Address review comments for global vector store configuration

- Remove incorrect 'Llama-Stack v2' version reference from documentation
- Move MissingEmbeddingModelError to llama_stack/apis/common/errors.py
- Update docstring references to point to correct exception location
- Clarify default_embedding_dimension behavior (defaults to 384)
- Update test imports and exception handling
This commit is contained in:
skamenan7 2025-07-30 13:40:33 -04:00 committed by Sumanth Kamenani
parent aec1df5a39
commit 501d8330d8
4 changed files with 5 additions and 6 deletions

View file

@ -705,7 +705,7 @@ Precedence rules at runtime:
1. If `embedding_model` is explicitly passed in an API call, that value is used.
2. Otherwise the value in `vector_store_config.default_embedding_model` is used.
3. If neither is available the server will raise **MissingEmbeddingModelError** at store-creation time so mis-configuration is caught early.
3. If neither is available the server will raise `MissingEmbeddingModelError` at store-creation time so mis-configuration is caught early.
#### Environment variables

View file

@ -29,7 +29,7 @@ class VectorStoreConfig(BaseModel):
default_embedding_model
The model *id* the stack should use when an embedding model is
required but not supplied by the API caller. When *None* the
router will raise a :class:`~llama_stack.errors.MissingEmbeddingModelError`.
router will raise a :class:`~llama_stack.apis.common.errors.MissingEmbeddingModelError`.
default_embedding_dimension
Optional integer hint for vector dimension. Routers/providers
may validate that the chosen model emits vectors of this size.

View file

@ -11,6 +11,7 @@ from typing import Any
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.common.errors import MissingEmbeddingModelError
from llama_stack.apis.common.vector_store_config import VectorStoreConfig
from llama_stack.apis.models import ModelType
from llama_stack.apis.vector_io import (
@ -106,9 +107,6 @@ class VectorIORouter(VectorIO):
return cfg.default_embedding_model, cfg.default_embedding_dimension or 384
# 3. error - no default
class MissingEmbeddingModelError(RuntimeError):
pass
raise MissingEmbeddingModelError(
"Failed to create vector store: No embedding model provided. Set vector_store_config.default_embedding_model or supply one in the API call."
)

View file

@ -7,6 +7,7 @@
import pytest
from llama_stack.apis.common.errors import MissingEmbeddingModelError
from llama_stack.apis.models import ModelType
from llama_stack.distribution.routers.vector_io import VectorIORouter
@ -76,5 +77,5 @@ async def test_error_when_no_default():
router = VectorIORouter(routing_table=_DummyRoutingTable())
with pytest.raises(RuntimeError):
with pytest.raises(MissingEmbeddingModelError):
await router._resolve_embedding_model(None)