remove llamastackclient from unit tests

This commit is contained in:
raspawar 2025-03-24 16:06:24 +05:30
parent 399461dee2
commit 4e4a40bd64
5 changed files with 171 additions and 402 deletions

View file

@ -6,32 +6,46 @@
import os
import unittest
from unittest.mock import AsyncMock, MagicMock, patch
from unittest.mock import patch
import warnings
import pytest
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig
from llama_stack_client.types.post_training.job_status_response import JobStatusResponse
from llama_stack_client.types.post_training_job import PostTrainingJob
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfig,
TrainingConfigDataConfig,
TrainingConfigOptimizerConfig,
)
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from .mock_llama_stack_client import MockLlamaStackClient
from llama_stack.providers.remote.post_training.nvidia.post_training import (
NvidiaPostTrainingAdapter,
NvidiaPostTrainingConfig,
NvidiaPostTrainingJobStatusResponse,
ListNvidiaPostTrainingJobs,
NvidiaPostTrainingJob,
)
class TestNvidiaPostTraining(unittest.TestCase):
# ToDo: add tests for env variables, models supported.
def setUp(self):
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
os.environ["LLAMA_STACK_BASE_URL"] = "http://localhost:5002" # mocking llama stack base url
with patch("llama_stack.distribution.library_client.LlamaStackAsLibraryClient", MockLlamaStackClient):
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia")
_ = self.llama_stack_client.initialize()
config = NvidiaPostTrainingConfig(
base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
)
self.adapter = NvidiaPostTrainingAdapter(config)
self.make_request_patcher = patch(
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
)
self.mock_make_request = self.make_request_patcher.start()
def tearDown(self):
self.make_request_patcher.stop()
@pytest.fixture(autouse=True)
def inject_fixtures(self, run_async):
self.run_async = run_async
def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
"""Helper method to verify request details in mock calls."""
@ -51,11 +65,9 @@ class TestNvidiaPostTraining(unittest.TestCase):
for key, value in expected_json.items():
assert call_args[1]["json"][key] == value
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
def test_supervised_fine_tune(self, mock_make_request):
"""Test the supervised fine-tuning API call.
ToDo: add tests for env variables."""
mock_make_request.return_value = {
def test_supervised_fine_tune(self):
"""Test the supervised fine-tuning API call."""
self.mock_make_request.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
@ -125,40 +137,27 @@ class TestNvidiaPostTraining(unittest.TestCase):
optimizer_config=optimizer_config,
)
with warnings.catch_warnings(record=True) as w:
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
training_job = self.llama_stack_client.post_training.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
training_job = self.run_async(
self.adapter.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
)
# required lora config unsupported parameters warnings
fields = [
"apply_lora_to_mlp",
"rank",
"use_dora",
"lora_attn_modules",
"quantize_base",
"apply_lora_to_output",
]
for field in fields:
assert any(field in str(warning.message) for warning in w)
# check the output is a PostTrainingJob
# Note: Although the type is PostTrainingJob: llama_stack.apis.post_training.PostTrainingJob,
# post llama_stack_client initialization it gets translated to llama_stack_client.types.post_training_job.PostTrainingJob
assert isinstance(training_job, PostTrainingJob)
assert isinstance(training_job, NvidiaPostTrainingJob)
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
mock_make_request.assert_called_once()
self.mock_make_request.assert_called_once()
self._assert_request(
mock_make_request,
self.mock_make_request,
"POST",
"/v1/customization/jobs",
expected_json={
@ -188,19 +187,20 @@ class TestNvidiaPostTraining(unittest.TestCase):
)
# This will raise NotImplementedError since QAT is not supported
with self.assertRaises(NotImplementedError):
self.llama_stack_client.post_training.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
self.run_async(
self.adapter.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
)
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
def test_get_job_status(self, mock_make_request):
mock_make_request.return_value = {
def test_get_training_job_status(self):
self.mock_make_request.return_value = {
"created_at": "2024-12-09T04:06:28.580220",
"updated_at": "2024-12-09T04:21:19.852832",
"status": "completed",
@ -213,10 +213,11 @@ class TestNvidiaPostTraining(unittest.TestCase):
}
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
status = self.llama_stack_client.post_training.job.status(job_uuid=job_id)
assert isinstance(status, JobStatusResponse)
assert status.status == "completed"
status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id))
assert isinstance(status, NvidiaPostTrainingJobStatusResponse)
assert status.status.value == "completed"
assert status.steps_completed == 1210
assert status.epochs_completed == 2
assert status.percentage_done == 100.0
@ -224,15 +225,14 @@ class TestNvidiaPostTraining(unittest.TestCase):
assert status.train_loss == 1.718016266822815
assert status.val_loss == 1.8661999702453613
mock_make_request.assert_called_once()
self.mock_make_request.assert_called_once()
self._assert_request(
mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}
self.mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}
)
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
def test_get_job(self, mock_make_request):
def test_get_training_jobs(self):
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
mock_make_request.return_value = {
self.mock_make_request.return_value = {
"data": [
{
"id": job_id,
@ -258,124 +258,38 @@ class TestNvidiaPostTraining(unittest.TestCase):
]
}
jobs = self.llama_stack_client.post_training.job.list()
assert isinstance(jobs, list)
assert len(jobs) == 1
job = jobs[0]
assert job.job_uuid == job_id
assert job.status == "completed"
jobs = self.run_async(self.adapter.get_training_jobs())
mock_make_request.assert_called_once()
assert isinstance(jobs, ListNvidiaPostTrainingJobs)
assert len(jobs.data) == 1
job = jobs.data[0]
assert job.job_uuid == job_id
assert job.status.value == "completed"
self.mock_make_request.assert_called_once()
self._assert_request(
mock_make_request,
self.mock_make_request,
"GET",
"/v1/customization/jobs",
expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
)
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
def test_cancel_job(self, mock_make_request):
mock_make_request.return_value = {} # Empty response for successful cancellation
def test_cancel_training_job(self):
self.mock_make_request.return_value = {} # Empty response for successful cancellation
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
result = self.llama_stack_client.post_training.job.cancel(job_uuid=job_id)
result = self.run_async(self.adapter.cancel_training_job(job_uuid=job_id))
assert result is None
# Verify the correct request was made
mock_make_request.assert_called_once()
self.mock_make_request.assert_called_once()
self._assert_request(
mock_make_request, "POST", f"/v1/customization/jobs/{job_id}/cancel", expected_params={"job_id": job_id}
self.mock_make_request,
"POST",
f"/v1/customization/jobs/{job_id}/cancel",
expected_params={"job_id": job_id},
)
@pytest.mark.asyncio
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
async def test_async_supervised_fine_tune(self, mock_make_request):
mock_make_request.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "created",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"dataset_id": "sample-basic-test",
"output_model": "default/job-1234",
}
algorithm_config = LoraFinetuningConfig(
alpha=16,
rank=16,
type="LoRA",
adapter_dim=16,
adapter_dropout=0.1,
apply_lora_to_mlp=True,
apply_lora_to_output=True,
)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
training_job = await self.llama_stack_client.post_training.supervised_fine_tune_async(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
assert training_job["job_uuid"] == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
assert training_job["status"] == "created"
mock_make_request.assert_called_once()
call_args = mock_make_request.call_args
assert call_args[1]["method"] == "POST"
assert call_args[1]["path"] == "/v1/customization/jobs"
@pytest.mark.asyncio
@patch("aiohttp.ClientSession.post")
async def test_inference_with_fine_tuned_model(self, mock_post):
mock_response = MagicMock()
mock_response.status = 200
mock_response.json = AsyncMock(
return_value={
"id": "cmpl-123456",
"object": "text_completion",
"created": 1677858242,
"model": "job-1234",
"choices": [
{
"text": "The next GTC will take place in the middle of March, 2023.",
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
}
)
mock_post.return_value.__aenter__.return_value = mock_response
response = await self.llama_stack_client.inference.completion(
content="When is the upcoming GTC event? GTC 2018 attracted over 8,400 attendees. Due to the COVID pandemic of 2020, GTC 2020 was converted to a digital event and drew roughly 59,000 registrants. The 2021 GTC keynote, which was streamed on YouTube on April 12, included a portion that was made with CGI using the Nvidia Omniverse real-time rendering platform. This next GTC will take place in the middle of March, 2023. Answer: ",
stream=False,
model_id="job-1234",
sampling_params={
"max_tokens": 128,
},
)
assert response["model"] == "job-1234"
assert response["choices"][0]["text"] == "The next GTC will take place in the middle of March, 2023."
if __name__ == "__main__":
unittest.main()