Vector store inference api (#598)

# What does this PR do?
Moves all the memory providers to use the inference API and improved the
memory tests to setup the inference stack correctly and use the
embedding models


## Test Plan
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.2-3B-Instruct"
--embedding-model="sentence-transformers/all-MiniLM-L6-v2"
llama_stack/providers/tests/inference/test_embeddings.py --env
EMBEDDING_DIMENSION=384


pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=weaviate"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> --env
WEAVIATE_API_KEY=foo --env WEAVIATE_CLUSTER_URL=bar
 
pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=chroma"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>--env
CHROMA_HOST=localhost --env CHROMA_PORT=8000

pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=pgvector"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>

pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=faiss"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>
This commit is contained in:
Dinesh Yeduguru 2024-12-12 11:16:54 -08:00 committed by GitHub
parent db7b26a8c9
commit 4f8b73b9e1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 235 additions and 118 deletions

View file

@ -22,28 +22,10 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import Api
log = logging.getLogger(__name__)
ALL_MINILM_L6_V2_DIMENSION = 384
EMBEDDING_MODELS = {}
def get_embedding_model(model: str) -> "SentenceTransformer":
global EMBEDDING_MODELS
loaded_model = EMBEDDING_MODELS.get(model)
if loaded_model is not None:
return loaded_model
log.info(f"Loading sentence transformer for {model}...")
from sentence_transformers import SentenceTransformer
loaded_model = SentenceTransformer(model)
EMBEDDING_MODELS[model] = loaded_model
return loaded_model
def parse_pdf(data: bytes) -> str:
# For PDF and DOC/DOCX files, we can't reliably convert to string
@ -166,12 +148,12 @@ class EmbeddingIndex(ABC):
class BankWithIndex:
bank: VectorMemoryBank
index: EmbeddingIndex
inference_api: Api.inference
async def insert_documents(
self,
documents: List[MemoryBankDocument],
) -> None:
model = get_embedding_model(self.bank.embedding_model)
for doc in documents:
content = await content_from_doc(doc)
chunks = make_overlapped_chunks(
@ -183,7 +165,10 @@ class BankWithIndex:
)
if not chunks:
continue
embeddings = model.encode([x.content for x in chunks]).astype(np.float32)
embeddings_response = await self.inference_api.embeddings(
self.bank.embedding_model, [x.content for x in chunks]
)
embeddings = np.array(embeddings_response.embeddings)
await self.index.add_chunks(chunks, embeddings)
@ -208,6 +193,8 @@ class BankWithIndex:
else:
query_str = _process(query)
model = get_embedding_model(self.bank.embedding_model)
query_vector = model.encode([query_str])[0].astype(np.float32)
embeddings_response = await self.inference_api.embeddings(
self.bank.embedding_model, [query_str]
)
query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32)
return await self.index.query(query_vector, k, score_threshold)