api refactor

This commit is contained in:
Xi Yan 2024-11-07 13:54:26 -08:00
parent 97dcd5704c
commit 51c20f9c29
8 changed files with 64 additions and 59 deletions

View file

@ -7,11 +7,17 @@ from enum import Enum
from llama_models.llama3.api.datatypes import * # noqa: F403
from .....apis.common.job_types import Job
from .....apis.eval.eval import BenchmarkEvalTaskConfig
from .....apis.eval.eval import (
AppEvalTaskConfig,
BenchmarkEvalTaskConfig,
Eval,
EvalTaskConfig,
EvaluateResponse,
JobStatus,
)
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
from llama_stack.apis.eval_tasks import EvalTaskDef
from llama_stack.apis.inference import Inference
from llama_stack.apis.scoring import Scoring
@ -88,21 +94,21 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
f"Dataset {dataset_id} does not have a correct input schema in {expected_schemas}"
)
async def run_benchmark_eval(
async def run_benchmark(
self,
benchmark_id: str,
eval_task_config: BenchmarkEvalTaskConfig,
benchmark_config: BenchmarkEvalTaskConfig,
) -> Job:
raise NotImplementedError("Benchmark eval is not implemented yet")
async def run_eval(
self,
eval_task_def: EvalTaskDef,
eval_task_config: EvalTaskConfig,
task: EvalTaskDef,
task_config: AppEvalTaskConfig,
) -> Job:
dataset_id = eval_task_def.dataset_id
candidate = eval_task_config.eval_candidate
scoring_functions = eval_task_def.scoring_functions
dataset_id = task.dataset_id
candidate = task_config.eval_candidate
scoring_functions = task.scoring_functions
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
all_rows = await self.datasetio_api.get_rows_paginated(
@ -112,7 +118,7 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
res = await self.evaluate_rows(
input_rows=all_rows.rows,
scoring_functions=scoring_functions,
eval_task_config=eval_task_config,
eval_task_config=task_config,
)
# TODO: currently needs to wait for generation before returning
@ -179,8 +185,21 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
for input_r, generated_r in zip(input_rows, generations)
]
if (
eval_task_config.type == "app"
and eval_task_config.scoring_params is not None
):
scoring_functions_dict = {
scoring_fn_id: eval_task_config.scoring_params.get(scoring_fn_id, None)
for scoring_fn_id in scoring_functions
}
else:
scoring_functions_dict = {
scoring_fn_id: None for scoring_fn_id in scoring_functions
}
score_response = await self.scoring_api.score(
input_rows=score_input_rows, scoring_functions=scoring_functions
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
)
return EvaluateResponse(generations=generations, scores=score_response.results)