mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 19:04:19 +00:00
refactor: tests/unittests -> tests/unit; tests/api -> tests/integration
This commit is contained in:
parent
c6b13b6a24
commit
4ca58eb987
33 changed files with 0 additions and 0 deletions
292
tests/integration/inference/test_embedding.py
Normal file
292
tests/integration/inference/test_embedding.py
Normal file
|
@ -0,0 +1,292 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
#
|
||||
# Test plan:
|
||||
#
|
||||
# Types of input:
|
||||
# - array of a string
|
||||
# - array of a image (ImageContentItem, either URL or base64 string)
|
||||
# - array of a text (TextContentItem)
|
||||
# Types of output:
|
||||
# - list of list of floats
|
||||
# Params:
|
||||
# - text_truncation
|
||||
# - absent w/ long text -> error
|
||||
# - none w/ long text -> error
|
||||
# - absent w/ short text -> ok
|
||||
# - none w/ short text -> ok
|
||||
# - end w/ long text -> ok
|
||||
# - end w/ short text -> ok
|
||||
# - start w/ long text -> ok
|
||||
# - start w/ short text -> ok
|
||||
# - output_dimension
|
||||
# - response dimension matches
|
||||
# - task_type, only for asymmetric models
|
||||
# - query embedding != passage embedding
|
||||
# Negative:
|
||||
# - long string
|
||||
# - long text
|
||||
#
|
||||
# Todo:
|
||||
# - negative tests
|
||||
# - empty
|
||||
# - empty list
|
||||
# - empty string
|
||||
# - empty text
|
||||
# - empty image
|
||||
# - long
|
||||
# - large image
|
||||
# - appropriate combinations
|
||||
# - batch size
|
||||
# - many inputs
|
||||
# - invalid
|
||||
# - invalid URL
|
||||
# - invalid base64
|
||||
#
|
||||
# Notes:
|
||||
# - use llama_stack_client fixture
|
||||
# - use pytest.mark.parametrize when possible
|
||||
# - no accuracy tests: only check the type of output, not the content
|
||||
#
|
||||
|
||||
import pytest
|
||||
from llama_stack_client import BadRequestError
|
||||
from llama_stack_client.types import EmbeddingsResponse
|
||||
from llama_stack_client.types.shared.interleaved_content import (
|
||||
ImageContentItem,
|
||||
ImageContentItemImage,
|
||||
ImageContentItemImageURL,
|
||||
TextContentItem,
|
||||
)
|
||||
|
||||
DUMMY_STRING = "hello"
|
||||
DUMMY_STRING2 = "world"
|
||||
DUMMY_LONG_STRING = "NVDA " * 10240
|
||||
DUMMY_TEXT = TextContentItem(text=DUMMY_STRING, type="text")
|
||||
DUMMY_TEXT2 = TextContentItem(text=DUMMY_STRING2, type="text")
|
||||
DUMMY_LONG_TEXT = TextContentItem(text=DUMMY_LONG_STRING, type="text")
|
||||
# TODO(mf): add a real image URL and base64 string
|
||||
DUMMY_IMAGE_URL = ImageContentItem(
|
||||
image=ImageContentItemImage(url=ImageContentItemImageURL(uri="https://example.com/image.jpg")), type="image"
|
||||
)
|
||||
DUMMY_IMAGE_BASE64 = ImageContentItem(image=ImageContentItemImage(data="base64string"), type="image")
|
||||
SUPPORTED_PROVIDERS = {"remote::nvidia"}
|
||||
MODELS_SUPPORTING_MEDIA = {}
|
||||
MODELS_SUPPORTING_OUTPUT_DIMENSION = {"nvidia/llama-3.2-nv-embedqa-1b-v2"}
|
||||
MODELS_REQUIRING_TASK_TYPE = {
|
||||
"nvidia/llama-3.2-nv-embedqa-1b-v2",
|
||||
"nvidia/nv-embedqa-e5-v5",
|
||||
"nvidia/nv-embedqa-mistral-7b-v2",
|
||||
"snowflake/arctic-embed-l",
|
||||
}
|
||||
MODELS_SUPPORTING_TASK_TYPE = MODELS_REQUIRING_TASK_TYPE
|
||||
|
||||
|
||||
def default_task_type(model_id):
|
||||
"""
|
||||
Some models require a task type parameter. This provides a default value for
|
||||
testing those models.
|
||||
"""
|
||||
if model_id in MODELS_REQUIRING_TASK_TYPE:
|
||||
return {"task_type": "query"}
|
||||
return {}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"contents",
|
||||
[
|
||||
[DUMMY_STRING, DUMMY_STRING2],
|
||||
[DUMMY_TEXT, DUMMY_TEXT2],
|
||||
],
|
||||
ids=[
|
||||
"list[string]",
|
||||
"list[text]",
|
||||
],
|
||||
)
|
||||
def test_embedding_text(llama_stack_client, embedding_model_id, contents, inference_provider_type):
|
||||
if inference_provider_type not in SUPPORTED_PROVIDERS:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
|
||||
response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=contents, **default_task_type(embedding_model_id)
|
||||
)
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) == sum(len(content) if isinstance(content, list) else 1 for content in contents)
|
||||
assert isinstance(response.embeddings[0], list)
|
||||
assert isinstance(response.embeddings[0][0], float)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"contents",
|
||||
[
|
||||
[DUMMY_IMAGE_URL, DUMMY_IMAGE_BASE64],
|
||||
[DUMMY_IMAGE_URL, DUMMY_STRING, DUMMY_IMAGE_BASE64, DUMMY_TEXT],
|
||||
],
|
||||
ids=[
|
||||
"list[url,base64]",
|
||||
"list[url,string,base64,text]",
|
||||
],
|
||||
)
|
||||
def test_embedding_image(llama_stack_client, embedding_model_id, contents, inference_provider_type):
|
||||
if inference_provider_type not in SUPPORTED_PROVIDERS:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
|
||||
if embedding_model_id not in MODELS_SUPPORTING_MEDIA:
|
||||
pytest.xfail(f"{embedding_model_id} doesn't support media")
|
||||
response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=contents, **default_task_type(embedding_model_id)
|
||||
)
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) == sum(len(content) if isinstance(content, list) else 1 for content in contents)
|
||||
assert isinstance(response.embeddings[0], list)
|
||||
assert isinstance(response.embeddings[0][0], float)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text_truncation",
|
||||
[
|
||||
"end",
|
||||
"start",
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"contents",
|
||||
[
|
||||
[DUMMY_LONG_TEXT],
|
||||
[DUMMY_STRING],
|
||||
],
|
||||
ids=[
|
||||
"long",
|
||||
"short",
|
||||
],
|
||||
)
|
||||
def test_embedding_truncation(
|
||||
llama_stack_client, embedding_model_id, text_truncation, contents, inference_provider_type
|
||||
):
|
||||
if inference_provider_type not in SUPPORTED_PROVIDERS:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
|
||||
response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id,
|
||||
contents=contents,
|
||||
text_truncation=text_truncation,
|
||||
**default_task_type(embedding_model_id),
|
||||
)
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) == 1
|
||||
assert isinstance(response.embeddings[0], list)
|
||||
assert isinstance(response.embeddings[0][0], float)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text_truncation",
|
||||
[
|
||||
None,
|
||||
"none",
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"contents",
|
||||
[
|
||||
[DUMMY_LONG_TEXT],
|
||||
[DUMMY_LONG_STRING],
|
||||
],
|
||||
ids=[
|
||||
"long-text",
|
||||
"long-str",
|
||||
],
|
||||
)
|
||||
def test_embedding_truncation_error(
|
||||
llama_stack_client, embedding_model_id, text_truncation, contents, inference_provider_type
|
||||
):
|
||||
if inference_provider_type not in SUPPORTED_PROVIDERS:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
|
||||
with pytest.raises(BadRequestError):
|
||||
llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id,
|
||||
contents=[DUMMY_LONG_TEXT],
|
||||
text_truncation=text_truncation,
|
||||
**default_task_type(embedding_model_id),
|
||||
)
|
||||
|
||||
|
||||
def test_embedding_output_dimension(llama_stack_client, embedding_model_id, inference_provider_type):
|
||||
if inference_provider_type not in SUPPORTED_PROVIDERS:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
|
||||
if embedding_model_id not in MODELS_SUPPORTING_OUTPUT_DIMENSION:
|
||||
pytest.xfail(f"{embedding_model_id} doesn't support output_dimension")
|
||||
base_response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_STRING], **default_task_type(embedding_model_id)
|
||||
)
|
||||
test_response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id,
|
||||
contents=[DUMMY_STRING],
|
||||
**default_task_type(embedding_model_id),
|
||||
output_dimension=32,
|
||||
)
|
||||
assert len(base_response.embeddings[0]) != len(test_response.embeddings[0])
|
||||
assert len(test_response.embeddings[0]) == 32
|
||||
|
||||
|
||||
def test_embedding_task_type(llama_stack_client, embedding_model_id, inference_provider_type):
|
||||
if inference_provider_type not in SUPPORTED_PROVIDERS:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
|
||||
if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
|
||||
pytest.xfail(f"{embedding_model_id} doesn't support task_type")
|
||||
query_embedding = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_STRING], task_type="query"
|
||||
)
|
||||
document_embedding = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_STRING], task_type="document"
|
||||
)
|
||||
assert query_embedding.embeddings != document_embedding.embeddings
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text_truncation",
|
||||
[
|
||||
None,
|
||||
"none",
|
||||
"end",
|
||||
"start",
|
||||
],
|
||||
)
|
||||
def test_embedding_text_truncation(llama_stack_client, embedding_model_id, text_truncation, inference_provider_type):
|
||||
if inference_provider_type not in SUPPORTED_PROVIDERS:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
|
||||
response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id,
|
||||
contents=[DUMMY_STRING],
|
||||
text_truncation=text_truncation,
|
||||
**default_task_type(embedding_model_id),
|
||||
)
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) == 1
|
||||
assert isinstance(response.embeddings[0], list)
|
||||
assert isinstance(response.embeddings[0][0], float)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text_truncation",
|
||||
[
|
||||
"NONE",
|
||||
"END",
|
||||
"START",
|
||||
"left",
|
||||
"right",
|
||||
],
|
||||
)
|
||||
def test_embedding_text_truncation_error(
|
||||
llama_stack_client, embedding_model_id, text_truncation, inference_provider_type
|
||||
):
|
||||
if inference_provider_type not in SUPPORTED_PROVIDERS:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
|
||||
with pytest.raises(BadRequestError):
|
||||
llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id,
|
||||
contents=[DUMMY_STRING],
|
||||
text_truncation=text_truncation,
|
||||
**default_task_type(embedding_model_id),
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue