Add rerank models and rerank API change

This commit is contained in:
Jiayi 2025-10-16 17:27:38 -07:00
parent f675fdda0f
commit 51c923f096
12 changed files with 215 additions and 28 deletions

View file

@ -3,9 +3,10 @@ description: "Inference
Llama Stack Inference API for generating completions, chat completions, and embeddings.
This API provides the raw interface to the underlying models. Two kinds of models are supported:
This API provides the raw interface to the underlying models. Three kinds of models are supported:
- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search."
- Embedding models: these models generate embeddings to be used for semantic search.
- Rerank models (Experimental): these models reorder the documents based on their relevance to a query."
sidebar_label: Inference
title: Inference
---
@ -18,8 +19,9 @@ Inference
Llama Stack Inference API for generating completions, chat completions, and embeddings.
This API provides the raw interface to the underlying models. Two kinds of models are supported:
This API provides the raw interface to the underlying models. Three kinds of models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search.
- Rerank models (Experimental): these models reorder the documents based on their relevance to a query.
This section contains documentation for all available providers for the **inference** API.

View file

@ -13459,7 +13459,7 @@
},
{
"name": "Inference",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Two kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Three kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.\n- Rerank models (Experimental): these models reorder the documents based on their relevance to a query.",
"x-displayName": "Inference"
},
{

View file

@ -10210,13 +10210,16 @@ tags:
embeddings.
This API provides the raw interface to the underlying models. Two kinds of models
are supported:
This API provides the raw interface to the underlying models. Three kinds of
models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic
search.
- Rerank models (Experimental): these models reorder the documents based on
their relevance to a query.
x-displayName: Inference
- name: Models
description: ''

View file

@ -6859,7 +6859,8 @@
"type": "string",
"enum": [
"llm",
"embedding"
"embedding",
"rerank"
],
"title": "ModelType",
"description": "Enumeration of supported model types in Llama Stack."
@ -13261,7 +13262,7 @@
},
{
"name": "Inference",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Two kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Three kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.\n- Rerank models (Experimental): these models reorder the documents based on their relevance to a query.",
"x-displayName": "Inference"
},
{

View file

@ -5269,6 +5269,7 @@ components:
enum:
- llm
- embedding
- rerank
title: ModelType
description: >-
Enumeration of supported model types in Llama Stack.
@ -10182,13 +10183,16 @@ tags:
embeddings.
This API provides the raw interface to the underlying models. Two kinds of models
are supported:
This API provides the raw interface to the underlying models. Three kinds of
models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic
search.
- Rerank models (Experimental): these models reorder the documents based on
their relevance to a query.
x-displayName: Inference
- name: Inspect
description: >-

View file

@ -8531,7 +8531,8 @@
"type": "string",
"enum": [
"llm",
"embedding"
"embedding",
"rerank"
],
"title": "ModelType",
"description": "Enumeration of supported model types in Llama Stack."
@ -17951,7 +17952,7 @@
},
{
"name": "Inference",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Two kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Three kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.\n- Rerank models (Experimental): these models reorder the documents based on their relevance to a query.",
"x-displayName": "Inference"
},
{

View file

@ -6482,6 +6482,7 @@ components:
enum:
- llm
- embedding
- rerank
title: ModelType
description: >-
Enumeration of supported model types in Llama Stack.
@ -13577,13 +13578,16 @@ tags:
embeddings.
This API provides the raw interface to the underlying models. Two kinds of models
are supported:
This API provides the raw interface to the underlying models. Three kinds of
models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic
search.
- Rerank models (Experimental): these models reorder the documents based on
their relevance to a query.
x-displayName: Inference
- name: Inspect
description: >-

View file

@ -1234,9 +1234,10 @@ class Inference(InferenceProvider):
Llama Stack Inference API for generating completions, chat completions, and embeddings.
This API provides the raw interface to the underlying models. Two kinds of models are supported:
This API provides the raw interface to the underlying models. Three kinds of models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search.
- Rerank models (Experimental): these models reorder the documents based on their relevance to a query.
"""
@webmethod(route="/openai/v1/chat/completions", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)

View file

@ -27,10 +27,12 @@ class ModelType(StrEnum):
"""Enumeration of supported model types in Llama Stack.
:cvar llm: Large language model for text generation and completion
:cvar embedding: Embedding model for converting text to vector representations
:cvar rerank: Reranking model for reordering documents based on their relevance to a query
"""
llm = "llm"
embedding = "embedding"
rerank = "rerank"
@json_schema_type

View file

@ -44,9 +44,14 @@ from llama_stack.apis.inference import (
OpenAIEmbeddingsResponse,
OpenAIMessageParam,
Order,
RerankResponse,
StopReason,
ToolPromptFormat,
)
from llama_stack.apis.inference.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAIChatCompletionContentPartTextParam,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
from llama_stack.log import get_logger
@ -182,6 +187,23 @@ class InferenceRouter(Inference):
raise ModelTypeError(model_id, model.model_type, expected_model_type)
return model
async def rerank(
self,
model: str,
query: str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam,
items: list[str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam],
max_num_results: int | None = None,
) -> RerankResponse:
logger.debug(f"InferenceRouter.rerank: {model}")
model_obj = await self._get_model(model, ModelType.rerank)
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.rerank(
model=model_obj.identifier,
query=query,
items=items,
max_num_results=max_num_results,
)
async def openai_completion(
self,
params: Annotated[OpenAICompletionRequestWithExtraBody, Body(...)],

View file

@ -78,6 +78,10 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
# Format: {"model_id": {"embedding_dimension": 1536, "context_length": 8192}}
embedding_model_metadata: dict[str, dict[str, int]] = {}
# List of rerank model IDs for this provider
# Can be set by subclasses or instances to provide rerank models
rerank_model_list: list[str] = []
# Cache of available models keyed by model ID
# This is set in list_models() and used in check_model_availability()
_model_cache: dict[str, Model] = {}
@ -424,6 +428,13 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
model_type=ModelType.embedding,
metadata=metadata,
)
elif provider_model_id in self.rerank_model_list:
model = Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=provider_model_id,
identifier=provider_model_id,
model_type=ModelType.rerank,
)
else:
model = Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]

View file

@ -38,6 +38,23 @@ class OpenAIMixinWithEmbeddingsImpl(OpenAIMixinImpl):
}
class OpenAIMixinWithRerankImpl(OpenAIMixinImpl):
"""Test implementation with rerank model list"""
rerank_model_list: list[str] = ["rerank-model-1", "rerank-model-2"]
class OpenAIMixinWithEmbeddingsAndRerankImpl(OpenAIMixinImpl):
"""Test implementation with both embedding model metadata and rerank model list"""
embedding_model_metadata: dict[str, dict[str, int]] = {
"text-embedding-3-small": {"embedding_dimension": 1536, "context_length": 8192},
"text-embedding-ada-002": {"embedding_dimension": 1536, "context_length": 8192},
}
rerank_model_list: list[str] = ["rerank-model-1", "rerank-model-2"]
@pytest.fixture
def mixin():
"""Create a test instance of OpenAIMixin with mocked model_store"""
@ -62,6 +79,20 @@ def mixin_with_embeddings():
return OpenAIMixinWithEmbeddingsImpl(config=config)
@pytest.fixture
def mixin_with_rerank():
"""Create a test instance of OpenAIMixin with rerank model list"""
config = RemoteInferenceProviderConfig()
return OpenAIMixinWithRerankImpl(config=config)
@pytest.fixture
def mixin_with_embeddings_and_rerank():
"""Create a test instance of OpenAIMixin with both embedding model metadata and rerank model list"""
config = RemoteInferenceProviderConfig()
return OpenAIMixinWithEmbeddingsAndRerankImpl(config=config)
@pytest.fixture
def mock_models():
"""Create multiple mock OpenAI model objects"""
@ -113,6 +144,19 @@ def mock_client_context():
return _mock_client_context
def _assert_models_match_expected(actual_models, expected_models):
"""Verify the models match expected attributes.
Args:
actual_models: List of models to verify
expected_models: Mapping of model identifier to expected attribute values
"""
for identifier, expected_attrs in expected_models.items():
model = next(m for m in actual_models if m.identifier == identifier)
for attr_name, expected_value in expected_attrs.items():
assert getattr(model, attr_name) == expected_value
class TestOpenAIMixinListModels:
"""Test cases for the list_models method"""
@ -342,21 +386,113 @@ class TestOpenAIMixinEmbeddingModelMetadata:
assert result is not None
assert len(result) == 2
# Find the models in the result
embedding_model = next(m for m in result if m.identifier == "text-embedding-3-small")
llm_model = next(m for m in result if m.identifier == "gpt-4")
expected_models = {
"text-embedding-3-small": {
"model_type": ModelType.embedding,
"metadata": {"embedding_dimension": 1536, "context_length": 8192},
"provider_id": "test-provider",
"provider_resource_id": "text-embedding-3-small",
},
"gpt-4": {
"model_type": ModelType.llm,
"metadata": {},
"provider_id": "test-provider",
"provider_resource_id": "gpt-4",
},
}
# Check embedding model
assert embedding_model.model_type == ModelType.embedding
assert embedding_model.metadata == {"embedding_dimension": 1536, "context_length": 8192}
assert embedding_model.provider_id == "test-provider"
assert embedding_model.provider_resource_id == "text-embedding-3-small"
_assert_models_match_expected(result, expected_models)
# Check LLM model
assert llm_model.model_type == ModelType.llm
assert llm_model.metadata == {} # No metadata for LLMs
assert llm_model.provider_id == "test-provider"
assert llm_model.provider_resource_id == "gpt-4"
class TestOpenAIMixinRerankModelList:
"""Test cases for rerank_model_list attribute functionality"""
async def test_rerank_model_identified(self, mixin_with_rerank, mock_client_context):
"""Test that models in rerank_model_list are correctly identified as rerank models"""
# Create mock models: 1 rerank model and 1 LLM
mock_rerank_model = MagicMock(id="rerank-model-1")
mock_llm_model = MagicMock(id="gpt-4")
mock_models = [mock_rerank_model, mock_llm_model]
mock_client = MagicMock()
async def mock_models_list():
for model in mock_models:
yield model
mock_client.models.list.return_value = mock_models_list()
with mock_client_context(mixin_with_rerank, mock_client):
result = await mixin_with_rerank.list_models()
assert result is not None
assert len(result) == 2
expected_models = {
"rerank-model-1": {
"model_type": ModelType.rerank,
"metadata": {},
"provider_id": "test-provider",
"provider_resource_id": "rerank-model-1",
},
"gpt-4": {
"model_type": ModelType.llm,
"metadata": {},
"provider_id": "test-provider",
"provider_resource_id": "gpt-4",
},
}
_assert_models_match_expected(result, expected_models)
class TestOpenAIMixinMixedModelTypes:
"""Test cases for mixed model types (LLM, embedding, rerank)"""
async def test_mixed_model_types_identification(self, mixin_with_embeddings_and_rerank, mock_client_context):
"""Test that LLM, embedding, and rerank models are correctly identified with proper types and metadata"""
# Create mock models: 1 embedding, 1 rerank, 1 LLM
mock_embedding_model = MagicMock(id="text-embedding-3-small")
mock_rerank_model = MagicMock(id="rerank-model-1")
mock_llm_model = MagicMock(id="gpt-4")
mock_models = [mock_embedding_model, mock_rerank_model, mock_llm_model]
mock_client = MagicMock()
async def mock_models_list():
for model in mock_models:
yield model
mock_client.models.list.return_value = mock_models_list()
with mock_client_context(mixin_with_embeddings_and_rerank, mock_client):
result = await mixin_with_embeddings_and_rerank.list_models()
assert result is not None
assert len(result) == 3
expected_models = {
"text-embedding-3-small": {
"model_type": ModelType.embedding,
"metadata": {"embedding_dimension": 1536, "context_length": 8192},
"provider_id": "test-provider",
"provider_resource_id": "text-embedding-3-small",
},
"rerank-model-1": {
"model_type": ModelType.rerank,
"metadata": {},
"provider_id": "test-provider",
"provider_resource_id": "rerank-model-1",
},
"gpt-4": {
"model_type": ModelType.llm,
"metadata": {},
"provider_id": "test-provider",
"provider_resource_id": "gpt-4",
},
}
_assert_models_match_expected(result, expected_models)
class TestOpenAIMixinAllowedModels: