From 51787a93f62a44a910e5727d76e3155ba9c0d960 Mon Sep 17 00:00:00 2001 From: Matthew Farrellee Date: Fri, 11 Jul 2025 10:08:49 -0400 Subject: [PATCH] feat: allow dynamic model registration for ollama inference provider implements query_available_models on OllamaInferenceAdapter --- .../remote/inference/ollama/ollama.py | 60 ++++++++----------- 1 file changed, 26 insertions(+), 34 deletions(-) diff --git a/llama_stack/providers/remote/inference/ollama/ollama.py b/llama_stack/providers/remote/inference/ollama/ollama.py index 010e346bd..125ce7ac8 100644 --- a/llama_stack/providers/remote/inference/ollama/ollama.py +++ b/llama_stack/providers/remote/inference/ollama/ollama.py @@ -19,7 +19,6 @@ from llama_stack.apis.common.content_types import ( InterleavedContentItem, TextContentItem, ) -from llama_stack.apis.common.errors import UnsupportedModelError from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, @@ -54,7 +53,6 @@ from llama_stack.log import get_logger from llama_stack.providers.datatypes import ( HealthResponse, HealthStatus, - ModelsProtocolPrivate, ) from llama_stack.providers.remote.inference.ollama.config import OllamaImplConfig from llama_stack.providers.utils.inference.model_registry import ( @@ -89,10 +87,10 @@ logger = get_logger(name=__name__, category="inference") class OllamaInferenceAdapter( InferenceProvider, - ModelsProtocolPrivate, + ModelRegistryHelper, ): def __init__(self, config: OllamaImplConfig) -> None: - self.register_helper = ModelRegistryHelper(MODEL_ENTRIES) + ModelRegistryHelper.__init__(self, MODEL_ENTRIES) self.url = config.url @property @@ -123,6 +121,27 @@ class OllamaInferenceAdapter( except Exception as e: return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}") + async def query_available_models(self) -> list[str]: + """ + Query Ollama for available models. + + Ollama allows omitting the `:latest` suffix, so we include some-name:latest as some-name and some-name:latest. + + :return: A list of model identifiers (provider_model_ids). + """ + available_models = [] + try: + # we use list() here instead of ps() - + # - ps() only lists running models, not available models + # - models not currently running are run by the ollama server as needed + for m in (await self.client.list()).models: + available_models.append(m.model) + if m.model.endswith(":latest"): + available_models.append(m.model[: -len(":latest")]) + except Exception as e: + logger.warning(f"Failed to query available models from Ollama: {e}") + return available_models + async def shutdown(self) -> None: pass @@ -237,7 +256,7 @@ class OllamaInferenceAdapter( input_dict: dict[str, Any] = {} media_present = request_has_media(request) - llama_model = self.register_helper.get_llama_model(request.model) + llama_model = self.get_llama_model(request.model) if isinstance(request, ChatCompletionRequest): if media_present or not llama_model: contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages] @@ -345,40 +364,13 @@ class OllamaInferenceAdapter( return EmbeddingsResponse(embeddings=embeddings) async def register_model(self, model: Model) -> Model: - try: - model = await self.register_helper.register_model(model) - except ValueError: - pass # Ignore statically unknown model, will check live listing - - if model.provider_resource_id is None: - raise ValueError("Model provider_resource_id cannot be None") - if model.model_type == ModelType.embedding: logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...") # TODO: you should pull here only if the model is not found in a list - response = await self.client.list() - if model.provider_resource_id not in [m.model for m in response.models]: + if model.provider_resource_id not in await self.query_available_models(): await self.client.pull(model.provider_resource_id) - # we use list() here instead of ps() - - # - ps() only lists running models, not available models - # - models not currently running are run by the ollama server as needed - response = await self.client.list() - available_models = [m.model for m in response.models] - provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id) - if provider_resource_id is None: - provider_resource_id = model.provider_resource_id - if provider_resource_id not in available_models: - available_models_latest = [m.model.split(":latest")[0] for m in response.models] - if provider_resource_id in available_models_latest: - logger.warning( - f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'" - ) - return model - raise UnsupportedModelError(model.provider_resource_id, available_models) - model.provider_resource_id = provider_resource_id - - return model + return await ModelRegistryHelper.register_model(self, model) async def openai_embeddings( self,