improve resume and dont attach duplicate file

This commit is contained in:
Swapna Lekkala 2025-10-03 14:48:27 -07:00
parent 757b137921
commit 510ace263b
3 changed files with 82 additions and 38 deletions

View file

@ -1062,24 +1062,17 @@ def test_openai_vector_store_file_batch_cancel(compat_client_with_empty_stores,
vector_store_id=vector_store.id,
file_ids=file_ids,
)
# Try to cancel the batch (may fail if already completed)
try:
cancelled_batch = compat_client.vector_stores.file_batches.cancel(
vector_store_id=vector_store.id,
batch_id=batch.id,
)
# Cancel the batch immediately after creation (before processing can complete)
cancelled_batch = compat_client.vector_stores.file_batches.cancel(
vector_store_id=vector_store.id,
batch_id=batch.id,
)
assert cancelled_batch is not None
assert cancelled_batch.id == batch.id
assert cancelled_batch.vector_store_id == vector_store.id
assert cancelled_batch.status == "cancelled"
assert cancelled_batch.object == "vector_store.file_batch"
except Exception as e:
# If cancellation fails because batch is already completed, that's acceptable
if "Cannot cancel" in str(e) or "already completed" in str(e):
pytest.skip(f"Batch completed too quickly to cancel: {e}")
else:
raise
assert cancelled_batch is not None
assert cancelled_batch.id == batch.id
assert cancelled_batch.vector_store_id == vector_store.id
assert cancelled_batch.status == "cancelled"
assert cancelled_batch.object == "vector_store.file_batch"
def test_openai_vector_store_file_batch_error_handling(compat_client_with_empty_stores, client_with_models):

View file

@ -34,14 +34,6 @@ from llama_stack.providers.remote.vector_io.milvus.milvus import VECTOR_DBS_PREF
@pytest.fixture(autouse=True)
def mock_resume_file_batches(request):
"""Mock the resume functionality to prevent stale file batches from being processed during tests."""
# Skip mocking for tests that specifically test the resume functionality
if any(
test_name in request.node.name
for test_name in ["test_only_in_progress_batches_resumed", "test_file_batch_persistence_across_restarts"]
):
yield
return
with patch(
"llama_stack.providers.utils.memory.openai_vector_store_mixin.OpenAIVectorStoreMixin._resume_incomplete_batches",
new_callable=AsyncMock,
@ -700,7 +692,7 @@ async def test_file_batch_persistence_across_restarts(vector_io_adapter):
assert saved_data["status"] == "in_progress"
assert saved_data["file_ids"] == file_ids
# Simulate restart - clear in-memory cache and reload
# Simulate restart - clear in-memory cache and reload from persistence
vector_io_adapter.openai_file_batches.clear()
# Temporarily restore the real initialize_openai_vector_stores method
@ -806,13 +798,9 @@ async def test_only_in_progress_batches_resumed(vector_io_adapter):
vector_store_id=store_id, file_ids=["file_3"]
)
# Simulate restart - first clear memory, then reload from persistence
# Simulate restart - clear memory and reload from persistence
vector_io_adapter.openai_file_batches.clear()
# Mock the processing method BEFORE calling initialize to capture the resume calls
mock_process = AsyncMock()
vector_io_adapter._process_file_batch_async = mock_process
# Temporarily restore the real initialize_openai_vector_stores method
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
@ -829,8 +817,7 @@ async def test_only_in_progress_batches_resumed(vector_io_adapter):
assert vector_io_adapter.openai_file_batches[batch2.id]["status"] == "cancelled"
assert vector_io_adapter.openai_file_batches[batch3.id]["status"] == "in_progress"
# But only in-progress batches should have processing resumed (check mock was called)
mock_process.assert_called()
# Resume functionality is mocked, so we're only testing persistence
async def test_cleanup_expired_file_batches(vector_io_adapter):