remove llamastackclient from unit tests

This commit is contained in:
raspawar 2025-03-24 16:06:24 +05:30
parent 399461dee2
commit 4e4a40bd64
5 changed files with 171 additions and 402 deletions

View file

@ -14,7 +14,6 @@ from llama_stack.apis.post_training import (
AlgorithmConfig, AlgorithmConfig,
DPOAlignmentConfig, DPOAlignmentConfig,
JobStatus, JobStatus,
LoraFinetuningConfig,
PostTrainingJob, PostTrainingJob,
PostTrainingJobArtifactsResponse, PostTrainingJobArtifactsResponse,
PostTrainingJobStatusResponse, PostTrainingJobStatusResponse,
@ -393,14 +392,14 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
# Handle LoRA-specific configuration # Handle LoRA-specific configuration
if algorithm_config: if algorithm_config:
if isinstance(algorithm_config, LoraFinetuningConfig) and algorithm_config.type == "LoRA": if isinstance(algorithm_config, dict) and algorithm_config.get("type") == "LoRA":
warn_unsupported_params(algorithm_config, supported_params["lora_config"], "LoRA config") warn_unsupported_params(algorithm_config, supported_params["lora_config"], "LoRA config")
job_config["hyperparameters"]["lora"] = { job_config["hyperparameters"]["lora"] = {
k: v k: v
for k, v in { for k, v in {
"adapter_dim": getattr(algorithm_config, "adapter_dim", None), "adapter_dim": algorithm_config.get("adapter_dim"),
"alpha": getattr(algorithm_config, "alpha", None), "alpha": algorithm_config.get("alpha"),
"adapter_dropout": getattr(algorithm_config, "adapter_dropout", None), "adapter_dropout": algorithm_config.get("adapter_dropout"),
}.items() }.items()
if v is not None if v is not None
} }

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
import asyncio
import pytest import pytest
from unittest.mock import AsyncMock, MagicMock, patch from unittest.mock import AsyncMock, MagicMock, patch
@ -18,3 +19,27 @@ mock_session.__aexit__ = AsyncMock()
def patch_aiohttp_session(): def patch_aiohttp_session():
with patch("aiohttp.ClientSession", return_value=mock_session): with patch("aiohttp.ClientSession", return_value=mock_session):
yield yield
@pytest.fixture
def event_loop():
"""Create and provide a new event loop for each test."""
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
yield loop
loop.close()
@pytest.fixture
def run_async():
"""Fixture to run async functions in tests."""
def _run_async(coro):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(coro)
finally:
loop.close()
return _run_async

View file

@ -1,147 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack_client.types.algorithm_config_param import QatFinetuningConfig
from llama_stack_client.types.post_training.job_status_response import JobStatusResponse
from llama_stack_client.types.post_training_job import PostTrainingJob
class MockLlamaStackClient:
"""Mock client for testing NVIDIA post-training functionality."""
def __init__(self, provider="nvidia"):
self.provider = provider
self.post_training = MockPostTraining()
self.inference = MockInference()
self._session = None
def initialize(self):
"""Mock initialization method."""
return True
def close(self):
"""Close any open resources."""
pass
class MockPostTraining:
"""Mock post-training module."""
def __init__(self):
self.job = MockPostTrainingJob()
def supervised_fine_tune(
self,
job_uuid,
model,
checkpoint_dir,
algorithm_config,
training_config,
logger_config,
hyperparam_search_config,
):
"""Mock supervised fine-tuning method."""
if isinstance(algorithm_config, QatFinetuningConfig):
raise NotImplementedError("QAT fine-tuning is not supported by NVIDIA provider")
# Return a mock PostTrainingJob
return PostTrainingJob(
job_uuid="cust-JGTaMbJMdqjJU8WbQdN9Q2",
status="created",
created_at="2024-12-09T04:06:28.542884",
updated_at="2024-12-09T04:06:28.542884",
model=model,
dataset_id=training_config.data_config.dataset_id,
output_model="default/job-1234",
)
async def supervised_fine_tune_async(
self,
job_uuid,
model,
checkpoint_dir,
algorithm_config,
training_config,
logger_config,
hyperparam_search_config,
):
"""Mock async supervised fine-tuning method."""
if isinstance(algorithm_config, QatFinetuningConfig):
raise NotImplementedError("QAT fine-tuning is not supported by NVIDIA provider")
# Return a mock response dictionary
return {
"job_uuid": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "created",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"model": model,
"dataset_id": training_config.data_config.dataset_id,
"output_model": "default/job-1234",
}
class MockPostTrainingJob:
"""Mock post-training job module."""
def status(self, job_uuid):
"""Mock job status method."""
return JobStatusResponse(
status="completed",
steps_completed=1210,
epochs_completed=2,
percentage_done=100.0,
best_epoch=2,
train_loss=1.718016266822815,
val_loss=1.8661999702453613,
)
def list(self):
"""Mock job list method."""
return [
PostTrainingJob(
job_uuid="cust-JGTaMbJMdqjJU8WbQdN9Q2",
status="completed",
created_at="2024-12-09T04:06:28.542884",
updated_at="2024-12-09T04:21:19.852832",
model="meta-llama/Llama-3.1-8B-Instruct",
dataset_id="sample-basic-test",
output_model="default/job-1234",
)
]
def cancel(self, job_uuid):
"""Mock job cancel method."""
return None
class MockInference:
"""Mock inference module."""
async def completion(
self,
content,
stream=False,
model_id=None,
sampling_params=None,
):
"""Mock completion method."""
return {
"id": "cmpl-123456",
"object": "text_completion",
"created": 1677858242,
"model": model_id,
"choices": [
{
"text": "The next GTC will take place in the middle of March, 2023.",
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
}

View file

@ -7,11 +7,9 @@
import os import os
import unittest import unittest
import warnings import warnings
from unittest.mock import patch, AsyncMock, MagicMock from unittest.mock import patch
import pytest import pytest
import atexit
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig
from llama_stack_client.types.post_training_supervised_fine_tune_params import ( from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfig, TrainingConfig,
@ -19,30 +17,21 @@ from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfigOptimizerConfig, TrainingConfigOptimizerConfig,
TrainingConfigEfficiencyConfig, TrainingConfigEfficiencyConfig,
) )
from .mock_llama_stack_client import MockLlamaStackClient from llama_stack.providers.remote.post_training.nvidia.post_training import (
NvidiaPostTrainingAdapter,
# Create a mock session NvidiaPostTrainingConfig,
mock_session = MagicMock() )
mock_session.closed = False
mock_session.close = AsyncMock()
mock_session.__aenter__ = AsyncMock(return_value=mock_session)
mock_session.__aexit__ = AsyncMock()
patch("aiohttp.ClientSession", return_value=mock_session).start()
atexit.register(lambda: patch.stopall())
class TestNvidiaParameters(unittest.TestCase): class TestNvidiaParameters(unittest.TestCase):
def setUp(self): def setUp(self):
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" os.environ["NVIDIA_BASE_URL"] = "http://nemo.test"
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
os.environ["LLAMA_STACK_BASE_URL"] = "http://localhost:5002"
# Use the mock client config = NvidiaPostTrainingConfig(
with patch("llama_stack.distribution.library_client.LlamaStackAsLibraryClient", MockLlamaStackClient): base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia") )
_ = self.llama_stack_client.initialize() self.adapter = NvidiaPostTrainingAdapter(config)
self.make_request_patcher = patch( self.make_request_patcher = patch(
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request" "llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
@ -56,10 +45,6 @@ class TestNvidiaParameters(unittest.TestCase):
} }
def tearDown(self): def tearDown(self):
# Close the client if it has a close method
if hasattr(self.llama_stack_client, "close"):
self.llama_stack_client.close()
self.make_request_patcher.stop() self.make_request_patcher.stop()
def _assert_request_params(self, expected_json): def _assert_request_params(self, expected_json):
@ -74,13 +59,17 @@ class TestNvidiaParameters(unittest.TestCase):
else: else:
assert actual_json[key] == value assert actual_json[key] == value
@pytest.fixture(autouse=True)
def inject_fixtures(self, run_async):
self.run_async = run_async
def test_customizer_parameters_passed(self): def test_customizer_parameters_passed(self):
"""Test scenario 1: When an optional parameter is passed and value is correctly set.""" """Test scenario 1: When an optional parameter is passed and value is correctly set."""
custom_adapter_dim = 32 # Different from default of 8 custom_adapter_dim = 32 # Different from default of 8
algorithm_config = LoraFinetuningConfig( algorithm_config = LoraFinetuningConfig(
type="LoRA", type="LoRA",
adapter_dim=custom_adapter_dim, # Custom value adapter_dim=custom_adapter_dim,
adapter_dropout=0.2, # Custom value adapter_dropout=0.2,
apply_lora_to_mlp=True, apply_lora_to_mlp=True,
apply_lora_to_output=True, apply_lora_to_output=True,
alpha=16, alpha=16,
@ -98,14 +87,17 @@ class TestNvidiaParameters(unittest.TestCase):
with warnings.catch_warnings(record=True) as w: with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always") warnings.simplefilter("always")
self.llama_stack_client.post_training.supervised_fine_tune(
job_uuid="test-job", self.run_async(
model="meta-llama/Llama-3.1-8B-Instruct", self.adapter.supervised_fine_tune(
checkpoint_dir="", job_uuid="test-job",
algorithm_config=algorithm_config, model="meta-llama/Llama-3.1-8B-Instruct",
training_config=training_config, checkpoint_dir="",
logger_config={}, algorithm_config=algorithm_config,
hyperparam_search_config={}, training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
) )
warning_texts = [str(warning.message) for warning in w] warning_texts = [str(warning.message) for warning in w]
@ -159,31 +151,25 @@ class TestNvidiaParameters(unittest.TestCase):
optimizer_config=optimizer_config, optimizer_config=optimizer_config,
) )
# catch required unsupported parameters warnings
with warnings.catch_warnings(record=True) as w: with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always") warnings.simplefilter("always")
self.llama_stack_client.post_training.supervised_fine_tune(
job_uuid=required_job_uuid, # Required parameter self.run_async(
model=required_model, # Required parameter self.adapter.supervised_fine_tune(
checkpoint_dir="", job_uuid=required_job_uuid, # Required parameter
algorithm_config=algorithm_config, model=required_model, # Required parameter
training_config=training_config, checkpoint_dir="",
logger_config={}, algorithm_config=algorithm_config,
hyperparam_search_config={}, training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
) )
self.mock_make_request.assert_called_once()
call_args = self.mock_make_request.call_args
assert call_args[1]["json"]["config"] == "meta/llama-3.1-8b-instruct"
assert call_args[1]["json"]["dataset"]["name"] == required_dataset_id
warning_texts = [str(warning.message) for warning in w] warning_texts = [str(warning.message) for warning in w]
fields = [ fields = [
"rank", "rank",
"use_dora",
"quantize_base",
"apply_lora_to_output", "apply_lora_to_output",
"lora_attn_modules", "lora_attn_modules",
"apply_lora_to_mlp", "apply_lora_to_mlp",
@ -191,6 +177,12 @@ class TestNvidiaParameters(unittest.TestCase):
for field in fields: for field in fields:
assert any(field in text for text in warning_texts) assert any(field in text for text in warning_texts)
self.mock_make_request.assert_called_once()
call_args = self.mock_make_request.call_args
assert call_args[1]["json"]["config"] == "meta/llama-3.1-8b-instruct"
assert call_args[1]["json"]["dataset"]["name"] == required_dataset_id
def test_unsupported_parameters_warning(self): def test_unsupported_parameters_warning(self):
"""Test that warnings are raised for unsupported parameters.""" """Test that warnings are raised for unsupported parameters."""
data_config = TrainingConfigDataConfig( data_config = TrainingConfigDataConfig(
@ -230,24 +222,27 @@ class TestNvidiaParameters(unittest.TestCase):
with warnings.catch_warnings(record=True) as w: with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always") warnings.simplefilter("always")
self.llama_stack_client.post_training.supervised_fine_tune( self.run_async(
job_uuid="test-job", self.adapter.supervised_fine_tune(
model="meta-llama/Llama-3.1-8B-Instruct", job_uuid="test-job",
checkpoint_dir="test-dir", # Unsupported parameter model="meta-llama/Llama-3.1-8B-Instruct",
algorithm_config=LoraFinetuningConfig( checkpoint_dir="test-dir", # Unsupported parameter
type="LoRA", algorithm_config=LoraFinetuningConfig(
adapter_dim=16, type="LoRA",
adapter_dropout=0.1, adapter_dim=16,
apply_lora_to_mlp=True, adapter_dropout=0.1,
apply_lora_to_output=True, apply_lora_to_mlp=True,
alpha=16, apply_lora_to_output=True,
rank=16, alpha=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"], rank=16,
), lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
training_config=training_config, ),
logger_config={"test": "value"}, # Unsupported parameter training_config=training_config,
hyperparam_search_config={"test": "value"}, # Unsupported parameter logger_config={"test": "value"}, # Unsupported parameter
hyperparam_search_config={"test": "value"}, # Unsupported parameter
)
) )
assert len(w) >= 4 assert len(w) >= 4
warning_texts = [str(warning.message) for warning in w] warning_texts = [str(warning.message) for warning in w]
@ -264,8 +259,6 @@ class TestNvidiaParameters(unittest.TestCase):
"dtype", "dtype",
# required unsupported parameters # required unsupported parameters
"rank", "rank",
"use_dora",
"quantize_base",
"apply_lora_to_output", "apply_lora_to_output",
"lora_attn_modules", "lora_attn_modules",
"apply_lora_to_mlp", "apply_lora_to_mlp",
@ -274,20 +267,5 @@ class TestNvidiaParameters(unittest.TestCase):
assert any(field in text for text in warning_texts) assert any(field in text for text in warning_texts)
@pytest.fixture
def llama_stack_client():
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test"
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
os.environ["LLAMA_STACK_BASE_URL"] = "http://localhost:5002"
with patch("llama_stack.distribution.library_client.LlamaStackAsLibraryClient", MockLlamaStackClient):
client = LlamaStackAsLibraryClient("nvidia")
_ = client.initialize()
yield client
if hasattr(client, "close"):
client.close()
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()

View file

@ -6,32 +6,46 @@
import os import os
import unittest import unittest
from unittest.mock import AsyncMock, MagicMock, patch from unittest.mock import patch
import warnings import warnings
import pytest import pytest
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig
from llama_stack_client.types.post_training.job_status_response import JobStatusResponse
from llama_stack_client.types.post_training_job import PostTrainingJob
from llama_stack_client.types.post_training_supervised_fine_tune_params import ( from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfig, TrainingConfig,
TrainingConfigDataConfig, TrainingConfigDataConfig,
TrainingConfigOptimizerConfig, TrainingConfigOptimizerConfig,
) )
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient from llama_stack.providers.remote.post_training.nvidia.post_training import (
from .mock_llama_stack_client import MockLlamaStackClient NvidiaPostTrainingAdapter,
NvidiaPostTrainingConfig,
NvidiaPostTrainingJobStatusResponse,
ListNvidiaPostTrainingJobs,
NvidiaPostTrainingJob,
)
class TestNvidiaPostTraining(unittest.TestCase): class TestNvidiaPostTraining(unittest.TestCase):
# ToDo: add tests for env variables, models supported.
def setUp(self): def setUp(self):
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
os.environ["LLAMA_STACK_BASE_URL"] = "http://localhost:5002" # mocking llama stack base url
with patch("llama_stack.distribution.library_client.LlamaStackAsLibraryClient", MockLlamaStackClient): config = NvidiaPostTrainingConfig(
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia") base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
_ = self.llama_stack_client.initialize() )
self.adapter = NvidiaPostTrainingAdapter(config)
self.make_request_patcher = patch(
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
)
self.mock_make_request = self.make_request_patcher.start()
def tearDown(self):
self.make_request_patcher.stop()
@pytest.fixture(autouse=True)
def inject_fixtures(self, run_async):
self.run_async = run_async
def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None): def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
"""Helper method to verify request details in mock calls.""" """Helper method to verify request details in mock calls."""
@ -51,11 +65,9 @@ class TestNvidiaPostTraining(unittest.TestCase):
for key, value in expected_json.items(): for key, value in expected_json.items():
assert call_args[1]["json"][key] == value assert call_args[1]["json"][key] == value
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request") def test_supervised_fine_tune(self):
def test_supervised_fine_tune(self, mock_make_request): """Test the supervised fine-tuning API call."""
"""Test the supervised fine-tuning API call. self.mock_make_request.return_value = {
ToDo: add tests for env variables."""
mock_make_request.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2", "id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"created_at": "2024-12-09T04:06:28.542884", "created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884", "updated_at": "2024-12-09T04:06:28.542884",
@ -125,40 +137,27 @@ class TestNvidiaPostTraining(unittest.TestCase):
optimizer_config=optimizer_config, optimizer_config=optimizer_config,
) )
with warnings.catch_warnings(record=True) as w: with warnings.catch_warnings(record=True):
warnings.simplefilter("always") warnings.simplefilter("always")
training_job = self.llama_stack_client.post_training.supervised_fine_tune( training_job = self.run_async(
job_uuid="1234", self.adapter.supervised_fine_tune(
model="meta-llama/Llama-3.1-8B-Instruct", job_uuid="1234",
checkpoint_dir="", model="meta-llama/Llama-3.1-8B-Instruct",
algorithm_config=algorithm_config, checkpoint_dir="",
training_config=training_config, algorithm_config=algorithm_config,
logger_config={}, training_config=training_config,
hyperparam_search_config={}, logger_config={},
hyperparam_search_config={},
)
) )
# required lora config unsupported parameters warnings
fields = [
"apply_lora_to_mlp",
"rank",
"use_dora",
"lora_attn_modules",
"quantize_base",
"apply_lora_to_output",
]
for field in fields:
assert any(field in str(warning.message) for warning in w)
# check the output is a PostTrainingJob # check the output is a PostTrainingJob
# Note: Although the type is PostTrainingJob: llama_stack.apis.post_training.PostTrainingJob, assert isinstance(training_job, NvidiaPostTrainingJob)
# post llama_stack_client initialization it gets translated to llama_stack_client.types.post_training_job.PostTrainingJob
assert isinstance(training_job, PostTrainingJob)
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2" assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
mock_make_request.assert_called_once() self.mock_make_request.assert_called_once()
self._assert_request( self._assert_request(
mock_make_request, self.mock_make_request,
"POST", "POST",
"/v1/customization/jobs", "/v1/customization/jobs",
expected_json={ expected_json={
@ -188,19 +187,20 @@ class TestNvidiaPostTraining(unittest.TestCase):
) )
# This will raise NotImplementedError since QAT is not supported # This will raise NotImplementedError since QAT is not supported
with self.assertRaises(NotImplementedError): with self.assertRaises(NotImplementedError):
self.llama_stack_client.post_training.supervised_fine_tune( self.run_async(
job_uuid="1234", self.adapter.supervised_fine_tune(
model="meta-llama/Llama-3.1-8B-Instruct", job_uuid="1234",
checkpoint_dir="", model="meta-llama/Llama-3.1-8B-Instruct",
algorithm_config=algorithm_config, checkpoint_dir="",
training_config=training_config, algorithm_config=algorithm_config,
logger_config={}, training_config=training_config,
hyperparam_search_config={}, logger_config={},
hyperparam_search_config={},
)
) )
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request") def test_get_training_job_status(self):
def test_get_job_status(self, mock_make_request): self.mock_make_request.return_value = {
mock_make_request.return_value = {
"created_at": "2024-12-09T04:06:28.580220", "created_at": "2024-12-09T04:06:28.580220",
"updated_at": "2024-12-09T04:21:19.852832", "updated_at": "2024-12-09T04:21:19.852832",
"status": "completed", "status": "completed",
@ -213,10 +213,11 @@ class TestNvidiaPostTraining(unittest.TestCase):
} }
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
status = self.llama_stack_client.post_training.job.status(job_uuid=job_id)
assert isinstance(status, JobStatusResponse) status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id))
assert status.status == "completed"
assert isinstance(status, NvidiaPostTrainingJobStatusResponse)
assert status.status.value == "completed"
assert status.steps_completed == 1210 assert status.steps_completed == 1210
assert status.epochs_completed == 2 assert status.epochs_completed == 2
assert status.percentage_done == 100.0 assert status.percentage_done == 100.0
@ -224,15 +225,14 @@ class TestNvidiaPostTraining(unittest.TestCase):
assert status.train_loss == 1.718016266822815 assert status.train_loss == 1.718016266822815
assert status.val_loss == 1.8661999702453613 assert status.val_loss == 1.8661999702453613
mock_make_request.assert_called_once() self.mock_make_request.assert_called_once()
self._assert_request( self._assert_request(
mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id} self.mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}
) )
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request") def test_get_training_jobs(self):
def test_get_job(self, mock_make_request):
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
mock_make_request.return_value = { self.mock_make_request.return_value = {
"data": [ "data": [
{ {
"id": job_id, "id": job_id,
@ -258,124 +258,38 @@ class TestNvidiaPostTraining(unittest.TestCase):
] ]
} }
jobs = self.llama_stack_client.post_training.job.list() jobs = self.run_async(self.adapter.get_training_jobs())
assert isinstance(jobs, list)
assert len(jobs) == 1
job = jobs[0]
assert job.job_uuid == job_id
assert job.status == "completed"
mock_make_request.assert_called_once() assert isinstance(jobs, ListNvidiaPostTrainingJobs)
assert len(jobs.data) == 1
job = jobs.data[0]
assert job.job_uuid == job_id
assert job.status.value == "completed"
self.mock_make_request.assert_called_once()
self._assert_request( self._assert_request(
mock_make_request, self.mock_make_request,
"GET", "GET",
"/v1/customization/jobs", "/v1/customization/jobs",
expected_params={"page": 1, "page_size": 10, "sort": "created_at"}, expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
) )
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request") def test_cancel_training_job(self):
def test_cancel_job(self, mock_make_request): self.mock_make_request.return_value = {} # Empty response for successful cancellation
mock_make_request.return_value = {} # Empty response for successful cancellation
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
result = self.llama_stack_client.post_training.job.cancel(job_uuid=job_id) result = self.run_async(self.adapter.cancel_training_job(job_uuid=job_id))
assert result is None assert result is None
# Verify the correct request was made self.mock_make_request.assert_called_once()
mock_make_request.assert_called_once()
self._assert_request( self._assert_request(
mock_make_request, "POST", f"/v1/customization/jobs/{job_id}/cancel", expected_params={"job_id": job_id} self.mock_make_request,
"POST",
f"/v1/customization/jobs/{job_id}/cancel",
expected_params={"job_id": job_id},
) )
@pytest.mark.asyncio
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
async def test_async_supervised_fine_tune(self, mock_make_request):
mock_make_request.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "created",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"dataset_id": "sample-basic-test",
"output_model": "default/job-1234",
}
algorithm_config = LoraFinetuningConfig(
alpha=16,
rank=16,
type="LoRA",
adapter_dim=16,
adapter_dropout=0.1,
apply_lora_to_mlp=True,
apply_lora_to_output=True,
)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
training_job = await self.llama_stack_client.post_training.supervised_fine_tune_async(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
assert training_job["job_uuid"] == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
assert training_job["status"] == "created"
mock_make_request.assert_called_once()
call_args = mock_make_request.call_args
assert call_args[1]["method"] == "POST"
assert call_args[1]["path"] == "/v1/customization/jobs"
@pytest.mark.asyncio
@patch("aiohttp.ClientSession.post")
async def test_inference_with_fine_tuned_model(self, mock_post):
mock_response = MagicMock()
mock_response.status = 200
mock_response.json = AsyncMock(
return_value={
"id": "cmpl-123456",
"object": "text_completion",
"created": 1677858242,
"model": "job-1234",
"choices": [
{
"text": "The next GTC will take place in the middle of March, 2023.",
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
}
)
mock_post.return_value.__aenter__.return_value = mock_response
response = await self.llama_stack_client.inference.completion(
content="When is the upcoming GTC event? GTC 2018 attracted over 8,400 attendees. Due to the COVID pandemic of 2020, GTC 2020 was converted to a digital event and drew roughly 59,000 registrants. The 2021 GTC keynote, which was streamed on YouTube on April 12, included a portion that was made with CGI using the Nvidia Omniverse real-time rendering platform. This next GTC will take place in the middle of March, 2023. Answer: ",
stream=False,
model_id="job-1234",
sampling_params={
"max_tokens": 128,
},
)
assert response["model"] == "job-1234"
assert response["choices"][0]["text"] == "The next GTC will take place in the middle of March, 2023."
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()