mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-31 07:20:00 +00:00
remove llamastackclient from unit tests
This commit is contained in:
parent
399461dee2
commit
4e4a40bd64
5 changed files with 171 additions and 402 deletions
|
|
@ -6,32 +6,46 @@
|
|||
|
||||
import os
|
||||
import unittest
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
from unittest.mock import patch
|
||||
import warnings
|
||||
import pytest
|
||||
|
||||
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig
|
||||
from llama_stack_client.types.post_training.job_status_response import JobStatusResponse
|
||||
from llama_stack_client.types.post_training_job import PostTrainingJob
|
||||
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
|
||||
TrainingConfig,
|
||||
TrainingConfigDataConfig,
|
||||
TrainingConfigOptimizerConfig,
|
||||
)
|
||||
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
from .mock_llama_stack_client import MockLlamaStackClient
|
||||
from llama_stack.providers.remote.post_training.nvidia.post_training import (
|
||||
NvidiaPostTrainingAdapter,
|
||||
NvidiaPostTrainingConfig,
|
||||
NvidiaPostTrainingJobStatusResponse,
|
||||
ListNvidiaPostTrainingJobs,
|
||||
NvidiaPostTrainingJob,
|
||||
)
|
||||
|
||||
|
||||
class TestNvidiaPostTraining(unittest.TestCase):
|
||||
# ToDo: add tests for env variables, models supported.
|
||||
def setUp(self):
|
||||
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference
|
||||
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
|
||||
os.environ["LLAMA_STACK_BASE_URL"] = "http://localhost:5002" # mocking llama stack base url
|
||||
|
||||
with patch("llama_stack.distribution.library_client.LlamaStackAsLibraryClient", MockLlamaStackClient):
|
||||
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia")
|
||||
_ = self.llama_stack_client.initialize()
|
||||
config = NvidiaPostTrainingConfig(
|
||||
base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
|
||||
)
|
||||
self.adapter = NvidiaPostTrainingAdapter(config)
|
||||
self.make_request_patcher = patch(
|
||||
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
|
||||
)
|
||||
self.mock_make_request = self.make_request_patcher.start()
|
||||
|
||||
def tearDown(self):
|
||||
self.make_request_patcher.stop()
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def inject_fixtures(self, run_async):
|
||||
self.run_async = run_async
|
||||
|
||||
def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
|
||||
"""Helper method to verify request details in mock calls."""
|
||||
|
|
@ -51,11 +65,9 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
for key, value in expected_json.items():
|
||||
assert call_args[1]["json"][key] == value
|
||||
|
||||
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
||||
def test_supervised_fine_tune(self, mock_make_request):
|
||||
"""Test the supervised fine-tuning API call.
|
||||
ToDo: add tests for env variables."""
|
||||
mock_make_request.return_value = {
|
||||
def test_supervised_fine_tune(self):
|
||||
"""Test the supervised fine-tuning API call."""
