mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 20:19:52 +00:00
Vector store inference api (#598)
# What does this PR do? Moves all the memory providers to use the inference API and improved the memory tests to setup the inference stack correctly and use the embedding models ## Test Plan torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="Llama3.2-3B-Instruct" --embedding-model="sentence-transformers/all-MiniLM-L6-v2" llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384 pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=weaviate" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> --env WEAVIATE_API_KEY=foo --env WEAVIATE_CLUSTER_URL=bar pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=chroma" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>--env CHROMA_HOST=localhost --env CHROMA_PORT=8000 pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=pgvector" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=faiss" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>
This commit is contained in:
parent
db7b26a8c9
commit
4f8b73b9e1
15 changed files with 235 additions and 118 deletions
|
|
@ -10,6 +10,8 @@ import tempfile
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.inference import ModelInput, ModelType
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider, RemoteProviderConfig
|
||||
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
|
||||
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
|
||||
|
|
@ -97,14 +99,30 @@ MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"]
|
|||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def memory_stack(request):
|
||||
fixture_name = request.param
|
||||
fixture = request.getfixturevalue(f"memory_{fixture_name}")
|
||||
async def memory_stack(embedding_model, request):
|
||||
fixture_dict = request.param
|
||||
|
||||
providers = {}
|
||||
provider_data = {}
|
||||
for key in ["inference", "memory"]:
|
||||
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
||||
providers[key] = fixture.providers
|
||||
if fixture.provider_data:
|
||||
provider_data.update(fixture.provider_data)
|
||||
|
||||
test_stack = await construct_stack_for_test(
|
||||
[Api.memory],
|
||||
{"memory": fixture.providers},
|
||||
fixture.provider_data,
|
||||
[Api.memory, Api.inference],
|
||||
providers,
|
||||
provider_data,
|
||||
models=[
|
||||
ModelInput(
|
||||
model_id=embedding_model,
|
||||
model_type=ModelType.embedding_model,
|
||||
metadata={
|
||||
"embedding_dimension": get_env_or_fail("EMBEDDING_DIMENSION"),
|
||||
},
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks]
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue