mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 16:32:38 +00:00
Merge branch 'main' into implement-search-for-PGVector
This commit is contained in:
commit
4c03cddf6f
176 changed files with 8344 additions and 734 deletions
|
|
@ -84,7 +84,7 @@ MEMORY_QUERY_TOOL = "knowledge_search"
|
|||
WEB_SEARCH_TOOL = "web_search"
|
||||
RAG_TOOL_GROUP = "builtin::rag"
|
||||
|
||||
logger = get_logger(name=__name__, category="agents")
|
||||
logger = get_logger(name=__name__, category="agents::meta_reference")
|
||||
|
||||
|
||||
class ChatAgent(ShieldRunnerMixin):
|
||||
|
|
|
|||
|
|
@ -51,7 +51,7 @@ from .config import MetaReferenceAgentsImplConfig
|
|||
from .persistence import AgentInfo
|
||||
from .responses.openai_responses import OpenAIResponsesImpl
|
||||
|
||||
logger = get_logger(name=__name__, category="agents")
|
||||
logger = get_logger(name=__name__, category="agents::meta_reference")
|
||||
|
||||
|
||||
class MetaReferenceAgentsImpl(Agents):
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ from llama_stack.core.request_headers import get_authenticated_user
|
|||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
|
||||
log = get_logger(name=__name__, category="agents")
|
||||
log = get_logger(name=__name__, category="agents::meta_reference")
|
||||
|
||||
|
||||
class AgentSessionInfo(Session):
|
||||
|
|
|
|||
|
|
@ -41,7 +41,7 @@ from .utils import (
|
|||
convert_response_text_to_chat_response_format,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="responses")
|
||||
logger = get_logger(name=__name__, category="openai::responses")
|
||||
|
||||
|
||||
class OpenAIResponsePreviousResponseWithInputItems(BaseModel):
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ from llama_stack.log import get_logger
|
|||
from .types import ChatCompletionContext, ChatCompletionResult
|
||||
from .utils import convert_chat_choice_to_response_message, is_function_tool_call
|
||||
|
||||
logger = get_logger(name=__name__, category="responses")
|
||||
logger = get_logger(name=__name__, category="agents::meta_reference")
|
||||
|
||||
|
||||
class StreamingResponseOrchestrator:
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ from llama_stack.log import get_logger
|
|||
|
||||
from .types import ChatCompletionContext, ToolExecutionResult
|
||||
|
||||
logger = get_logger(name=__name__, category="responses")
|
||||
logger = get_logger(name=__name__, category="agents::meta_reference")
|
||||
|
||||
|
||||
class ToolExecutor:
|
||||
|
|
|
|||
|
|
@ -101,14 +101,22 @@ async def convert_response_input_to_chat_messages(
|
|||
"""
|
||||
messages: list[OpenAIMessageParam] = []
|
||||
if isinstance(input, list):
|
||||
# extract all OpenAIResponseInputFunctionToolCallOutput items
|
||||
# so their corresponding OpenAIToolMessageParam instances can
|
||||
# be added immediately following the corresponding
|
||||
# OpenAIAssistantMessageParam
|
||||
tool_call_results = {}
|
||||
for input_item in input:
|
||||
if isinstance(input_item, OpenAIResponseInputFunctionToolCallOutput):
|
||||
messages.append(
|
||||
OpenAIToolMessageParam(
|
||||
content=input_item.output,
|
||||
tool_call_id=input_item.call_id,
|
||||
)
|
||||
tool_call_results[input_item.call_id] = OpenAIToolMessageParam(
|
||||
content=input_item.output,
|
||||
tool_call_id=input_item.call_id,
|
||||
)
|
||||
|
||||
for input_item in input:
|
||||
if isinstance(input_item, OpenAIResponseInputFunctionToolCallOutput):
|
||||
# skip as these have been extracted and inserted in order
|
||||
pass
|
||||
elif isinstance(input_item, OpenAIResponseOutputMessageFunctionToolCall):
|
||||
tool_call = OpenAIChatCompletionToolCall(
|
||||
index=0,
|
||||
|
|
@ -119,6 +127,9 @@ async def convert_response_input_to_chat_messages(
|
|||
),
|
||||
)
|
||||
messages.append(OpenAIAssistantMessageParam(tool_calls=[tool_call]))
|
||||
if input_item.call_id in tool_call_results:
|
||||
messages.append(tool_call_results[input_item.call_id])
|
||||
del tool_call_results[input_item.call_id]
|
||||
elif isinstance(input_item, OpenAIResponseOutputMessageMCPCall):
|
||||
tool_call = OpenAIChatCompletionToolCall(
|
||||
index=0,
|
||||
|
|
@ -146,6 +157,10 @@ async def convert_response_input_to_chat_messages(
|
|||
f"Llama Stack OpenAI Responses does not yet support message role '{input_item.role}' in this context"
|
||||
)
|
||||
messages.append(message_type(content=content))
|
||||
if len(tool_call_results):
|
||||
raise ValueError(
|
||||
f"Received function_call_output(s) with call_id(s) {tool_call_results.keys()}, but no corresponding function_call"
|
||||
)
|
||||
else:
|
||||
messages.append(OpenAIUserMessageParam(content=input))
|
||||
return messages
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ from llama_stack.apis.safety import Safety, SafetyViolation, ViolationLevel
|
|||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
|
||||
log = get_logger(name=__name__, category="agents")
|
||||
log = get_logger(name=__name__, category="agents::meta_reference")
|
||||
|
||||
|
||||
class SafetyException(Exception): # noqa: N818
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import hashlib
|
||||
import itertools
|
||||
import json
|
||||
import time
|
||||
|
|
@ -136,28 +137,45 @@ class ReferenceBatchesImpl(Batches):
|
|||
endpoint: str,
|
||||
completion_window: Literal["24h"],
|
||||
metadata: dict[str, str] | None = None,
|
||||
idempotency_key: str | None = None,
|
||||
) -> BatchObject:
|
||||
"""
|
||||
Create a new batch for processing multiple API requests.
|
||||
|
||||
Error handling by levels -
|
||||
0. Input param handling, results in 40x errors before processing, e.g.
|
||||
- Wrong completion_window
|
||||
- Invalid metadata types
|
||||
- Unknown endpoint
|
||||
-> no batch created
|
||||
1. Errors preventing processing, result in BatchErrors aggregated in process_batch, e.g.
|
||||
- input_file_id missing
|
||||
- invalid json in file
|
||||
- missing custom_id, method, url, body
|
||||
- invalid model
|
||||
- streaming
|
||||
-> batch created, validation sends to failed status
|
||||
2. Processing errors, result in error_file_id entries, e.g.
|
||||
- Any error returned from inference endpoint
|
||||
-> batch created, goes to completed status
|
||||
This implementation provides optional idempotency: when an idempotency key
|
||||
(idempotency_key) is provided, a deterministic ID is generated based on the input
|
||||
parameters. If a batch with the same parameters already exists, it will be
|
||||
returned instead of creating a duplicate. Without an idempotency key,
|
||||
each request creates a new batch with a unique ID.
|
||||
|
||||
Args:
|
||||
input_file_id: The ID of an uploaded file containing requests for the batch.
|
||||
endpoint: The endpoint to be used for all requests in the batch.
|
||||
completion_window: The time window within which the batch should be processed.
|
||||
metadata: Optional metadata for the batch.
|
||||
idempotency_key: Optional idempotency key for enabling idempotent behavior.
|
||||
|
||||
Returns:
|
||||
The created or existing batch object.