|
||||
self.mock_make_request.return_value = {
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"created_at": "2024-12-09T04:06:28.542884",
|
||||
"updated_at": "2024-12-09T04:06:28.542884",
|
||||
|
|
@ -125,40 +137,27 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
optimizer_config=optimizer_config,
|
||||
)
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
with warnings.catch_warnings(record=True):
|
||||
warnings.simplefilter("always")
|
||||
training_job = self.llama_stack_client.post_training.supervised_fine_tune(
|
||||
job_uuid="1234",
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
training_job = self.run_async(
|
||||
self.adapter.supervised_fine_tune(
|
||||
job_uuid="1234",
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
)
|
||||
|
||||
# required lora config unsupported parameters warnings
|
||||
fields = [
|
||||
"apply_lora_to_mlp",
|
||||
"rank",
|
||||
"use_dora",
|
||||
"lora_attn_modules",
|
||||
"quantize_base",
|
||||
"apply_lora_to_output",
|
||||
]
|
||||
for field in fields:
|
||||
assert any(field in str(warning.message) for warning in w)
|
||||
|
||||
# check the output is a PostTrainingJob
|
||||
# Note: Although the type is PostTrainingJob: llama_stack.apis.post_training.PostTrainingJob,
|
||||
# post llama_stack_client initialization it gets translated to llama_stack_client.types.post_training_job.PostTrainingJob
|
||||
assert isinstance(training_job, PostTrainingJob)
|
||||
|
||||
assert isinstance(training_job, NvidiaPostTrainingJob)
|
||||
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
||||
|
||||
mock_make_request.assert_called_once()
|
||||
self.mock_make_request.assert_called_once()
|
||||
self._assert_request(
|
||||
mock_make_request,
|
||||
self.mock_make_request,
|
||||
"POST",
|
||||
"/v1/customization/jobs",
|
||||
expected_json={
|
||||
|
|
@ -188,19 +187,20 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
)
|
||||
# This will raise NotImplementedError since QAT is not supported
|
||||
with self.assertRaises(NotImplementedError):
|
||||
self.llama_stack_client.post_training.supervised_fine_tune(
|
||||
job_uuid="1234",
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
self.run_async(
|
||||
self.adapter.supervised_fine_tune(
|
||||
job_uuid="1234",
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
)
|
||||
|
||||
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
||||
def test_get_job_status(self, mock_make_request):
|
||||
mock_make_request.return_value = {
|
||||
def test_get_training_job_status(self):
|
||||
self.mock_make_request.return_value = {
|
||||
"created_at": "2024-12-09T04:06:28.580220",
|
||||
"updated_at": "2024-12-09T04:21:19.852832",
|
||||
"status": "completed",
|
||||
|
|
@ -213,10 +213,11 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
}
|
||||
|
||||
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
||||
status = self.llama_stack_client.post_training.job.status(job_uuid=job_id)
|
||||
|
||||
assert isinstance(status, JobStatusResponse)
|
||||
assert status.status == "completed"
|
||||
status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id))
|
||||
|
||||
assert isinstance(status, NvidiaPostTrainingJobStatusResponse)
|
||||
assert status.status.value == "completed"
|
||||
assert status.steps_completed == 1210
|
||||
assert status.epochs_completed == 2
|
||||
assert status.percentage_done == 100.0
|
||||
|
|
@ -224,15 +225,14 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
assert status.train_loss == 1.718016266822815
|
||||
assert status.val_loss == 1.8661999702453613
|
||||
|
||||
mock_make_request.assert_called_once()
|
||||
self.mock_make_request.assert_called_once()
|
||||
self._assert_request(
|
||||
mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}
|
||||
self.mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}
|
||||
)
|
||||
|
||||
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
||||
def test_get_job(self, mock_make_request):
|
||||
def test_get_training_jobs(self):
|
||||
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
||||
mock_make_request.return_value = {
|
||||
self.mock_make_request.return_value = {
|
||||
"data": [
|
||||
{
|
||||
"id": job_id,
|
||||
|
|
@ -258,124 +258,38 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
]
|
||||
}
|
||||
|
||||
jobs = self.llama_stack_client.post_training.job.list()
|
||||
assert isinstance(jobs, list)
|
||||
assert len(jobs) == 1
|
||||
job = jobs[0]
|
||||
assert job.job_uuid == job_id
|
||||
assert job.status == "completed"
|
||||
jobs = self.run_async(self.adapter.get_training_jobs())
|
||||
|
||||
mock_make_request.assert_called_once()
|
||||
assert isinstance(jobs, ListNvidiaPostTrainingJobs)
|
||||
assert len(jobs.data) == 1
|
||||
job = jobs.data[0]
|
||||
assert job.job_uuid == job_id
|
||||
assert job.status.value == "completed"
|
||||
|
||||
self.mock_make_request.assert_called_once()
|
||||
self._assert_request(
|
||||
mock_make_request,
|
||||
self.mock_make_request,
|
||||
"GET",
|
||||
"/v1/customization/jobs",
|
||||
expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
|
||||
)
|
||||
|
||||
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
||||
def test_cancel_job(self, mock_make_request):
|
||||
mock_make_request.return_value = {} # Empty response for successful cancellation
|
||||
def test_cancel_training_job(self):
|
||||
self.mock_make_request.return_value = {} # Empty response for successful cancellation
|
||||
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
||||
|
||||
result = self.llama_stack_client.post_training.job.cancel(job_uuid=job_id)
|
||||
result = self.run_async(self.adapter.cancel_training_job(job_uuid=job_id))
|
||||
|
||||
assert result is None
|
||||
|
||||
# Verify the correct request was made
|
||||
mock_make_request.assert_called_once()
|
||||
self.mock_make_request.assert_called_once()
|
||||
self._assert_request(
|
||||
mock_make_request, "POST", f"/v1/customization/jobs/{job_id}/cancel", expected_params={"job_id": job_id}
|
||||
self.mock_make_request,
|
||||
"POST",
|
||||
f"/v1/customization/jobs/{job_id}/cancel",
|
||||
expected_params={"job_id": job_id},
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
||||
async def test_async_supervised_fine_tune(self, mock_make_request):
|
||||
mock_make_request.return_value = {
|
||||
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
||||
"status": "created",
|
||||
"created_at": "2024-12-09T04:06:28.542884",
|
||||
"updated_at": "2024-12-09T04:06:28.542884",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"dataset_id": "sample-basic-test",
|
||||
"output_model": "default/job-1234",
|
||||
}
|
||||
|
||||
algorithm_config = LoraFinetuningConfig(
|
||||
alpha=16,
|
||||
rank=16,
|
||||
type="LoRA",
|
||||
adapter_dim=16,
|
||||
adapter_dropout=0.1,
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=True,
|
||||
)
|
||||
|
||||
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
||||
|
||||
optimizer_config = TrainingConfigOptimizerConfig(
|
||||
lr=0.0001,
|
||||
)
|
||||
|
||||
training_config = TrainingConfig(
|
||||
n_epochs=2,
|
||||
data_config=data_config,
|
||||
optimizer_config=optimizer_config,
|
||||
)
|
||||
|
||||
training_job = await self.llama_stack_client.post_training.supervised_fine_tune_async(
|
||||
job_uuid="1234",
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
|
||||
assert training_job["job_uuid"] == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
||||
assert training_job["status"] == "created"
|
||||
|
||||
mock_make_request.assert_called_once()
|
||||
call_args = mock_make_request.call_args
|
||||
assert call_args[1]["method"] == "POST"
|
||||
assert call_args[1]["path"] == "/v1/customization/jobs"
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@patch("aiohttp.ClientSession.post")
|
||||
async def test_inference_with_fine_tuned_model(self, mock_post):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status = 200
|
||||
mock_response.json = AsyncMock(
|
||||
return_value={
|
||||
"id": "cmpl-123456",
|
||||
"object": "text_completion",
|
||||
"created": 1677858242,
|
||||
"model": "job-1234",
|
||||
"choices": [
|
||||
{
|
||||
"text": "The next GTC will take place in the middle of March, 2023.",
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
|
||||
}
|
||||
)
|
||||
mock_post.return_value.__aenter__.return_value = mock_response
|
||||
|
||||
response = await self.llama_stack_client.inference.completion(
|
||||
content="When is the upcoming GTC event? GTC 2018 attracted over 8,400 attendees. Due to the COVID pandemic of 2020, GTC 2020 was converted to a digital event and drew roughly 59,000 registrants. The 2021 GTC keynote, which was streamed on YouTube on April 12, included a portion that was made with CGI using the Nvidia Omniverse real-time rendering platform. This next GTC will take place in the middle of March, 2023. Answer: ",
|
||||
stream=False,
|
||||
model_id="job-1234",
|
||||
sampling_params={
|
||||
"max_tokens": 128,
|
||||
},
|
||||
)
|
||||
|
||||
assert response["model"] == "job-1234"
|
||||
assert response["choices"][0]["text"] == "The next GTC will take place in the middle of March, 2023."
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue