Stack server instantly. You can also build your own custom Docker container.
|
||||
- **Conda**: finally, you can build a custom Llama Stack server using `llama stack build` containing the exact combination of providers you wish. We have provided various templates to make getting started easier.
|
||||
|
||||
Which templates / distributions to choose depends on the hardware you have for running LLM inference.
|
||||
|
||||
- **Do you have access to a machine with powerful GPUs?**
|
||||
If so, we suggest:
|
||||
- {dockerhub}`distribution-remote-vllm` ([Guide](self_hosted_distro/remote-vllm))
|
||||
- {dockerhub}`distribution-meta-reference-gpu` ([Guide](self_hosted_distro/meta-reference-gpu))
|
||||
- {dockerhub}`distribution-tgi` ([Guide](self_hosted_distro/tgi))
|
||||
|
||||
- **Are you running on a "regular" desktop machine?**
|
||||
If so, we suggest:
|
||||
- {dockerhub}`distribution-ollama` ([Guide](self_hosted_distro/ollama))
|
||||
|
||||
- **Do you have an API key for a remote inference provider like Fireworks, Together, etc.?** If so, we suggest:
|
||||
- {dockerhub}`distribution-together` ([Guide](remote_hosted_distro/index))
|
||||
- {dockerhub}`distribution-fireworks` ([Guide](remote_hosted_distro/index))
|
||||
|
||||
- **Do you want to run Llama Stack inference on your iOS / Android device** If so, we suggest:
|
||||
- [iOS SDK](ondevice_distro/ios_sdk)
|
||||
- Android (coming soon)
|
||||
|
||||
You can also build your own [custom distribution](building_distro).
|
||||
|
|
@ -1,10 +1,69 @@
|
|||
# LocalInference
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
# iOS SDK
|
||||
|
||||
We offer both remote and on-device use of Llama Stack in Swift via two components:
|
||||
|
||||
1. [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/)
|
||||
2. [LocalInferenceImpl](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/ios/inference)
|
||||
|
||||
```{image} ../../../_static/remote_or_local.gif
|
||||
:alt: Seamlessly switching between local, on-device inference and remote hosted inference
|
||||
:width: 412px
|
||||
:align: center
|
||||
```
|
||||
|
||||
## Remote Only
|
||||
|
||||
If you don't want to run inference on-device, then you can connect to any hosted Llama Stack distribution with #1.
|
||||
|
||||
1. Add `https://github.com/meta-llama/llama-stack-client-swift/` as a Package Dependency in Xcode
|
||||
|
||||
2. Add `LlamaStackClient` as a framework to your app target
|
||||
|
||||
3. Call an API:
|
||||
|
||||
```swift
|
||||
import LlamaStackClient
|
||||
|
||||
let agents = RemoteAgents(url: URL(string: "http://localhost:5000")!)
|
||||
let request = Components.Schemas.CreateAgentTurnRequest(
|
||||
agent_id: agentId,
|
||||
messages: [
|
||||
.UserMessage(Components.Schemas.UserMessage(
|
||||
content: .case1("Hello Llama!"),
|
||||
role: .user
|
||||
))
|
||||
],
|
||||
session_id: self.agenticSystemSessionId,
|
||||
stream: true
|
||||
)
|
||||
|
||||
for try await chunk in try await agents.createTurn(request: request) {
|
||||
let payload = chunk.event.payload
|
||||
// ...
|
||||
```
|
||||
|
||||
Check out [iOSCalendarAssistant](https://github.com/meta-llama/llama-stack-apps/tree/main/examples/ios_calendar_assistant) for a complete app demo.
|
||||
|
||||
## LocalInference
|
||||
|
||||
LocalInference provides a local inference implementation powered by [executorch](https://github.com/pytorch/executorch/).
|
||||
|
||||
Llama Stack currently supports on-device inference for iOS with Android coming soon. You can run on-device inference on Android today using [executorch](https://github.com/pytorch/executorch/tree/main/examples/demo-apps/android/LlamaDemo), PyTorch’s on-device inference library.
|
||||
|
||||
## Installation
|
||||
The APIs *work the same as remote* – the only difference is you'll instead use the `LocalAgents` / `LocalInference` classes and pass in a `DispatchQueue`:
|
||||
|
||||
```swift
|
||||
private let runnerQueue = DispatchQueue(label: "org.llamastack.stacksummary")
|
||||
let inference = LocalInference(queue: runnerQueue)
|
||||
let agents = LocalAgents(inference: self.inference)
|
||||
```
|
||||
|
||||
Check out [iOSCalendarAssistantWithLocalInf](https://github.com/meta-llama/llama-stack-apps/tree/main/examples/ios_calendar_assistant) for a complete app demo.
|
||||
|
||||
### Installation
|
||||
|
||||
We're working on making LocalInference easier to set up. For now, you'll need to import it via `.xcframework`:
|
||||
|
||||
|
|
@ -54,12 +113,23 @@ We're working on making LocalInference easier to set up. For now, you'll need t
|
|||
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
|
||||
```
|
||||
|
||||
## Preparing a model
|
||||
### Preparing a model
|
||||
|
||||
1. Prepare a `.pte` file [following the executorch docs](https://github.com/pytorch/executorch/blob/main/examples/models/llama2/README.md#step-2-prepare-model)
|
||||
1. Prepare a `.pte` file [following the executorch docs](https://github.com/pytorch/executorch/blob/main/examples/models/llama/README.md#step-2-prepare-model)
|
||||
2. Bundle the `.pte` and `tokenizer.model` file into your app
|
||||
|
||||
## Using LocalInference
|
||||
We now support models quantized using SpinQuant and QAT-LoRA which offer a significant performance boost (demo app on iPhone 13 Pro):
|
||||
|
||||
|
||||
| Llama 3.2 1B | Tokens / Second (total) | | Time-to-First-Token (sec) | |
|
||||
| :---- | :---- | :---- | :---- | :---- |
|
||||
| | Haiku | Paragraph | Haiku | Paragraph |
|
||||
| BF16 | 2.2 | 2.5 | 2.3 | 1.9 |
|
||||
| QAT+LoRA | 7.1 | 3.3 | 0.37 | 0.24 |
|
||||
| SpinQuant | 10.1 | 5.2 | 0.2 | 0.2 |
|
||||
|
||||
|
||||
### Using LocalInference
|
||||
|
||||
1. Instantiate LocalInference with a DispatchQueue. Optionally, pass it into your agents service:
|
||||
|
||||
|
|
@ -94,7 +164,7 @@ for await chunk in try await agentsService.initAndCreateTurn(
|
|||
) {
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
### Troubleshooting
|
||||
|
||||
If you receive errors like "missing package product" or "invalid checksum", try cleaning the build folder and resetting the Swift package cache:
|
||||
|
||||
45
docs/source/distributions/remote_hosted_distro/index.md
Normal file
|
|
@ -0,0 +1,45 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Remote-Hosted Distributions
|
||||
|
||||
Remote-Hosted distributions are available endpoints serving Llama Stack API that you can directly connect to.
|
||||
|
||||
| Distribution | Endpoint | Inference | Agents | Memory | Safety | Telemetry |
|
||||
|-------------|----------|-----------|---------|---------|---------|------------|
|
||||
| Together | [https://llama-stack.together.ai](https://llama-stack.together.ai) | remote::together | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
||||
| Fireworks | [https://llamastack-preview.fireworks.ai](https://llamastack-preview.fireworks.ai) | remote::fireworks | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
||||
|
||||
## Connecting to Remote-Hosted Distributions
|
||||
|
||||
You can use `llama-stack-client` to interact with these endpoints. For example, to list the available models served by the Fireworks endpoint:
|
||||
|
||||
```bash
|
||||
$ pip install llama-stack-client
|
||||
$ llama-stack-client configure --endpoint https://llamastack-preview.fireworks.ai
|
||||
$ llama-stack-client models list
|
||||
```
|
||||
|
||||
You will see outputs:
|
||||
```
|
||||
$ llama-stack-client models list
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+==============================+==============================+===============+============+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-70B-Instruct | Llama3.1-70B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-405B-Instruct | Llama3.1-405B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-1B-Instruct | Llama3.2-1B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-3B-Instruct | Llama3.2-3B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-11B-Vision-Instruct | Llama3.2-11B-Vision-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-90B-Vision-Instruct | Llama3.2-90B-Vision-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
```
|
||||
|
||||
Checkout the [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python/blob/main/docs/cli_reference.md) repo for more details on how to use the `llama-stack-client` CLI. Checkout [llama-stack-app](https://github.com/meta-llama/llama-stack-apps/tree/main) for examples applications built on top of Llama Stack.
|
||||
67
docs/source/distributions/self_hosted_distro/bedrock.md
Normal file
|
|
@ -0,0 +1,67 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Bedrock Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-bedrock` distribution consists of the following provider configurations:
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::bedrock` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `remote::bedrock` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a AWS Bedrock API Key. You can get one by visiting [AWS Bedrock](https://aws.amazon.com/bedrock/).
|
||||
|
||||
|
||||
## Running Llama Stack with AWS Bedrock
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-bedrock \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
|
||||
--env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
|
||||
--env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template bedrock --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
|
||||
--env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
|
||||
--env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN
|
||||
```
|
||||
78
docs/source/distributions/self_hosted_distro/dell-tgi.md
Normal file
|
|
@ -0,0 +1,78 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Dell-TGI Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
|
||||
|
||||
The only difference vs. the `tgi` distribution is that it runs the Dell-TGI server for inference.
|
||||
|
||||
|
||||
### Start the Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a TGI server with access to your GPU.
|
||||
|
||||
```
|
||||
$ cd distributions/dell-tgi/
|
||||
$ ls
|
||||
compose.yaml README.md run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### (Alternative) Dell-TGI server + llama stack run (Single Node GPU)
|
||||
|
||||
#### Start Dell-TGI server locally
|
||||
```
|
||||
docker run -it --shm-size 1g -p 80:80 --gpus 4 \
|
||||
-e NUM_SHARD=4
|
||||
-e MAX_BATCH_PREFILL_TOKENS=32768 \
|
||||
-e MAX_INPUT_TOKENS=8000 \
|
||||
-e MAX_TOTAL_TOKENS=8192 \
|
||||
registry.dell.huggingface.co/enterprise-dell-inference-meta-llama-meta-llama-3.1-8b-instruct
|
||||
```
|
||||
|
||||
|
||||
#### Start Llama Stack server pointing to TGI server
|
||||
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-tgi --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
||||
76
docs/source/distributions/self_hosted_distro/fireworks.md
Normal file
|
|
@ -0,0 +1,76 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Fireworks Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-fireworks` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::fireworks` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `FIREWORKS_API_KEY`: Fireworks.AI API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct (fireworks/llama-v3p1-8b-instruct)`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct (fireworks/llama-v3p1-70b-instruct)`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (fireworks/llama-v3p1-405b-instruct)`
|
||||
- `meta-llama/Llama-3.2-1B-Instruct (fireworks/llama-v3p2-1b-instruct)`
|
||||
- `meta-llama/Llama-3.2-3B-Instruct (fireworks/llama-v3p2-3b-instruct)`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct (fireworks/llama-v3p2-11b-vision-instruct)`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct (fireworks/llama-v3p2-90b-vision-instruct)`
|
||||
- `meta-llama/Llama-Guard-3-8B (fireworks/llama-guard-3-8b)`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision (fireworks/llama-guard-3-11b-vision)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a Fireworks API Key. You can get one by visiting [fireworks.ai](https://fireworks.ai/).
|
||||
|
||||
|
||||
## Running Llama Stack with Fireworks
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-fireworks \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template fireworks --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
|
||||
```
|
||||
|
|
@ -0,0 +1,95 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Meta Reference Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-meta-reference-gpu` distribution consists of the following provider configurations:
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `inline::meta-reference` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the Meta Reference server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `INFERENCE_CHECKPOINT_DIR`: Directory containing the Meta Reference model checkpoint (default: `null`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
- `SAFETY_CHECKPOINT_DIR`: Directory containing the Llama-Guard model checkpoint (default: `null`)
|
||||
|
||||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ ls ~/.llama/checkpoints
|
||||
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
|
||||
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
|
||||
```
|
||||
|
||||
## Running the Distribution
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-gpu --image-type conda
|
||||
llama stack run distributions/meta-reference-gpu/run.yaml \
|
||||
--port 5001 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run distributions/meta-reference-gpu/run-with-safety.yaml \
|
||||
--port 5001 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
|
@ -0,0 +1,95 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Meta Reference Quantized Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-meta-reference-quantized-gpu` distribution consists of the following provider configurations:
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `inline::meta-reference-quantized` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
The only difference vs. the `meta-reference-gpu` distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc.
|
||||
|
||||
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the Meta Reference server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `INFERENCE_CHECKPOINT_DIR`: Directory containing the Meta Reference model checkpoint (default: `null`)
|
||||
|
||||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ ls ~/.llama/checkpoints
|
||||
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
|
||||
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
|
||||
```
|
||||
|
||||
## Running the Distribution
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-meta-reference-quantized-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-meta-reference-quantized-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-quantized-gpu --image-type conda
|
||||
llama stack run distributions/meta-reference-quantized-gpu/run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run distributions/meta-reference-quantized-gpu/run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
146
docs/source/distributions/self_hosted_distro/ollama.md
Normal file
|
|
@ -0,0 +1,146 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Ollama Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::ollama` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
|
||||
## Setting up Ollama server
|
||||
|
||||
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
|
||||
|
||||
In order to load models, you can run:
|
||||
|
||||
```bash
|
||||
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
|
||||
|
||||
# ollama names this model differently, and we must use the ollama name when loading the model
|
||||
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
|
||||
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
|
||||
|
||||
```bash
|
||||
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
|
||||
|
||||
# ollama names this model differently, and we must use the ollama name when loading the model
|
||||
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
|
||||
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-ollama \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env OLLAMA_URL=http://host.docker.internal:11434
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-ollama \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env OLLAMA_URL=http://host.docker.internal:11434
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
||||
llama stack build --template ollama --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env OLLAMA_URL=http://localhost:11434
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env OLLAMA_URL=http://localhost:11434
|
||||
```
|
||||
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
|
||||
> [!NOTE]
|
||||
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers.remote/inference/ollama/ollama.py) for the supported Ollama models.
|
||||
|
||||
|
||||
To serve a new model with `ollama`
|
||||
```bash
|
||||
ollama run <model_name>
|
||||
```
|
||||
|
||||
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
|
||||
```
|
||||
$ ollama ps
|
||||
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
|
||||
```
|
||||
|
||||
To verify that the model served by ollama is correctly connected to Llama Stack server
|
||||
```bash
|
||||
$ llama-stack-client models list
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+======================+======================+===============+===============================================+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
```
|
||||
153
docs/source/distributions/self_hosted_distro/remote-vllm.md
Normal file
|
|
@ -0,0 +1,153 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Remote vLLM Distribution
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-remote-vllm` distribution consists of the following provider configurations:
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::vllm` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the vLLM server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `VLLM_URL`: URL of the vLLM server with the main inference model (default: `http://host.docker.internal:5100}/v1`)
|
||||
- `MAX_TOKENS`: Maximum number of tokens for generation (default: `4096`)
|
||||
- `SAFETY_VLLM_URL`: URL of the vLLM server with the safety model (default: `http://host.docker.internal:5101/v1`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
|
||||
## Setting up vLLM server
|
||||
|
||||
Please check the [vLLM Documentation](https://docs.vllm.ai/en/v0.5.5/serving/deploying_with_docker.html) to get a vLLM endpoint. Here is a sample script to start a vLLM server locally via Docker:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
docker run \
|
||||
--runtime nvidia \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--ipc=host \
|
||||
vllm/vllm-openai:latest \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--model $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run \
|
||||
--runtime nvidia \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
--ipc=host \
|
||||
vllm/vllm-openai:latest \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--model $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-remote-vllm \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-remote-vllm \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1 \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env SAFETY_VLLM_URL=http://host.docker.internal:$SAFETY_PORT/v1
|
||||
```
|
||||
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
||||
cd distributions/remote-vllm
|
||||
llama stack build --template remote-vllm --image-type conda
|
||||
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1 \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env SAFETY_VLLM_URL=http://localhost:$SAFETY_PORT/v1
|
||||
```
|
||||
135
docs/source/distributions/self_hosted_distro/tgi.md
Normal file
|
|
@ -0,0 +1,135 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
|
||||
# TGI Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::tgi` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080}/v1`)
|
||||
- `TGI_SAFETY_URL`: URL of the TGI server with the safety model (default: `http://127.0.0.1:8081/v1`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
|
||||
## Setting up TGI server
|
||||
|
||||
Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8080
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
docker run --rm -it \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-tgi \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-tgi \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template tgi --image-type conda
|
||||
llama stack run ./run.yaml
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT
|
||||
```
|
||||
75
docs/source/distributions/self_hosted_distro/together.md
Normal file
|
|
@ -0,0 +1,75 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Together Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-together` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::together` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `TOGETHER_API_KEY`: Together.AI API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct-FP8`
|
||||
- `meta-llama/Llama-3.2-3B-Instruct`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct`
|
||||
- `meta-llama/Llama-Guard-3-8B`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a Together API Key. You can get one by visiting [together.xyz](https://together.xyz/).
|
||||
|
||||
|
||||
## Running Llama Stack with Together
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-together \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template together --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
|
||||
```
|
||||
155
docs/source/getting_started/index.md
Normal file
|
|
@ -0,0 +1,155 @@
|
|||
# Quick Start
|
||||
|
||||
In this guide, we'll through how you can use the Llama Stack client SDK to build a simple RAG agent.
|
||||
|
||||
The most critical requirement for running the agent is running inference on the underlying Llama model. Depending on what hardware (GPUs) you have available, you have various options. We will use `Ollama` for this purpose as it is the easiest to get started with and yet robust.
|
||||
|
||||
First, let's set up some environment variables that we will use in the rest of the guide. Note that if you open up a new terminal, you will need to set these again.
|
||||
|
||||
```bash
|
||||
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
|
||||
# ollama names this model differently, and we must use the ollama name when loading the model
|
||||
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
|
||||
export LLAMA_STACK_PORT=5001
|
||||
```
|
||||
|
||||
### 1. Start Ollama
|
||||
|
||||
```bash
|
||||
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
|
||||
```
|
||||
|
||||
By default, Ollama keeps the model loaded in memory for 5 minutes which can be too short. We set the `--keepalive` flag to 60 minutes to enspagents/agenure the model remains loaded for sometime.
|
||||
|
||||
|
||||
### 2. Start the Llama Stack server
|
||||
|
||||
Llama Stack is based on a client-server architecture. It consists of a server which can be configured very flexibly so you can mix-and-match various providers for its individual API components -- beyond Inference, these include Memory, Agents, Telemetry, Evals and so forth.
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-ollama \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env OLLAMA_URL=http://host.docker.internal:11434
|
||||
```
|
||||
|
||||
Configuration for this is available at `distributions/ollama/run.yaml`.
|
||||
|
||||
|
||||
### 3. Use the Llama Stack client SDK
|
||||
|
||||
You can interact with the Llama Stack server using the `llama-stack-client` CLI or via the Python SDK.
|
||||
|
||||
```bash
|
||||
pip install llama-stack-client
|
||||
```
|
||||
|
||||
Let's use the `llama-stack-client` CLI to check the connectivity to the server.
|
||||
|
||||
```bash
|
||||
llama-stack-client --endpoint http://localhost:$LLAMA_STACK_PORT models list
|
||||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
|
||||
┃ identifier ┃ provider_id ┃ provider_resource_id ┃ metadata ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩
|
||||
│ meta-llama/Llama-3.2-3B-Instruct │ ollama │ llama3.2:3b-instruct-fp16 │ │
|
||||
└──────────────────────────────────┴─────────────┴───────────────────────────┴──────────┘
|
||||
```
|
||||
|
||||
You can test basic Llama inference completion using the CLI too.
|
||||
```bash
|
||||
llama-stack-client --endpoint http://localhost:$LLAMA_STACK_PORT \
|
||||
inference chat_completion \
|
||||
--message "hello, what model are you?"
|
||||
```
|
||||
|
||||
Here is a simple example to perform chat completions using Python instead of the CLI.
|
||||
```python
|
||||
import os
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")
|
||||
|
||||
# List available models
|
||||
models = client.models.list()
|
||||
print(models)
|
||||
|
||||
response = client.inference.chat_completion(
|
||||
model_id=os.environ["INFERENCE_MODEL"],
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Write a haiku about coding"}
|
||||
]
|
||||
)
|
||||
print(response.completion_message.content)
|
||||
```
|
||||
|
||||
### 4. Your first RAG agent
|
||||
|
||||
Here is an example of a simple RAG agent that uses the Llama Stack client SDK.
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.lib.agents.agent import Agent
|
||||
from llama_stack_client.lib.agents.event_logger import EventLogger
|
||||
from llama_stack_client.types import Attachment
|
||||
from llama_stack_client.types.agent_create_params import AgentConfig
|
||||
|
||||
|
||||
async def run_main():
|
||||
urls = ["chat.rst", "llama3.rst", "datasets.rst", "lora_finetune.rst"]
|
||||
attachments = [
|
||||
Attachment(
|
||||
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
|
||||
mime_type="text/plain",
|
||||
)
|
||||
for i, url in enumerate(urls)
|
||||
]
|
||||
|
||||
client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")
|
||||
|
||||
agent_config = AgentConfig(
|
||||
model=os.environ["INFERENCE_MODEL"],
|
||||
instructions="You are a helpful assistant",
|
||||
tools=[{"type": "memory"}], # enable Memory aka RAG
|
||||
)
|
||||
|
||||
agent = Agent(client, agent_config)
|
||||
session_id = agent.create_session("test-session")
|
||||
print(f"Created session_id={session_id} for Agent({agent.agent_id})")
|
||||
user_prompts = [
|
||||
(
|
||||
"I am attaching documentation for Torchtune. Help me answer questions I will ask next.",
|
||||
attachments,
|
||||
),
|
||||
(
|
||||
"What are the top 5 topics that were explained? Only list succinct bullet points.",
|
||||
None,
|
||||
),
|
||||
]
|
||||
for prompt, attachments in user_prompts:
|
||||
response = agent.create_turn(
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
attachments=attachments,
|
||||
session_id=session_id,
|
||||
)
|
||||
async for log in EventLogger().log(response):
|
||||
log.print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(run_main())
|
||||
```
|
||||
|
||||
## Next Steps
|
||||
|
||||
- Learn more about Llama Stack [Concepts](../concepts/index.md)
|
||||
- Learn how to [Build Llama Stacks](../distributions/index.md)
|
||||
- See [References](../references/index.md) for more details about the llama CLI and Python SDK
|
||||
- For example applications and more detailed tutorials, visit our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository.
|
||||
86
docs/source/index.md
Normal file
|
|
@ -0,0 +1,86 @@
|
|||
# Llama Stack
|
||||
|
||||
Llama Stack defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.
|
||||
|
||||
```{image} ../_static/llama-stack.png
|
||||
:alt: Llama Stack
|
||||
:width: 400px
|
||||
```
|
||||
|
||||
Our goal is to provide pre-packaged implementations which can be operated in a variety of deployment environments: developers start iterating with Desktops or their mobile devices and can seamlessly transition to on-prem or public cloud deployments. At every point in this transition, the same set of APIs and the same developer experience is available.
|
||||
|
||||
```{note}
|
||||
The Stack APIs are rapidly improving but still a work-in-progress. We invite feedback as well as direct contributions.
|
||||
```
|
||||
|
||||
## Philosophy
|
||||
|
||||
### Service-oriented design
|
||||
|
||||
Unlike other frameworks, Llama Stack is built with a service-oriented, REST API-first approach. Such a design not only allows for seamless transitions from a local to remote deployments, but also forces the design to be more declarative. We believe this restriction can result in a much simpler, robust developer experience. This will necessarily trade-off against expressivity however if we get the APIs right, it can lead to a very powerful platform.
|
||||
|
||||
### Composability
|
||||
|
||||
We expect the set of APIs we design to be composable. An Agent abstractly depends on { Inference, Memory, Safety } APIs but does not care about the actual implementation details. Safety itself may require model inference and hence can depend on the Inference API.
|
||||
|
||||
### Turnkey one-stop solutions
|
||||
|
||||
We expect to provide turnkey solutions for popular deployment scenarios. It should be easy to deploy a Llama Stack server on AWS or on a private data center. Either of these should allow a developer to get started with powerful agentic apps, model evaluations or fine-tuning services in a matter of minutes. They should all result in the same uniform observability and developer experience.
|
||||
|
||||
### Focus on Llama models
|
||||
|
||||
As a Meta initiated project, we have started by explicitly focusing on Meta's Llama series of models. Supporting the broad set of open models is no easy task and we want to start with models we understand best.
|
||||
|
||||
### Supporting the Ecosystem
|
||||
|
||||
There is a vibrant ecosystem of Providers which provide efficient inference or scalable vector stores or powerful observability solutions. We want to make sure it is easy for developers to pick and choose the best implementations for their use cases. We also want to make sure it is easy for new Providers to onboard and participate in the ecosystem.
|
||||
|
||||
Additionally, we have designed every element of the Stack such that APIs as well as Resources (like Models) can be federated.
|
||||
|
||||
|
||||
## Supported Llama Stack Implementations
|
||||
|
||||
Llama Stack already has a number of "adapters" available for some popular Inference and Memory (Vector Store) providers. For other APIs (particularly Safety and Agents), we provide *reference implementations* you can use to get started. We expect this list to grow over time. We are slowly onboarding more providers to the ecosystem as we get more confidence in the APIs.
|
||||
|
||||
| **API Provider** | **Environments** | **Agents** | **Inference** | **Memory** | **Safety** | **Telemetry** |
|
||||
| :----: | :----: | :----: | :----: | :----: | :----: | :----: |
|
||||
| Meta Reference | Single Node | Y | Y | Y | Y | Y |
|
||||
| Fireworks | Hosted | Y | Y | Y | | |
|
||||
| AWS Bedrock | Hosted | | Y | | Y | |
|
||||
| Together | Hosted | Y | Y | | Y | |
|
||||
| Ollama | Single Node | | Y | | |
|
||||
| TGI | Hosted and Single Node | | Y | | |
|
||||
| Chroma | Single Node | | | Y | | |
|
||||
| Postgres | Single Node | | | Y | | |
|
||||
| PyTorch ExecuTorch | On-device iOS | Y | Y | | |
|
||||
|
||||
## Dive In
|
||||
|
||||
- Look at [Quick Start](getting_started/index) section to get started with Llama Stack.
|
||||
- Learn more about [Llama Stack Concepts](concepts/index) to understand how different components fit together.
|
||||
- Check out [Zero to Hero](https://github.com/meta-llama/llama-stack/tree/main/docs/zero_to_hero_guide) guide to learn in details about how to build your first agent.
|
||||
- See how you can use [Llama Stack Distributions](distributions/index) to get started with popular inference and other service providers.
|
||||
|
||||
We also provide a number of Client side SDKs to make it easier to connect to Llama Stack server in your preferred language.
|
||||
|
||||
| **Language** | **Client SDK** | **Package** |
|
||||
| :----: | :----: | :----: |
|
||||
| Python | [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python) | [](https://pypi.org/project/llama_stack_client/)
|
||||
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift) | [](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
|
||||
| Node | [llama-stack-client-node](https://github.com/meta-llama/llama-stack-client-node) | [](https://npmjs.org/package/llama-stack-client)
|
||||
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) | [](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
||||
|
||||
```{toctree}
|
||||
:hidden:
|
||||
:maxdepth: 3
|
||||
|
||||
getting_started/index
|
||||
concepts/index
|
||||
distributions/index
|
||||
building_applications/index
|
||||
contributing/index
|
||||
references/index
|
||||
cookbooks/index
|
||||
```
|
||||
7
docs/source/references/api_reference/index.md
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# API Reference
|
||||
|
||||
```{eval-rst}
|
||||
.. sphinxcontrib-redoc:: ../resources/llama-stack-spec.yaml
|
||||
:page-title: API Reference
|
||||
:expand-responses: all
|
||||
```
|
||||
17
docs/source/references/index.md
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
# References
|
||||
|
||||
- [API Reference](api_reference/index) for the Llama Stack API specification
|
||||
- [Python SDK Reference](python_sdk_reference/index)
|
||||
- [Llama CLI](llama_cli_reference/index) for building and running your Llama Stack server
|
||||
- [Llama Stack Client CLI](llama_stack_client_cli_reference) for interacting with your Llama Stack server
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
:hidden:
|
||||
|
||||
api_reference/index
|
||||
python_sdk_reference/index
|
||||
llama_cli_reference/index
|
||||
llama_stack_client_cli_reference
|
||||
llama_cli_reference/download_models
|
||||
```
|
||||
131
docs/source/references/llama_cli_reference/download_models.md
Normal file
|
|
@ -0,0 +1,131 @@
|
|||
# Downloading Models
|
||||
|
||||
The `llama` CLI tool helps you setup and use the Llama Stack. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
## Installation
|
||||
|
||||
You have two ways to install Llama Stack:
|
||||
|
||||
1. **Install as a package**:
|
||||
You can install the repository directly from [PyPI](https://pypi.org/project/llama-stack/) by running the following command:
|
||||
```bash
|
||||
pip install llama-stack
|
||||
```
|
||||
|
||||
2. **Install from source**:
|
||||
If you prefer to install from the source code, follow these steps:
|
||||
```bash
|
||||
mkdir -p ~/local
|
||||
cd ~/local
|
||||
git clone git@github.com:meta-llama/llama-stack.git
|
||||
|
||||
conda create -n myenv python=3.10
|
||||
conda activate myenv
|
||||
|
||||
cd llama-stack
|
||||
$CONDA_PREFIX/bin/pip install -e .
|
||||
|
||||
## Downloading models via CLI
|
||||
|
||||
You first need to have models downloaded locally.
|
||||
|
||||
To download any model you need the **Model Descriptor**.
|
||||
This can be obtained by running the command
|
||||
```
|
||||
llama model list
|
||||
```
|
||||
|
||||
You should see a table like this:
|
||||
|
||||
```
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Model Descriptor | Hugging Face Repo | Context Length |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-8B | meta-llama/Llama-3.1-8B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-70B | meta-llama/Llama-3.1-70B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B:bf16-mp8 | meta-llama/Llama-3.1-405B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B | meta-llama/Llama-3.1-405B-FP8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B:bf16-mp16 | meta-llama/Llama-3.1-405B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-8B-Instruct | meta-llama/Llama-3.1-8B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-70B-Instruct | meta-llama/Llama-3.1-70B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct:bf16-mp8 | meta-llama/Llama-3.1-405B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct | meta-llama/Llama-3.1-405B-Instruct-FP8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-1B | meta-llama/Llama-3.2-1B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-3B | meta-llama/Llama-3.2-3B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-11B-Vision | meta-llama/Llama-3.2-11B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-90B-Vision | meta-llama/Llama-3.2-90B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-1B-Instruct | meta-llama/Llama-3.2-1B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-3B-Instruct | meta-llama/Llama-3.2-3B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-11B-Vision-Instruct | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-90B-Vision-Instruct | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-11B-Vision | meta-llama/Llama-Guard-3-11B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-1B:int4-mp1 | meta-llama/Llama-Guard-3-1B-INT4 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-1B | meta-llama/Llama-Guard-3-1B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-2-8B | meta-llama/Llama-Guard-2-8B | 4K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
```
|
||||
|
||||
To download models, you can use the llama download command.
|
||||
|
||||
#### Downloading from [Meta](https://llama.meta.com/llama-downloads/)
|
||||
|
||||
Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from [here](https://llama.meta.com/docs/getting_the_models/meta/)
|
||||
|
||||
Download the required checkpoints using the following commands:
|
||||
```bash
|
||||
# download the 8B model, this can be run on a single GPU
|
||||
llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL
|
||||
|
||||
# you can also get the 70B model, this will require 8 GPUs however
|
||||
llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL
|
||||
|
||||
# llama-agents have safety enabled by default. For this, you will need
|
||||
# safety models -- Llama-Guard and Prompt-Guard
|
||||
llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL
|
||||
llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL
|
||||
```
|
||||
|
||||
#### Downloading from [Hugging Face](https://huggingface.co/meta-llama)
|
||||
|
||||
Essentially, the same commands above work, just replace `--source meta` with `--source huggingface`.
|
||||
|
||||
```bash
|
||||
llama download --source huggingface --model-id Llama3.1-8B-Instruct --hf-token <HF_TOKEN>
|
||||
|
||||
llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token <HF_TOKEN>
|
||||
|
||||
llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original*
|
||||
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*
|
||||
```
|
||||
|
||||
**Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
|
||||
|
||||
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
|
||||
237
docs/source/references/llama_cli_reference/index.md
Normal file
|
|
@ -0,0 +1,237 @@
|
|||
# llama (server-side) CLI Reference
|
||||
|
||||
The `llama` CLI tool helps you setup and use the Llama Stack. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
## Installation
|
||||
|
||||
You have two ways to install Llama Stack:
|
||||
|
||||
1. **Install as a package**:
|
||||
You can install the repository directly from [PyPI](https://pypi.org/project/llama-stack/) by running the following command:
|
||||
```bash
|
||||
pip install llama-stack
|
||||
```
|
||||
|
||||
2. **Install from source**:
|
||||
If you prefer to install from the source code, follow these steps:
|
||||
```bash
|
||||
mkdir -p ~/local
|
||||
cd ~/local
|
||||
git clone git@github.com:meta-llama/llama-stack.git
|
||||
|
||||
conda create -n myenv python=3.10
|
||||
conda activate myenv
|
||||
|
||||
cd llama-stack
|
||||
$CONDA_PREFIX/bin/pip install -e .
|
||||
|
||||
|
||||
## `llama` subcommands
|
||||
1. `download`: `llama` cli tools supports downloading the model from Meta or Hugging Face.
|
||||
2. `model`: Lists available models and their properties.
|
||||
3. `stack`: Allows you to build and run a Llama Stack server. You can read more about this [here](../../distributions/building_distro).
|
||||
|
||||
### Sample Usage
|
||||
|
||||
```
|
||||
llama --help
|
||||
```
|
||||
|
||||
```
|
||||
usage: llama [-h] {download,model,stack} ...
|
||||
|
||||
Welcome to the Llama CLI
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
|
||||
subcommands:
|
||||
{download,model,stack}
|
||||
```
|
||||
|
||||
## Downloading models
|
||||
|
||||
You first need to have models downloaded locally.
|
||||
|
||||
To download any model you need the **Model Descriptor**.
|
||||
This can be obtained by running the command
|
||||
```
|
||||
llama model list
|
||||
```
|
||||
|
||||
You should see a table like this:
|
||||
|
||||
```
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Model Descriptor | Hugging Face Repo | Context Length |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-8B | meta-llama/Llama-3.1-8B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-70B | meta-llama/Llama-3.1-70B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B:bf16-mp8 | meta-llama/Llama-3.1-405B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B | meta-llama/Llama-3.1-405B-FP8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B:bf16-mp16 | meta-llama/Llama-3.1-405B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-8B-Instruct | meta-llama/Llama-3.1-8B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-70B-Instruct | meta-llama/Llama-3.1-70B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct:bf16-mp8 | meta-llama/Llama-3.1-405B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct | meta-llama/Llama-3.1-405B-Instruct-FP8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-1B | meta-llama/Llama-3.2-1B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-3B | meta-llama/Llama-3.2-3B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-11B-Vision | meta-llama/Llama-3.2-11B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-90B-Vision | meta-llama/Llama-3.2-90B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-1B-Instruct | meta-llama/Llama-3.2-1B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-3B-Instruct | meta-llama/Llama-3.2-3B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-11B-Vision-Instruct | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-90B-Vision-Instruct | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-11B-Vision | meta-llama/Llama-Guard-3-11B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-1B:int4-mp1 | meta-llama/Llama-Guard-3-1B-INT4 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-1B | meta-llama/Llama-Guard-3-1B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-2-8B | meta-llama/Llama-Guard-2-8B | 4K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
```
|
||||
|
||||
To download models, you can use the llama download command.
|
||||
|
||||
### Downloading from [Meta](https://llama.meta.com/llama-downloads/)
|
||||
|
||||
Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from [here](https://llama.meta.com/docs/getting_the_models/meta/)
|
||||
|
||||
Download the required checkpoints using the following commands:
|
||||
```bash
|
||||
# download the 8B model, this can be run on a single GPU
|
||||
llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL
|
||||
|
||||
# you can also get the 70B model, this will require 8 GPUs however
|
||||
llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL
|
||||
|
||||
# llama-agents have safety enabled by default. For this, you will need
|
||||
# safety models -- Llama-Guard and Prompt-Guard
|
||||
llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL
|
||||
llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL
|
||||
```
|
||||
|
||||
### Downloading from [Hugging Face](https://huggingface.co/meta-llama)
|
||||
|
||||
Essentially, the same commands above work, just replace `--source meta` with `--source huggingface`.
|
||||
|
||||
```bash
|
||||
llama download --source huggingface --model-id Llama3.1-8B-Instruct --hf-token <HF_TOKEN>
|
||||
|
||||
llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token <HF_TOKEN>
|
||||
|
||||
llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original*
|
||||
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*
|
||||
```
|
||||
|
||||
**Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
|
||||
|
||||
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
|
||||
|
||||
|
||||
## Understand the models
|
||||
The `llama model` command helps you explore the model’s interface.
|
||||
|
||||
1. `download`: Download the model from different sources. (meta, huggingface)
|
||||
2. `list`: Lists all the models available for download with hardware requirements to deploy the models.
|
||||
3. `prompt-format`: Show llama model message formats.
|
||||
4. `describe`: Describes all the properties of the model.
|
||||
|
||||
### Sample Usage
|
||||
|
||||
`llama model <subcommand> <options>`
|
||||
|
||||
```
|
||||
llama model --help
|
||||
```
|
||||
```
|
||||
usage: llama model [-h] {download,list,prompt-format,describe} ...
|
||||
|
||||
Work with llama models
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
|
||||
model_subcommands:
|
||||
{download,list,prompt-format,describe}
|
||||
```
|
||||
|
||||
You can use the describe command to know more about a model:
|
||||
```
|
||||
llama model describe -m Llama3.2-3B-Instruct
|
||||
```
|
||||
### Describe
|
||||
|
||||
```
|
||||
+-----------------------------+----------------------------------+
|
||||
| Model | Llama3.2-3B-Instruct |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Hugging Face ID | meta-llama/Llama-3.2-3B-Instruct |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Description | Llama 3.2 3b instruct model |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Context Length | 128K tokens |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Weights format | bf16 |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Model params.json | { |
|
||||
| | "dim": 3072, |
|
||||
| | "n_layers": 28, |
|
||||
| | "n_heads": 24, |
|
||||
| | "n_kv_heads": 8, |
|
||||
| | "vocab_size": 128256, |
|
||||
| | "ffn_dim_multiplier": 1.0, |
|
||||
| | "multiple_of": 256, |
|
||||
| | "norm_eps": 1e-05, |
|
||||
| | "rope_theta": 500000.0, |
|
||||
| | "use_scaled_rope": true |
|
||||
| | } |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Recommended sampling params | { |
|
||||
| | "strategy": "top_p", |
|
||||
| | "temperature": 1.0, |
|
||||
| | "top_p": 0.9, |
|
||||
| | "top_k": 0 |
|
||||
| | } |
|
||||
+-----------------------------+----------------------------------+
|
||||
```
|
||||
|
||||
### Prompt Format
|
||||
You can even run `llama model prompt-format` see all of the templates and their tokens:
|
||||
|
||||
```
|
||||
llama model prompt-format -m Llama3.2-3B-Instruct
|
||||
```
|
||||

|
||||
|
||||
|
||||
|
||||
You will be shown a Markdown formatted description of the model interface and how prompts / messages are formatted for various scenarios.
|
||||
|
||||
**NOTE**: Outputs in terminal are color printed to show special tokens.
|
||||
162
docs/source/references/llama_stack_client_cli_reference.md
Normal file
|
|
@ -0,0 +1,162 @@
|
|||
# llama (client-side) CLI Reference
|
||||
|
||||
The `llama-stack-client` CLI allows you to query information about the distribution.
|
||||
|
||||
## Basic Commands
|
||||
|
||||
### `llama-stack-client`
|
||||
```bash
|
||||
$ llama-stack-client -h
|
||||
|
||||
usage: llama-stack-client [-h] {models,memory_banks,shields} ...
|
||||
|
||||
Welcome to the LlamaStackClient CLI
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
|
||||
subcommands:
|
||||
{models,memory_banks,shields}
|
||||
```
|
||||
|
||||
### `llama-stack-client configure`
|
||||
```bash
|
||||
$ llama-stack-client configure
|
||||
> Enter the host name of the Llama Stack distribution server: localhost
|
||||
> Enter the port number of the Llama Stack distribution server: 5000
|
||||
Done! You can now use the Llama Stack Client CLI with endpoint http://localhost:5000
|
||||
```
|
||||
|
||||
## Provider Commands
|
||||
|
||||
### `llama-stack-client providers list`
|
||||
```bash
|
||||
$ llama-stack-client providers list
|
||||
```
|
||||
```
|
||||
+-----------+----------------+-----------------+
|
||||
| API | Provider ID | Provider Type |
|
||||
+===========+================+=================+
|
||||
| scoring | meta0 | meta-reference |
|
||||
+-----------+----------------+-----------------+
|
||||
| datasetio | meta0 | meta-reference |
|
||||
+-----------+----------------+-----------------+
|
||||
| inference | tgi0 | remote::tgi |
|
||||
+-----------+----------------+-----------------+
|
||||
| memory | meta-reference | meta-reference |
|
||||
+-----------+----------------+-----------------+
|
||||
| agents | meta-reference | meta-reference |
|
||||
+-----------+----------------+-----------------+
|
||||
| telemetry | meta-reference | meta-reference |
|
||||
+-----------+----------------+-----------------+
|
||||
| safety | meta-reference | meta-reference |
|
||||
+-----------+----------------+-----------------+
|
||||
```
|
||||
|
||||
## Model Management
|
||||
|
||||
### `llama-stack-client models list`
|
||||
```bash
|
||||
$ llama-stack-client models list
|
||||
```
|
||||
```
|
||||
+----------------------+----------------------+---------------+----------------------------------------------------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+======================+======================+===============+==========================================================+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | tgi0 | {'huggingface_repo': 'meta-llama/Llama-3.1-8B-Instruct'} |
|
||||
+----------------------+----------------------+---------------+----------------------------------------------------------+
|
||||
```
|
||||
|
||||
### `llama-stack-client models get`
|
||||
```bash
|
||||
$ llama-stack-client models get Llama3.1-8B-Instruct
|
||||
```
|
||||
|
||||
```
|
||||
+----------------------+----------------------+----------------------------------------------------------+---------------+
|
||||
| identifier | llama_model | metadata | provider_id |
|
||||
+======================+======================+==========================================================+===============+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | {'huggingface_repo': 'meta-llama/Llama-3.1-8B-Instruct'} | tgi0 |
|
||||
+----------------------+----------------------+----------------------------------------------------------+---------------+
|
||||
```
|
||||
|
||||
|
||||
```bash
|
||||
$ llama-stack-client models get Random-Model
|
||||
|
||||
Model RandomModel is not found at distribution endpoint host:port. Please ensure endpoint is serving specified model.
|
||||
```
|
||||
|
||||
### `llama-stack-client models register`
|
||||
|
||||
```bash
|
||||
$ llama-stack-client models register <model_id> [--provider-id <provider_id>] [--provider-model-id <provider_model_id>] [--metadata <metadata>]
|
||||
```
|
||||
|
||||
### `llama-stack-client models update`
|
||||
|
||||
```bash
|
||||
$ llama-stack-client models update <model_id> [--provider-id <provider_id>] [--provider-model-id <provider_model_id>] [--metadata <metadata>]
|
||||
```
|
||||
|
||||
### `llama-stack-client models delete`
|
||||
|
||||
```bash
|
||||
$ llama-stack-client models delete <model_id>
|
||||
```
|
||||
|
||||
## Memory Bank Management
|
||||
|
||||
### `llama-stack-client memory_banks list`
|
||||
```bash
|
||||
$ llama-stack-client memory_banks list
|
||||
```
|
||||
```
|
||||
+--------------+----------------+--------+-------------------+------------------------+--------------------------+
|
||||
| identifier | provider_id | type | embedding_model | chunk_size_in_tokens | overlap_size_in_tokens |
|
||||
+==============+================+========+===================+========================+==========================+
|
||||
| test_bank | meta-reference | vector | all-MiniLM-L6-v2 | 512 | 64 |
|
||||
+--------------+----------------+--------+-------------------+------------------------+--------------------------+
|
||||
```
|
||||
|
||||
## Shield Management
|
||||
|
||||
### `llama-stack-client shields list`
|
||||
```bash
|
||||
$ llama-stack-client shields list
|
||||
```
|
||||
|
||||
```
|
||||
+--------------+----------+----------------+-------------+
|
||||
| identifier | params | provider_id | type |
|
||||
+==============+==========+================+=============+
|
||||
| llama_guard | {} | meta-reference | llama_guard |
|
||||
+--------------+----------+----------------+-------------+
|
||||
```
|
||||
|
||||
## Evaluation Tasks
|
||||
|
||||
### `llama-stack-client eval_tasks list`
|
||||
```bash
|
||||
$ llama-stack-client eval run_benchmark <task_id1> <task_id2> --num-examples 10 --output-dir ./ --eval-task-config ~/eval_task_config.json
|
||||
```
|
||||
|
||||
where `eval_task_config.json` is the path to the eval task config file in JSON format. An example eval_task_config
|
||||
```
|
||||
$ cat ~/eval_task_config.json
|
||||
{
|
||||
"type": "benchmark",
|
||||
"eval_candidate": {
|
||||
"type": "model",
|
||||
"model": "Llama3.1-405B-Instruct",
|
||||
"sampling_params": {
|
||||
"strategy": "greedy",
|
||||
"temperature": 0,
|
||||
"top_p": 0.95,
|
||||
"top_k": 0,
|
||||
"max_tokens": 0,
|
||||
"repetition_penalty": 1.0
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||