|
||||
"""
|
||||
|
||||
# Error handling by levels -
|
||||
# 0. Input param handling, results in 40x errors before processing, e.g.
|
||||
# - Wrong completion_window
|
||||
# - Invalid metadata types
|
||||
# - Unknown endpoint
|
||||
# -> no batch created
|
||||
# 1. Errors preventing processing, result in BatchErrors aggregated in process_batch, e.g.
|
||||
# - input_file_id missing
|
||||
# - invalid json in file
|
||||
# - missing custom_id, method, url, body
|
||||
# - invalid model
|
||||
# - streaming
|
||||
# -> batch created, validation sends to failed status
|
||||
# 2. Processing errors, result in error_file_id entries, e.g.
|
||||
# - Any error returned from inference endpoint
|
||||
# -> batch created, goes to completed status
|
||||
|
||||
# TODO: set expiration time for garbage collection
|
||||
|
||||
if endpoint not in ["/v1/chat/completions"]:
|
||||
|
|
@ -171,6 +189,35 @@ class ReferenceBatchesImpl(Batches):
|
|||
)
|
||||
|
||||
batch_id = f"batch_{uuid.uuid4().hex[:16]}"
|
||||
|
||||
# For idempotent requests, use the idempotency key for the batch ID
|
||||
# This ensures the same key always maps to the same batch ID,
|
||||
# allowing us to detect parameter conflicts
|
||||
if idempotency_key is not None:
|
||||
hash_input = idempotency_key.encode("utf-8")
|
||||
hash_digest = hashlib.sha256(hash_input).hexdigest()[:24]
|
||||
batch_id = f"batch_{hash_digest}"
|
||||
|
||||
try:
|
||||
existing_batch = await self.retrieve_batch(batch_id)
|
||||
|
||||
if (
|
||||
existing_batch.input_file_id != input_file_id
|
||||
or existing_batch.endpoint != endpoint
|
||||
or existing_batch.completion_window != completion_window
|
||||
or existing_batch.metadata != metadata
|
||||
):
|
||||
raise ConflictError(
|
||||
f"Idempotency key '{idempotency_key}' was previously used with different parameters. "
|
||||
"Either use a new idempotency key or ensure all parameters match the original request."
|
||||
)
|
||||
|
||||
logger.info(f"Returning existing batch with ID: {batch_id}")
|
||||
return existing_batch
|
||||
except ResourceNotFoundError:
|
||||
# Batch doesn't exist, continue with creation
|
||||
pass
|
||||
|
||||
current_time = int(time.time())
|
||||
|
||||
batch = BatchObject(
|
||||
|
|
@ -185,6 +232,7 @@ class ReferenceBatchesImpl(Batches):
|
|||
)
|
||||
|
||||
await self.kvstore.set(f"batch:{batch_id}", batch.to_json())
|
||||
logger.info(f"Created new batch with ID: {batch_id}")
|
||||
|
||||
if self.process_batches:
|
||||
task = asyncio.create_task(self._process_batch(batch_id))
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ from collections.abc import AsyncGenerator
|
|||
from llama_stack.apis.inference import (
|
||||
CompletionResponse,
|
||||
InferenceProvider,
|
||||
InterleavedContent,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
|
|
@ -100,25 +99,3 @@ class SentenceTransformersInferenceImpl(
|
|||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
raise ValueError("Sentence transformers don't support chat completion")
|
||||
|
||||
async def batch_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content_batch: list[InterleavedContent],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch completion is not supported for Sentence Transformers")
|
||||
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages_batch: list[list[Message]],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch chat completion is not supported for Sentence Transformers")
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import datetime
|
||||
import threading
|
||||
from typing import Any
|
||||
|
||||
|
|
@ -145,11 +146,41 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
metric_name: str,
|
||||
start_time: int,
|
||||
end_time: int | None = None,
|
||||
granularity: str | None = "1d",
|
||||
granularity: str | None = None,
|
||||
query_type: MetricQueryType = MetricQueryType.RANGE,
|
||||
label_matchers: list[MetricLabelMatcher] | None = None,
|
||||
) -> QueryMetricsResponse:
|
||||
raise NotImplementedError("Querying metrics is not implemented")
|
||||
"""Query metrics from the telemetry store.
|
||||
|
||||
Args:
|
||||
metric_name: The name of the metric to query (e.g., "prompt_tokens")
|
||||
start_time: Start time as Unix timestamp
|
||||
end_time: End time as Unix timestamp (defaults to now if None)
|
||||
granularity: Time granularity for aggregation
|
||||
query_type: Type of query (RANGE or INSTANT)
|
||||
label_matchers: Label filters to apply
|
||||
|
||||
Returns:
|
||||
QueryMetricsResponse with metric time series data
|
||||
"""
|
||||
# Convert timestamps to datetime objects
|
||||
start_dt = datetime.datetime.fromtimestamp(start_time, datetime.UTC)
|
||||
end_dt = datetime.datetime.fromtimestamp(end_time, datetime.UTC) if end_time else None
|
||||
|
||||
# Use SQLite trace store if available
|
||||
if hasattr(self, "trace_store") and self.trace_store:
|
||||
return await self.trace_store.query_metrics(
|
||||
metric_name=metric_name,
|
||||
start_time=start_dt,
|
||||
end_time=end_dt,
|
||||
granularity=granularity,
|
||||
query_type=query_type,
|
||||
label_matchers=label_matchers,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"In order to query_metrics, you must have {TelemetrySink.SQLITE} set in your telemetry sinks"
|
||||
)
|
||||
|
||||
def _log_unstructured(self, event: UnstructuredLogEvent, ttl_seconds: int) -> None:
|
||||
with self._lock:
|
||||
|
|
|
|||
|
|
@ -5,9 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
)
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import sql_store_pip_packages
|
||||
|
||||
|
|
@ -23,4 +25,14 @@ def available_providers() -> list[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.files.localfs.config.LocalfsFilesImplConfig",
|
||||
description="Local filesystem-based file storage provider for managing files and documents locally.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.files,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="s3",
|
||||
pip_packages=["boto3"] + sql_store_pip_packages,
|
||||
module="llama_stack.providers.remote.files.s3",
|
||||
config_class="llama_stack.providers.remote.files.s3.config.S3FilesImplConfig",
|
||||
description="AWS S3-based file storage provider for scalable cloud file management with metadata persistence.",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -40,8 +40,9 @@ def available_providers() -> list[ProviderSpec]:
|
|||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_type="inline::sentence-transformers",
|
||||
# CrossEncoder depends on torchao.quantization
|
||||
pip_packages=[
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu",
|
||||
"torch torchvision torchao>=0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu",
|
||||
"sentence-transformers --no-deps",
|
||||
],
|
||||
module="llama_stack.providers.inline.inference.sentence_transformers",
|
||||
|
|
|
|||
|
|
@ -5,27 +5,50 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import cast
|
||||
|
||||
from llama_stack.providers.datatypes import AdapterSpec, Api, InlineProviderSpec, ProviderSpec, remote_provider_spec
|
||||
|
||||
# We provide two versions of these providers so that distributions can package the appropriate version of torch.
|
||||
# The CPU version is used for distributions that don't have GPU support -- they result in smaller container images.
|
||||
torchtune_def = dict(
|
||||
api=Api.post_training,
|
||||
pip_packages=["numpy"],
|
||||
module="llama_stack.providers.inline.post_training.torchtune",
|
||||
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
description="TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework.",
|
||||
)
|
||||
|
||||
|
||||
def available_providers() -> list[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.post_training,
|
||||
provider_type="inline::torchtune",
|
||||
pip_packages=["torch", "torchtune==0.5.0", "torchao==0.8.0", "numpy"],
|
||||
module="llama_stack.providers.inline.post_training.torchtune",
|
||||
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
description="TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework.",
|
||||
**{ # type: ignore
|
||||
**torchtune_def,
|
||||
"provider_type": "inline::torchtune-cpu",
|
||||
"pip_packages": (
|
||||
cast(list[str], torchtune_def["pip_packages"])
|
||||
+ ["torch torchtune>=0.5.0 torchao>=0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu"]
|
||||
),
|
||||
},
|
||||
),
|
||||
InlineProviderSpec(
|
||||
**{ # type: ignore
|
||||
**torchtune_def,
|
||||
"provider_type": "inline::torchtune-gpu",
|
||||
"pip_packages": (
|
||||
cast(list[str], torchtune_def["pip_packages"]) + ["torch torchtune>=0.5.0 torchao>=0.12.0"]
|
||||
),
|
||||
},
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.post_training,
|
||||
provider_type="inline::huggingface",
|
||||
pip_packages=["torch", "trl", "transformers", "peft", "datasets"],
|
||||
provider_type="inline::huggingface-gpu",
|
||||
pip_packages=["trl", "transformers", "peft", "datasets", "torch"],
|
||||
module="llama_stack.providers.inline.post_training.huggingface",
|
||||
config_class="llama_stack.providers.inline.post_training.huggingface.HuggingFacePostTrainingConfig",
|
||||
api_dependencies=[
|
||||
|
|
|
|||
237
llama_stack/providers/remote/files/s3/README.md
Normal file
237
llama_stack/providers/remote/files/s3/README.md
Normal file
|
|
@ -0,0 +1,237 @@
|
|||
# S3 Files Provider
|
||||
|
||||
A remote S3-based implementation of the Llama Stack Files API that provides scalable cloud file storage with metadata persistence.
|
||||
|
||||
## Features
|
||||
|
||||
- **AWS S3 Storage**: Store files in AWS S3 buckets for scalable, durable storage
|
||||
- **Metadata Management**: Uses SQL database for efficient file metadata queries
|
||||
- **OpenAI API Compatibility**: Full compatibility with OpenAI Files API endpoints
|
||||
- **Flexible Authentication**: Support for IAM roles and access keys
|
||||
- **Custom S3 Endpoints**: Support for MinIO and other S3-compatible services
|
||||
|
||||
## Configuration
|
||||
|
||||
### Basic Configuration
|
||||
|
||||
```yaml
|
||||
api: files
|
||||
provider_type: remote::s3
|
||||
config:
|
||||
bucket_name: my-llama-stack-files
|
||||
region: us-east-1
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ./s3_files_metadata.db
|
||||
```
|
||||
|
||||
### Advanced Configuration
|
||||
|
||||
```yaml
|
||||
api: files
|
||||
provider_type: remote::s3
|
||||
config:
|
||||
bucket_name: my-llama-stack-files
|
||||
region: us-east-1
|
||||
aws_access_key_id: YOUR_ACCESS_KEY
|
||||
aws_secret_access_key: YOUR_SECRET_KEY
|
||||
endpoint_url: https://s3.amazonaws.com # Optional for custom endpoints
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ./s3_files_metadata.db
|
||||
```
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The configuration supports environment variable substitution:
|
||||
|
||||
```yaml
|
||||
config:
|
||||
bucket_name: "${env.S3_BUCKET_NAME}"
|
||||
region: "${env.AWS_REGION:=us-east-1}"
|
||||
aws_access_key_id: "${env.AWS_ACCESS_KEY_ID:=}"
|
||||
aws_secret_access_key: "${env.AWS_SECRET_ACCESS_KEY:=}"
|
||||
endpoint_url: "${env.S3_ENDPOINT_URL:=}"
|
||||
```
|
||||
|
||||
Note: `S3_BUCKET_NAME` has no default value since S3 bucket names must be globally unique.
|
||||
|
||||
## Authentication
|
||||
|
||||
### IAM Roles (Recommended)
|
||||
|
||||
For production deployments, use IAM roles:
|
||||
|
||||
```yaml
|
||||
config:
|
||||
bucket_name: my-bucket
|
||||
region: us-east-1
|
||||
# No credentials needed - will use IAM role
|
||||
```
|
||||
|
||||
### Access Keys
|
||||
|
||||
For development or specific use cases:
|
||||
|
||||
```yaml
|
||||
config:
|
||||
bucket_name: my-bucket
|
||||
region: us-east-1
|
||||
aws_access_key_id: AKIAIOSFODNN7EXAMPLE
|
||||
aws_secret_access_key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
||||
```
|
||||
|
||||
## S3 Bucket Setup
|
||||
|
||||
### Required Permissions
|
||||
|
||||
The S3 provider requires the following permissions:
|
||||
|
||||
```json
|
||||
{
|
||||
"Version": "2012-10-17",
|
||||
"Statement": [
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:GetObject",
|
||||
"s3:PutObject",
|
||||
"s3:DeleteObject",
|
||||
"s3:ListBucket"
|
||||
],
|
||||
"Resource": [
|
||||
"arn:aws:s3:::your-bucket-name",
|
||||
"arn:aws:s3:::your-bucket-name/*"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Automatic Bucket Creation
|
||||
|
||||
By default, the S3 provider expects the bucket to already exist. If you want the provider to automatically create the bucket when it doesn't exist, set `auto_create_bucket: true` in your configuration:
|
||||
|
||||
```yaml
|
||||
config:
|
||||
bucket_name: my-bucket
|
||||
auto_create_bucket: true # Will create bucket if it doesn't exist
|
||||
region: us-east-1
|
||||
```
|
||||
|
||||
**Note**: When `auto_create_bucket` is enabled, the provider will need additional permissions:
|
||||
|
||||
```json
|
||||
{
|
||||
"Version": "2012-10-17",
|
||||
"Statement": [
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:GetObject",
|
||||
"s3:PutObject",
|
||||
"s3:DeleteObject",
|
||||
"s3:ListBucket",
|
||||
"s3:CreateBucket"
|
||||
],
|
||||
"Resource": [
|
||||
"arn:aws:s3:::your-bucket-name",
|
||||
"arn:aws:s3:::your-bucket-name/*"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Bucket Policy (Optional)
|
||||
|
||||
For additional security, you can add a bucket policy:
|
||||
|
||||
```json
|
||||
{
|
||||
"Version": "2012-10-17",
|
||||
"Statement": [
|
||||
{
|
||||
"Sid": "LlamaStackAccess",
|
||||
"Effect": "Allow",
|
||||
"Principal": {
|
||||
"AWS": "arn:aws:iam::YOUR-ACCOUNT:role/LlamaStackRole"
|
||||
},
|
||||
"Action": [
|
||||
"s3:GetObject",
|
||||
"s3:PutObject",
|
||||
"s3:DeleteObject"
|
||||
],
|
||||
"Resource": "arn:aws:s3:::your-bucket-name/*"
|
||||
},
|
||||
{
|
||||
"Sid": "LlamaStackBucketAccess",
|
||||
"Effect": "Allow",
|
||||
"Principal": {
|
||||
"AWS": "arn:aws:iam::YOUR-ACCOUNT:role/LlamaStackRole"
|
||||
},
|
||||
"Action": [
|
||||
"s3:ListBucket"
|
||||
],
|
||||
"Resource": "arn:aws:s3:::your-bucket-name"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Features
|
||||
|
||||
### Metadata Persistence
|
||||
|
||||
File metadata is stored in a SQL database for fast queries and OpenAI API compatibility. The metadata includes:
|
||||
|
||||
- File ID
|
||||
- Original filename
|
||||
- Purpose (assistants, batch, etc.)
|
||||
- File size in bytes
|
||||
- Created and expiration timestamps
|
||||
|
||||
### TTL and Cleanup
|
||||
|
||||
Files currently have a fixed long expiration time (100 years).
|
||||
|
||||
## Development and Testing
|
||||
|
||||
### Using MinIO
|
||||
|
||||
For self-hosted S3-compatible storage:
|
||||
|
||||
```yaml
|
||||
config:
|
||||
bucket_name: test-bucket
|
||||
region: us-east-1
|
||||
endpoint_url: http://localhost:9000
|
||||
aws_access_key_id: minioadmin
|
||||
aws_secret_access_key: minioadmin
|
||||
```
|
||||
|
||||
## Monitoring and Logging
|
||||
|
||||
The provider logs important operations and errors. For production deployments, consider:
|
||||
|
||||
- CloudWatch monitoring for S3 operations
|
||||
- Custom metrics for file upload/download rates
|
||||
- Error rate monitoring
|
||||
- Performance metrics tracking
|
||||
|
||||
## Error Handling
|
||||
|
||||
The provider handles various error scenarios:
|
||||
|
||||
- S3 connectivity issues
|
||||
- Bucket access permissions
|
||||
- File not found errors
|
||||
- Metadata consistency checks
|
||||
|
||||
## Known Limitations
|
||||
|
||||
- Fixed long TTL (100 years) instead of configurable expiration
|
||||
- No server-side encryption enabled by default
|
||||
- No support for AWS session tokens
|
||||
- No S3 key prefix organization support
|
||||
- No multipart upload support (all files uploaded as single objects)
|
||||
20
llama_stack/providers/remote/files/s3/__init__.py
Normal file
20
llama_stack/providers/remote/files/s3/__init__.py
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.core.datatypes import Api
|
||||
|
||||
from .config import S3FilesImplConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: S3FilesImplConfig, deps: dict[Api, Any]):
|
||||
from .files import S3FilesImpl
|
||||
|
||||
# TODO: authorization policies and user separation
|
||||
impl = S3FilesImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
42
llama_stack/providers/remote/files/s3/config.py
Normal file
42
llama_stack/providers/remote/files/s3/config.py
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
|
||||
|
||||
|
||||
class S3FilesImplConfig(BaseModel):
|
||||
"""Configuration for S3-based files provider."""
|
||||
|
||||
bucket_name: str = Field(description="S3 bucket name to store files")
|
||||
region: str = Field(default="us-east-1", description="AWS region where the bucket is located")
|
||||
aws_access_key_id: str | None = Field(default=None, description="AWS access key ID (optional if using IAM roles)")
|
||||
aws_secret_access_key: str | None = Field(
|
||||
default=None, description="AWS secret access key (optional if using IAM roles)"
|
||||
)
|
||||
endpoint_url: str | None = Field(default=None, description="Custom S3 endpoint URL (for MinIO, LocalStack, etc.)")
|
||||
auto_create_bucket: bool = Field(
|
||||
default=False, description="Automatically create the S3 bucket if it doesn't exist"
|
||||
)
|
||||
metadata_store: SqlStoreConfig = Field(description="SQL store configuration for file metadata")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"bucket_name": "${env.S3_BUCKET_NAME}", # no default, buckets must be globally unique
|
||||
"region": "${env.AWS_REGION:=us-east-1}",
|
||||
"aws_access_key_id": "${env.AWS_ACCESS_KEY_ID:=}",
|
||||
"aws_secret_access_key": "${env.AWS_SECRET_ACCESS_KEY:=}",
|
||||
"endpoint_url": "${env.S3_ENDPOINT_URL:=}",
|
||||
"auto_create_bucket": "${env.S3_AUTO_CREATE_BUCKET:=false}",
|
||||
"metadata_store": SqliteSqlStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="s3_files_metadata.db",
|
||||
),
|
||||
}
|
||||
272
llama_stack/providers/remote/files/s3/files.py
Normal file
272
llama_stack/providers/remote/files/s3/files.py
Normal file
|
|
@ -0,0 +1,272 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import time
|
||||
import uuid
|
||||
from typing import Annotated
|
||||
|
||||
import boto3
|
||||
from botocore.exceptions import BotoCoreError, ClientError, NoCredentialsError
|
||||
from fastapi import File, Form, Response, UploadFile
|
||||
|
||||
from llama_stack.apis.common.errors import ResourceNotFoundError
|
||||
from llama_stack.apis.common.responses import Order
|
||||
from llama_stack.apis.files import (
|
||||
Files,
|
||||
ListOpenAIFileResponse,
|
||||
OpenAIFileDeleteResponse,
|
||||
OpenAIFileObject,
|
||||
OpenAIFilePurpose,
|
||||
)
|
||||
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStore, sqlstore_impl
|
||||
|
||||
from .config import S3FilesImplConfig
|
||||
|
||||
# TODO: provider data for S3 credentials
|
||||
|
||||
|
||||
def _create_s3_client(config: S3FilesImplConfig) -> boto3.client:
|
||||
try:
|
||||
s3_config = {
|
||||
"region_name": config.region,
|
||||
}
|
||||
|
||||
# endpoint URL if specified (for MinIO, LocalStack, etc.)
|
||||
if config.endpoint_url:
|
||||
s3_config["endpoint_url"] = config.endpoint_url
|
||||
|
||||
if config.aws_access_key_id and config.aws_secret_access_key:
|
||||
s3_config.update(
|
||||
{
|
||||
"aws_access_key_id": config.aws_access_key_id,
|
||||
"aws_secret_access_key": config.aws_secret_access_key,
|
||||
}
|
||||
)
|
||||
|
||||
return boto3.client("s3", **s3_config)
|
||||
|
||||
except (BotoCoreError, NoCredentialsError) as e:
|
||||
raise RuntimeError(f"Failed to initialize S3 client: {e}") from e
|
||||
|
||||
|
||||
async def _create_bucket_if_not_exists(client: boto3.client, config: S3FilesImplConfig) -> None:
|
||||
try:
|
||||
client.head_bucket(Bucket=config.bucket_name)
|
||||
except ClientError as e:
|
||||
error_code = e.response["Error"]["Code"]
|
||||
if error_code == "404":
|
||||
if not config.auto_create_bucket:
|
||||
raise RuntimeError(
|
||||
f"S3 bucket '{config.bucket_name}' does not exist. "
|
||||
f"Either create the bucket manually or set 'auto_create_bucket: true' in your configuration."
|
||||
) from e
|
||||
try:
|
||||
# For us-east-1, we can't specify LocationConstraint
|
||||
if config.region == "us-east-1":
|
||||
client.create_bucket(Bucket=config.bucket_name)
|
||||
else:
|
||||
client.create_bucket(
|
||||
Bucket=config.bucket_name,
|
||||
CreateBucketConfiguration={"LocationConstraint": config.region},
|
||||
)
|
||||
except ClientError as create_error:
|
||||
raise RuntimeError(
|
||||
f"Failed to create S3 bucket '{config.bucket_name}': {create_error}"
|
||||
) from create_error
|
||||
elif error_code == "403":
|
||||
raise RuntimeError(f"Access denied to S3 bucket '{config.bucket_name}'") from e
|
||||
else:
|
||||
raise RuntimeError(f"Failed to access S3 bucket '{config.bucket_name}': {e}") from e
|
||||
|
||||
|
||||
class S3FilesImpl(Files):
|
||||
"""S3-based implementation of the Files API."""
|
||||
|
||||
# TODO: implement expiration, for now a silly offset
|
||||
_SILLY_EXPIRATION_OFFSET = 100 * 365 * 24 * 60 * 60
|
||||
|
||||
def __init__(self, config: S3FilesImplConfig) -> None:
|
||||
self._config = config
|
||||
self._client: boto3.client | None = None
|
||||
self._sql_store: SqlStore | None = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self._client = _create_s3_client(self._config)
|
||||
await _create_bucket_if_not_exists(self._client, self._config)
|
||||
|
||||
self._sql_store = sqlstore_impl(self._config.metadata_store)
|
||||
await self._sql_store.create_table(
|
||||
"openai_files",
|
||||
{
|
||||
"id": ColumnDefinition(type=ColumnType.STRING, primary_key=True),
|
||||
"filename": ColumnType.STRING,
|
||||
"purpose": ColumnType.STRING,
|
||||
"bytes": ColumnType.INTEGER,
|
||||
"created_at": ColumnType.INTEGER,
|
||||
"expires_at": ColumnType.INTEGER,
|
||||
# TODO: add s3_etag field for integrity checking
|
||||
},
|
||||
)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
@property
|
||||
def client(self) -> boto3.client:
|
||||
assert self._client is not None, "Provider not initialized"
|
||||
return self._client
|
||||
|
||||
@property
|
||||
def sql_store(self) -> SqlStore:
|
||||
assert self._sql_store is not None, "Provider not initialized"
|
||||
return self._sql_store
|
||||
|
||||
async def openai_upload_file(
|
||||
self,
|
||||
file: Annotated[UploadFile, File()],
|
||||
purpose: Annotated[OpenAIFilePurpose, Form()],
|
||||
) -> OpenAIFileObject:
|
||||
file_id = f"file-{uuid.uuid4().hex}"
|
||||
|
||||
filename = getattr(file, "filename", None) or "uploaded_file"
|
||||
|
||||
created_at = int(time.time())
|
||||
expires_at = created_at + self._SILLY_EXPIRATION_OFFSET
|
||||
content = await file.read()
|
||||
file_size = len(content)
|
||||
|
||||
await self.sql_store.insert(
|
||||
"openai_files",
|
||||
{
|
||||
"id": file_id,
|
||||
"filename": filename,
|
||||
"purpose": purpose.value,
|
||||
"bytes": file_size,
|
||||
"created_at": created_at,
|
||||
"expires_at": expires_at,
|
||||
},
|
||||
)
|
||||
|
||||
try:
|
||||
self.client.put_object(
|
||||
Bucket=self._config.bucket_name,
|
||||
Key=file_id,
|
||||
Body=content,
|
||||
# TODO: enable server-side encryption
|
||||
)
|
||||
except ClientError as e:
|
||||
await self.sql_store.delete("openai_files", where={"id": file_id})
|
||||
|
||||
raise RuntimeError(f"Failed to upload file to S3: {e}") from e
|
||||
|
||||
return OpenAIFileObject(
|
||||
id=file_id,
|
||||
filename=filename,
|
||||
purpose=purpose,
|
||||
bytes=file_size,
|
||||
created_at=created_at,
|
||||
expires_at=expires_at,
|
||||
)
|
||||
|
||||
async def openai_list_files(
|
||||
self,
|
||||
after: str | None = None,
|
||||
limit: int | None = 10000,
|
||||
order: Order | None = Order.desc,
|
||||
purpose: OpenAIFilePurpose | None = None,
|
||||
) -> ListOpenAIFileResponse:
|
||||
# this purely defensive. it should not happen because the router also default to Order.desc.
|
||||
if not order:
|
||||
order = Order.desc
|
||||
|
||||
where_conditions = {}
|
||||
if purpose:
|
||||
where_conditions["purpose"] = purpose.value
|
||||
|
||||
paginated_result = await self.sql_store.fetch_all(
|
||||
table="openai_files",
|
||||
where=where_conditions if where_conditions else None,
|
||||
order_by=[("created_at", order.value)],
|
||||
cursor=("id", after) if after else None,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
files = [
|
||||
OpenAIFileObject(
|
||||
id=row["id"],
|
||||
filename=row["filename"],
|
||||
purpose=OpenAIFilePurpose(row["purpose"]),
|
||||
bytes=row["bytes"],
|
||||
created_at=row["created_at"],
|
||||
expires_at=row["expires_at"],
|
||||
)
|
||||
for row in paginated_result.data
|
||||
]
|
||||
|
||||
return ListOpenAIFileResponse(
|
||||
data=files,
|
||||
has_more=paginated_result.has_more,
|
||||
# empty string or None? spec says str, ref impl returns str | None, we go with spec
|
||||
first_id=files[0].id if files else "",
|
||||
last_id=files[-1].id if files else "",
|
||||
)
|
||||
|
||||
async def openai_retrieve_file(self, file_id: str) -> OpenAIFileObject:
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()")
|
||||
|
||||
return OpenAIFileObject(
|
||||
id=row["id"],
|
||||
filename=row["filename"],
|
||||
purpose=OpenAIFilePurpose(row["purpose"]),
|
||||
bytes=row["bytes"],
|
||||
created_at=row["created_at"],
|
||||
expires_at=row["expires_at"],
|
||||
)
|
||||
|
||||
async def openai_delete_file(self, file_id: str) -> OpenAIFileDeleteResponse:
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()")
|
||||
|
||||
try:
|
||||
self.client.delete_object(
|
||||
Bucket=self._config.bucket_name,
|
||||
Key=row["id"],
|
||||
)
|
||||
except ClientError as e:
|
||||
if e.response["Error"]["Code"] != "NoSuchKey":
|
||||
raise RuntimeError(f"Failed to delete file from S3: {e}") from e
|
||||
|
||||
await self.sql_store.delete("openai_files", where={"id": file_id})
|
||||
|
||||
return OpenAIFileDeleteResponse(id=file_id, deleted=True)
|
||||
|
||||
async def openai_retrieve_file_content(self, file_id: str) -> Response:
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()")
|
||||
|
||||
try:
|
||||
response = self.client.get_object(
|
||||
Bucket=self._config.bucket_name,
|
||||
Key=row["id"],
|
||||
)
|
||||
# TODO: can we stream this instead of loading it into memory
|
||||
content = response["Body"].read()
|
||||
except ClientError as e:
|
||||
if e.response["Error"]["Code"] == "NoSuchKey":
|
||||
await self.sql_store.delete("openai_files", where={"id": file_id})
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()") from e
|
||||
raise RuntimeError(f"Failed to download file from S3: {e}") from e
|
||||
|
||||
return Response(
|
||||
content=content,
|
||||
media_type="application/octet-stream",
|
||||
headers={"Content-Disposition": f'attachment; filename="{row["filename"]}"'},
|
||||
)
|
||||
|
|
@ -65,7 +65,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from .config import FireworksImplConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::fireworks")
|
||||
|
||||
|
||||
class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::llama_openai_compat")
|
||||
|
||||
|
||||
class LlamaCompatInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
|
|
|
|||
|
|
@ -41,6 +41,11 @@ client.initialize()
|
|||
|
||||
### Create Completion
|
||||
|
||||
> Note on Completion API
|
||||
>
|
||||
> The hosted NVIDIA Llama NIMs (e.g., `meta-llama/Llama-3.1-8B-Instruct`) with ```NVIDIA_BASE_URL="https://integrate.api.nvidia.com"``` does not support the ```completion``` method, while the locally deployed NIM does.
