mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-18 21:29:40 +00:00
Vector store inference api (#598)
# What does this PR do? Moves all the memory providers to use the inference API and improved the memory tests to setup the inference stack correctly and use the embedding models ## Test Plan torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="Llama3.2-3B-Instruct" --embedding-model="sentence-transformers/all-MiniLM-L6-v2" llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384 pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=weaviate" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> --env WEAVIATE_API_KEY=foo --env WEAVIATE_CLUSTER_URL=bar pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=chroma" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>--env CHROMA_HOST=localhost --env CHROMA_PORT=8000 pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=pgvector" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=faiss" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>
This commit is contained in:
parent
db7b26a8c9
commit
4f8b73b9e1
15 changed files with 235 additions and 118 deletions
|
|
@ -6,9 +6,65 @@
|
|||
|
||||
import pytest
|
||||
|
||||
from ..conftest import get_provider_fixture_overrides
|
||||
|
||||
from ..inference.fixtures import INFERENCE_FIXTURES
|
||||
from .fixtures import MEMORY_FIXTURES
|
||||
|
||||
|
||||
DEFAULT_PROVIDER_COMBINATIONS = [
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "meta_reference",
|
||||
"memory": "faiss",
|
||||
},
|
||||
id="meta_reference",
|
||||
marks=pytest.mark.meta_reference,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "ollama",
|
||||
"memory": "pgvector",
|
||||
},
|
||||
id="ollama",
|
||||
marks=pytest.mark.ollama,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "together",
|
||||
"memory": "chroma",
|
||||
},
|
||||
id="chroma",
|
||||
marks=pytest.mark.chroma,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "bedrock",
|
||||
"memory": "qdrant",
|
||||
},
|
||||
id="qdrant",
|
||||
marks=pytest.mark.qdrant,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "fireworks",
|
||||
"memory": "weaviate",
|
||||
},
|
||||
id="weaviate",
|
||||
marks=pytest.mark.weaviate,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--embedding-model",
|
||||
action="store",
|
||||
default=None,
|
||||
help="Specify the embedding model to use for testing",
|
||||
)
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
for fixture_name in MEMORY_FIXTURES:
|
||||
config.addinivalue_line(
|
||||
|
|
@ -18,12 +74,22 @@ def pytest_configure(config):
|
|||
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
if "embedding_model" in metafunc.fixturenames:
|
||||
model = metafunc.config.getoption("--embedding-model")
|
||||
if not model:
|
||||
raise ValueError(
|
||||
"No embedding model specified. Please provide a valid embedding model."
|
||||
)
|
||||
params = [pytest.param(model, id="")]
|
||||
|
||||
metafunc.parametrize("embedding_model", params, indirect=True)
|
||||
if "memory_stack" in metafunc.fixturenames:
|
||||
metafunc.parametrize(
|
||||
"memory_stack",
|
||||
[
|
||||
pytest.param(fixture_name, marks=getattr(pytest.mark, fixture_name))
|
||||
for fixture_name in MEMORY_FIXTURES
|
||||
],
|
||||
indirect=True,
|
||||
available_fixtures = {
|
||||
"inference": INFERENCE_FIXTURES,
|
||||
"memory": MEMORY_FIXTURES,
|
||||
}
|
||||
combinations = (
|
||||
get_provider_fixture_overrides(metafunc.config, available_fixtures)
|
||||
or DEFAULT_PROVIDER_COMBINATIONS
|
||||
)
|
||||
metafunc.parametrize("memory_stack", combinations, indirect=True)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue