[Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id
This commit is contained in:
Xi Yan 2024-10-25 13:00:40 -07:00 committed by GitHub
parent d95bef7f2e
commit 4e2870445b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 2866 additions and 1229 deletions

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict, List, Literal, Union
from typing import Literal, Union
from pydantic import BaseModel, Field
from typing_extensions import Annotated
@ -24,12 +24,10 @@ class BooleanType(BaseModel):
class ArrayType(BaseModel):
type: Literal["array"] = "array"
items: "ParamType"
class ObjectType(BaseModel):
type: Literal["object"] = "object"
properties: Dict[str, "ParamType"] = Field(default_factory=dict)
class JsonType(BaseModel):
@ -38,12 +36,6 @@ class JsonType(BaseModel):
class UnionType(BaseModel):
type: Literal["union"] = "union"
options: List["ParamType"] = Field(default_factory=list)
class CustomType(BaseModel):
type: Literal["custom"] = "custom"
validator_class: str
class ChatCompletionInputType(BaseModel):
@ -78,6 +70,15 @@ ParamType = Annotated[
Field(discriminator="type"),
]
ArrayType.model_rebuild()
ObjectType.model_rebuild()
UnionType.model_rebuild()
# TODO: recursive definition of ParamType in these containers
# will cause infinite recursion in OpenAPI generation script
# since we are going with ChatCompletionInputType and CompletionInputType
# we don't need to worry about ArrayType/ObjectType/UnionType for now
# ArrayType.model_rebuild()
# ObjectType.model_rebuild()
# UnionType.model_rebuild()
# class CustomType(BaseModel):
# type: Literal["custom"] = "custom"
# validator_class: str

View file

@ -14,7 +14,7 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.dataset import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.common.training_types import * # noqa: F403
@ -107,8 +107,8 @@ class PostTrainingSFTRequest(BaseModel):
job_uuid: str
model: str
dataset: TrainEvalDataset
validation_dataset: TrainEvalDataset
dataset_id: str
validation_dataset_id: str
algorithm: FinetuningAlgorithm
algorithm_config: Union[
@ -131,8 +131,8 @@ class PostTrainingRLHFRequest(BaseModel):
finetuned_model: URL
dataset: TrainEvalDataset
validation_dataset: TrainEvalDataset
dataset_id: str
validation_dataset_id: str
algorithm: RLHFAlgorithm
algorithm_config: Union[DPOAlignmentConfig]
@ -181,8 +181,8 @@ class PostTraining(Protocol):
self,
job_uuid: str,
model: str,
dataset: TrainEvalDataset,
validation_dataset: TrainEvalDataset,
dataset_id: str,
validation_dataset_id: str,
algorithm: FinetuningAlgorithm,
algorithm_config: Union[
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
@ -198,8 +198,8 @@ class PostTraining(Protocol):
self,
job_uuid: str,
finetuned_model: URL,
dataset: TrainEvalDataset,
validation_dataset: TrainEvalDataset,
dataset_id: str,
validation_dataset_id: str,
algorithm: RLHFAlgorithm,
algorithm_config: Union[DPOAlignmentConfig],
optimizer_config: OptimizerConfig,

View file

@ -13,7 +13,6 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.reward_scoring import * # noqa: F403
class FilteringFunction(Enum):
@ -40,7 +39,7 @@ class SyntheticDataGenerationRequest(BaseModel):
class SyntheticDataGenerationResponse(BaseModel):
"""Response from the synthetic data generation. Batch of (prompt, response, score) tuples that pass the threshold."""
synthetic_data: List[ScoredDialogGenerations]
synthetic_data: List[Dict[str, Any]]
statistics: Optional[Dict[str, Any]] = None