|
||||
|
||||
|
||||
```python
|
||||
response = client.inference.completion(
|
||||
model_id="meta-llama/Llama-3.1-8B-Instruct",
|
||||
|
|
@ -76,6 +81,73 @@ response = client.inference.chat_completion(
|
|||
print(f"Response: {response.completion_message.content}")
|
||||
```
|
||||
|
||||
### Tool Calling Example ###
|
||||
```python
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
|
||||
tool_definition = ToolDefinition(
|
||||
tool_name="get_weather",
|
||||
description="Get current weather information for a location",
|
||||
parameters={
|
||||
"location": ToolParamDefinition(
|
||||
param_type="string",
|
||||
description="The city and state, e.g. San Francisco, CA",
|
||||
required=True,
|
||||
),
|
||||
"unit": ToolParamDefinition(
|
||||
param_type="string",
|
||||
description="Temperature unit (celsius or fahrenheit)",
|
||||
required=False,
|
||||
default="celsius",
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
tool_response = client.inference.chat_completion(
|
||||
model_id="meta-llama/Llama-3.1-8B-Instruct",
|
||||
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
|
||||
tools=[tool_definition],
|
||||
)
|
||||
|
||||
print(f"Tool Response: {tool_response.completion_message.content}")
|
||||
if tool_response.completion_message.tool_calls:
|
||||
for tool_call in tool_response.completion_message.tool_calls:
|
||||
print(f"Tool Called: {tool_call.tool_name}")
|
||||
print(f"Arguments: {tool_call.arguments}")
|
||||
```
|
||||
|
||||
### Structured Output Example
|
||||
```python
|
||||
from llama_stack.apis.inference import JsonSchemaResponseFormat, ResponseFormatType
|
||||
|
||||
person_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"age": {"type": "integer"},
|
||||
"occupation": {"type": "string"},
|
||||
},
|
||||
"required": ["name", "age", "occupation"],
|
||||
}
|
||||
|
||||
response_format = JsonSchemaResponseFormat(
|
||||
type=ResponseFormatType.json_schema, json_schema=person_schema
|
||||
)
|
||||
|
||||
structured_response = client.inference.chat_completion(
|
||||
model_id="meta-llama/Llama-3.1-8B-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Create a profile for a fictional person named Alice who is 30 years old and is a software engineer. ",
|
||||
}
|
||||
],
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
print(f"Structured Response: {structured_response.completion_message.content}")
|
||||
```
|
||||
|
||||
### Create Embeddings
|
||||
> Note on OpenAI embeddings compatibility
|
||||
>
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@
|
|||
import warnings
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from openai import NOT_GIVEN, APIConnectionError, BadRequestError
|
||||
from openai import NOT_GIVEN, APIConnectionError
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
|
@ -57,7 +57,7 @@ from .openai_utils import (
|
|||
)
|
||||
from .utils import _is_nvidia_hosted
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::nvidia")
|
||||
|
||||
|
||||
class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
||||
|
|
@ -197,15 +197,11 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
}
|
||||
extra_body["input_type"] = task_type_options[task_type]
|
||||
|
||||
try:
|
||||
response = await self.client.embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
except BadRequestError as e:
|
||||
raise ValueError(f"Failed to get embeddings: {e}") from e
|
||||
|
||||
response = await self.client.embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
#
|
||||
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=list[float], ...)], ...)
|
||||
# ->
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from llama_stack.log import get_logger
|
|||
|
||||
from . import NVIDIAConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::nvidia")
|
||||
|
||||
|
||||
def _is_nvidia_hosted(config: NVIDIAConfig) -> bool:
|
||||
|
|
|
|||
|
|
@ -85,7 +85,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::ollama")
|
||||
|
||||
|
||||
class OllamaInferenceAdapter(
|
||||
|
|
@ -619,28 +619,6 @@ class OllamaInferenceAdapter(
|
|||
response.id = id
|
||||
return response
|
||||
|
||||
async def batch_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content_batch: list[InterleavedContent],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch completion is not supported for Ollama")
|
||||
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages_batch: list[list[Message]],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch chat completion is not supported for Ollama")
|
||||
|
||||
|
||||
async def convert_message_to_openai_dict_for_ollama(message: Message) -> list[dict]:
|
||||
async def _convert_content(content) -> dict:
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|||
from .config import OpenAIConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::openai")
|
||||
|
||||
|
||||
#
|
||||
|
|
|
|||
|
|
@ -58,7 +58,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
|
||||
|
||||
log = get_logger(name=__name__, category="inference")
|
||||
log = get_logger(name=__name__, category="inference::tgi")
|
||||
|
||||
|
||||
def build_hf_repo_model_entries():
|
||||
|
|
|
|||
|
|
@ -61,7 +61,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from .config import TogetherImplConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::together")
|
||||
|
||||
|
||||
class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
|
|
|
|||
|
|
@ -85,7 +85,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
log = get_logger(name=__name__, category="inference")
|
||||
log = get_logger(name=__name__, category="inference::vllm")
|
||||
|
||||
|
||||
def build_hf_repo_model_entries():
|
||||
|
|
@ -711,25 +711,3 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
user=user,
|
||||
)
|
||||
return await self.client.chat.completions.create(**params) # type: ignore
|
||||
|
||||
async def batch_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content_batch: list[InterleavedContent],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch completion is not supported for Ollama")
|
||||
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages_batch: list[list[Message]],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch chat completion is not supported for Ollama")
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ from llama_stack.providers.remote.post_training.nvidia.config import SFTLoRADefa
|
|||
|
||||
from .config import NvidiaPostTrainingConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="integration")
|
||||
logger = get_logger(name=__name__, category="post_training::nvidia")
|
||||
|
||||
|
||||
def warn_unsupported_params(config_dict: Any, supported_keys: set[str], config_name: str) -> None:
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
|||
|
||||
from .config import BedrockSafetyConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="safety")
|
||||
logger = get_logger(name=__name__, category="safety::bedrock")
|
||||
|
||||
|
||||
class BedrockSafetyAdapter(Safety, ShieldsProtocolPrivate):
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@ from typing import Any
|
|||
import requests
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.safety import RunShieldResponse, Safety, SafetyViolation, ViolationLevel
|
||||
from llama_stack.apis.safety import ModerationObject, RunShieldResponse, Safety, SafetyViolation, ViolationLevel
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
|
||||
|
|
@ -17,7 +17,7 @@ from llama_stack.providers.utils.inference.openai_compat import convert_message_
|
|||
|
||||
from .config import NVIDIASafetyConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="safety")
|
||||
logger = get_logger(name=__name__, category="safety::nvidia")
|
||||
|
||||
|
||||
class NVIDIASafetyAdapter(Safety, ShieldsProtocolPrivate):
|
||||
|
|
@ -67,6 +67,9 @@ class NVIDIASafetyAdapter(Safety, ShieldsProtocolPrivate):
|
|||
self.shield = NeMoGuardrails(self.config, shield.shield_id)
|
||||
return await self.shield.run(messages)
|
||||
|
||||
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
|
||||
raise NotImplementedError("NVIDIA safety provider currently does not implement run_moderation")
|
||||
|
||||
|
||||
class NeMoGuardrails:
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -25,7 +25,7 @@ from llama_stack.providers.utils.inference.openai_compat import convert_message_
|
|||
|
||||
from .config import SambaNovaSafetyConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="safety")
|
||||
logger = get_logger(name=__name__, category="safety::sambanova")
|
||||
|
||||
CANNED_RESPONSE_TEXT = "I can't answer that. Can I help with something else?"
|
||||
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
|
||||
from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig
|
||||
|
||||
log = get_logger(name=__name__, category="vector_io")
|
||||
log = get_logger(name=__name__, category="vector_io::chroma")
|
||||
|
||||
ChromaClientType = chromadb.api.AsyncClientAPI | chromadb.api.ClientAPI
|
||||
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collecti
|
|||
|
||||
from .config import MilvusVectorIOConfig as RemoteMilvusVectorIOConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="vector_io")
|
||||
logger = get_logger(name=__name__, category="vector_io::milvus")
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:milvus:{VERSION}::"
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@ from llama_stack.providers.utils.vector_io.vector_utils import WeightedInMemoryA
|
|||
|
||||
from .config import PGVectorVectorIOConfig
|
||||
|
||||
log = get_logger(name=__name__, category="vector_io")
|
||||
log = get_logger(name=__name__, category="vector_io::pgvector")
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:pgvector:{VERSION}::"
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
|
||||
from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig
|
||||
|
||||
log = get_logger(name=__name__, category="vector_io")
|
||||
log = get_logger(name=__name__, category="vector_io::qdrant")
|
||||
CHUNK_ID_KEY = "_chunk_id"
|
||||
|
||||
# KV store prefixes for vector databases
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@ from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collecti
|
|||
|
||||
from .config import WeaviateVectorIOConfig
|
||||
|
||||
log = get_logger(name=__name__, category="vector_io")
|
||||
log = get_logger(name=__name__, category="vector_io::weaviate")
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:weaviate:{VERSION}::"
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import interleaved_con
|
|||
EMBEDDING_MODELS = {}
|
||||
|
||||
|
||||
log = get_logger(name=__name__, category="inference")
|
||||
log = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class SentenceTransformerEmbeddingMixin:
|
||||
|
|
|
|||
|
|
@ -54,7 +54,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class LiteLLMOpenAIMixin(
|
||||
|
|
@ -429,28 +429,6 @@ class LiteLLMOpenAIMixin(
|
|||
)
|
||||
return await litellm.acompletion(**params)
|
||||
|
||||
async def batch_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content_batch: list[InterleavedContent],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch completion is not supported for OpenAI Compat")
|
||||
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages_batch: list[list[Message]],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch chat completion is not supported for OpenAI Compat")
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
Check if a specific model is available via LiteLLM for the current
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ from llama_stack.providers.utils.inference import (
|
|||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class RemoteInferenceProviderConfig(BaseModel):
|
||||
|
|
|
|||
|
|
@ -134,7 +134,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
decode_assistant_message,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class OpenAICompatCompletionChoiceDelta(BaseModel):
|
||||
|
|
|
|||
|
|
@ -25,7 +25,7 @@ from llama_stack.apis.inference import (
|
|||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class OpenAIMixin(ABC):
|
||||
|
|
|
|||
|
|
@ -58,7 +58,7 @@ from llama_stack.models.llama.sku_list import resolve_model
|
|||
from llama_stack.models.llama.sku_types import ModelFamily, is_multimodal
|
||||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
||||
log = get_logger(name=__name__, category="inference")
|
||||
log = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class ChatCompletionRequestWithRawContent(ChatCompletionRequest):
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ from llama_stack.providers.utils.kvstore import KVStore
|
|||
|
||||
from ..config import MongoDBKVStoreConfig
|
||||
|
||||
log = get_logger(name=__name__, category="kvstore")
|
||||
log = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class MongoDBKVStoreImpl(KVStore):
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ from llama_stack.log import get_logger
|
|||
from ..api import KVStore
|
||||
from ..config import PostgresKVStoreConfig
|
||||
|
||||
log = get_logger(name=__name__, category="kvstore")
|
||||
log = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class PostgresKVStoreImpl(KVStore):
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
make_overlapped_chunks,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="memory")
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
# Constants for OpenAI vector stores
|
||||
CHUNK_MULTIPLIER = 5
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
)
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
|
||||
log = get_logger(name=__name__, category="memory")
|
||||
log = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class ChunkForDeletion(BaseModel):
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ from pydantic import BaseModel
|
|||
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
logger = get_logger(name=__name__, category="scheduler")
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
# TODO: revisit the list of possible statuses when defining a more coherent
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ from llama_stack.log import get_logger
|
|||
from .api import ColumnDefinition, ColumnType, PaginatedResponse, SqlStore
|
||||
from .sqlstore import SqlStoreType
|
||||
|
||||
logger = get_logger(name=__name__, category="authorized_sqlstore")
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
# Hardcoded copy of the default policy that our SQL filtering implements
|
||||
# WARNING: If default_policy() changes, this constant must be updated accordingly
|
||||
|
|
|
|||
|
|
@ -30,7 +30,7 @@ from llama_stack.log import get_logger
|
|||
from .api import ColumnDefinition, ColumnType, SqlStore
|
||||
from .sqlstore import SqlAlchemySqlStoreConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="sqlstore")
|
||||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
TYPE_MAPPING: dict[ColumnType, Any] = {
|
||||
ColumnType.INTEGER: Integer,
|
||||
|
|
|
|||
|
|
@ -5,12 +5,23 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from datetime import datetime
|
||||
from datetime import UTC, datetime
|
||||
from typing import Protocol
|
||||
|
||||
import aiosqlite
|
||||
|
||||
from llama_stack.apis.telemetry import QueryCondition, Span, SpanWithStatus, Trace
|
||||
from llama_stack.apis.telemetry import (
|
||||
MetricDataPoint,
|
||||
MetricLabel,
|
||||
MetricLabelMatcher,
|
||||
MetricQueryType,
|
||||
MetricSeries,
|
||||
QueryCondition,
|
||||
QueryMetricsResponse,
|
||||
Span,
|
||||
SpanWithStatus,
|
||||
Trace,
|
||||
)
|
||||
|
||||
|
||||
class TraceStore(Protocol):
|
||||
|
|
@ -29,11 +40,192 @@ class TraceStore(Protocol):
|
|||
max_depth: int | None = None,
|
||||
) -> dict[str, SpanWithStatus]: ...
|
||||
|
||||
async def query_metrics(
|
||||
self,
|
||||
metric_name: str,
|
||||
start_time: datetime,
|
||||
end_time: datetime | None = None,
|
||||
granularity: str | None = "1d",
|
||||
query_type: MetricQueryType = MetricQueryType.RANGE,
|
||||
label_matchers: list[MetricLabelMatcher] | None = None,
|
||||
) -> QueryMetricsResponse: ...
|
||||
|
||||
|
||||
class SQLiteTraceStore(TraceStore):
|
||||
def __init__(self, conn_string: str):
|
||||
self.conn_string = conn_string
|
||||
|
||||
async def query_metrics(
|
||||
self,
|
||||
metric_name: str,
|
||||
start_time: datetime,
|
||||
end_time: datetime | None = None,
|
||||
granularity: str | None = None,
|
||||
query_type: MetricQueryType = MetricQueryType.RANGE,
|
||||
label_matchers: list[MetricLabelMatcher] | None = None,
|
||||
) -> QueryMetricsResponse:
|
||||
if end_time is None:
|
||||
end_time = datetime.now(UTC)
|
||||
|
||||
# Build base query
|
||||
if query_type == MetricQueryType.INSTANT:
|
||||
query = """
|
||||
SELECT
|
||||
se.name,
|
||||
SUM(CAST(json_extract(se.attributes, '$.value') AS REAL)) as value,
|
||||
json_extract(se.attributes, '$.unit') as unit,
|
||||
se.attributes
|
||||
FROM span_events se
|
||||
WHERE se.name = ?
|
||||
AND se.timestamp BETWEEN ? AND ?
|
||||
"""
|
||||
else:
|
||||
if granularity:
|
||||
time_format = self._get_time_format_for_granularity(granularity)
|
||||
query = f"""
|
||||
SELECT
|
||||
se.name,
|
||||
SUM(CAST(json_extract(se.attributes, '$.value') AS REAL)) as value,
|
||||
json_extract(se.attributes, '$.unit') as unit,
|
||||
se.attributes,
|
||||
strftime('{time_format}', se.timestamp) as bucket_start
|
||||
FROM span_events se
|
||||
WHERE se.name = ?
|
||||
AND se.timestamp BETWEEN ? AND ?
|
||||
"""
|
||||
else:
|
||||
query = """
|
||||
SELECT
|
||||
se.name,
|
||||
json_extract(se.attributes, '$.value') as value,
|
||||
json_extract(se.attributes, '$.unit') as unit,
|
||||
se.attributes,
|
||||
se.timestamp
|
||||
FROM span_events se
|
||||
WHERE se.name = ?
|
||||
AND se.timestamp BETWEEN ? AND ?
|
||||
"""
|
||||
|
||||
params = [f"metric.{metric_name}", start_time.isoformat(), end_time.isoformat()]
|
||||
|
||||
# Labels that will be attached to the MetricSeries (preserve matcher labels)
|
||||
all_labels: list[MetricLabel] = []
|
||||
matcher_label_names = set()
|
||||
if label_matchers:
|
||||
for matcher in label_matchers:
|
||||
json_path = f"$.{matcher.name}"
|
||||
if matcher.operator == "=":
|
||||
query += f" AND json_extract(se.attributes, '{json_path}') = ?"
|
||||
params.append(matcher.value)
|
||||
elif matcher.operator == "!=":
|
||||
query += f" AND json_extract(se.attributes, '{json_path}') != ?"
|
||||
params.append(matcher.value)
|
||||
elif matcher.operator == "=~":
|
||||
query += f" AND json_extract(se.attributes, '{json_path}') LIKE ?"
|
||||
params.append(f"%{matcher.value}%")
|
||||
elif matcher.operator == "!~":
|
||||
query += f" AND json_extract(se.attributes, '{json_path}') NOT LIKE ?"
|
||||
params.append(f"%{matcher.value}%")
|
||||
# Preserve filter context in output
|
||||
all_labels.append(MetricLabel(name=matcher.name, value=str(matcher.value)))
|
||||
matcher_label_names.add(matcher.name)
|
||||
|
||||
# GROUP BY / ORDER BY logic
|
||||
if query_type == MetricQueryType.RANGE and granularity:
|
||||
group_time_format = self._get_time_format_for_granularity(granularity)
|
||||
query += f" GROUP BY strftime('{group_time_format}', se.timestamp), json_extract(se.attributes, '$.unit')"
|
||||
query += " ORDER BY bucket_start"
|
||||
elif query_type == MetricQueryType.INSTANT:
|
||||
query += " GROUP BY json_extract(se.attributes, '$.unit')"
|
||||
else:
|
||||
query += " ORDER BY se.timestamp"
|
||||
|
||||
# Execute query
|
||||
async with aiosqlite.connect(self.conn_string) as conn:
|
||||
conn.row_factory = aiosqlite.Row
|
||||
async with conn.execute(query, params) as cursor:
|
||||
rows = await cursor.fetchall()
|
||||
|
||||
if not rows:
|
||||
return QueryMetricsResponse(data=[])
|
||||
|
||||
data_points = []
|
||||
# We want to add attribute labels, but only those not already present as matcher labels.
|
||||
attr_label_names = set()
|
||||
for row in rows:
|
||||
# Parse JSON attributes safely, if there are no attributes (weird), just don't add the labels to the result.
|
||||
try:
|
||||
attributes = json.loads(row["attributes"] or "{}")
|
||||
except (TypeError, json.JSONDecodeError):
|
||||
attributes = {}
|
||||
|
||||
value = row["value"]
|
||||
unit = row["unit"] or ""
|
||||
|
||||
# Add labels from attributes without duplicating matcher labels, if we don't do this, there will be a lot of duplicate label in the result.
|
||||
for k, v in attributes.items():
|
||||
if k not in ["value", "unit"] and k not in matcher_label_names and k not in attr_label_names:
|
||||
all_labels.append(MetricLabel(name=k, value=str(v)))
|
||||
attr_label_names.add(k)
|
||||
|
||||
# Determine timestamp
|
||||
if query_type == MetricQueryType.RANGE and granularity:
|
||||
try:
|
||||
bucket_start_raw = row["bucket_start"]
|
||||
except KeyError as e:
|
||||
raise ValueError(
|
||||
"DB did not have a bucket_start time in row when using granularity, this indicates improper formatting"
|
||||
) from e
|
||||
# this value could also be there, but be NULL, I think.
|
||||
if bucket_start_raw is None:
|
||||
raise ValueError("bucket_start is None check time format and data")
|
||||
bucket_start = datetime.fromisoformat(bucket_start_raw)
|
||||
timestamp = int(bucket_start.timestamp())
|
||||
elif query_type == MetricQueryType.INSTANT:
|
||||
timestamp = int(datetime.now(UTC).timestamp())
|
||||
else:
|
||||
try:
|
||||
timestamp_raw = row["timestamp"]
|
||||
except KeyError as e:
|
||||
raise ValueError(
|
||||
"DB did not have a timestamp in row, this indicates improper formatting"
|
||||
) from e
|
||||
# this value could also be there, but be NULL, I think.
|
||||
if timestamp_raw is None:
|
||||
raise ValueError("timestamp is None check time format and data")
|
||||
timestamp_iso = datetime.fromisoformat(timestamp_raw)
|
||||
timestamp = int(timestamp_iso.timestamp())
|
||||
|
||||
data_points.append(
|
||||
MetricDataPoint(
|
||||
timestamp=timestamp,
|
||||
value=value,
|
||||
unit=unit,
|
||||
)
|
||||
)
|
||||
|
||||
metric_series = [MetricSeries(metric=metric_name, labels=all_labels, values=data_points)]
|
||||
return QueryMetricsResponse(data=metric_series)
|
||||
|
||||
def _get_time_format_for_granularity(self, granularity: str | None) -> str:
|
||||
"""Get the SQLite strftime format string for a given granularity.
|
||||
Args:
|
||||
granularity: Granularity string (e.g., "1m", "5m", "1h", "1d")
|
||||
Returns:
|
||||
SQLite strftime format string for the granularity
|
||||
"""
|
||||
if granularity is None:
|
||||
raise ValueError("granularity cannot be None for this method - use separate logic for no aggregation")
|
||||
|
||||
if granularity.endswith("d"):
|
||||
return "%Y-%m-%d 00:00:00"
|
||||
elif granularity.endswith("h"):
|
||||
return "%Y-%m-%d %H:00:00"
|
||||
elif granularity.endswith("m"):
|
||||
return "%Y-%m-%d %H:%M:00"
|
||||
else:
|
||||
return "%Y-%m-%d %H:%M:00" # Default to most granular which will give us the most timestamps.
|
||||
|
||||
async def query_traces(
|
||||
self,
|
||||
attribute_filters: list[QueryCondition] | None = None,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue