mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
Implement (chat_)completion for vllm provider
This is the start of an inline inference provider using vllm as a library. Issue #142 Working so far: * `python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream True` * `python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream False` Example: ``` $ python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream False User>hello world, write me a 2 sentence poem about the moon Assistant> The moon glows bright in the midnight sky A beacon of light, ``` I have only tested these models: * `Llama3.1-8B-Instruct` - across 4 GPUs (tensor_parallel_size = 4) * `Llama3.2-1B-Instruct` - on a single GPU (tensor_parallel_size = 1) Signed-off-by: Russell Bryant <rbryant@redhat.com>
This commit is contained in:
parent
08da5d003a
commit
5626e79731
4 changed files with 372 additions and 14 deletions
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,5 +1,35 @@
|
|||
from pydantic import BaseModel
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VLLMConfig(BaseModel):
|
||||
pass
|
||||
"""Configuration for the vLLM inference provider."""
|
||||
|
||||
model: str = Field(
|
||||
default="Llama3.1-8B-Instruct",
|
||||
description="Model descriptor from `llama model list`",
|
||||
)
|
||||
tensor_parallel_size: int = Field(
|
||||
default=1,
|
||||
description="Number of tensor parallel replicas (number of GPUs to use).",
|
||||
)
|
||||
|
||||
@field_validator("model")
|
||||
@classmethod
|
||||
def validate_model(cls, model: str) -> str:
|
||||
permitted_models = supported_inference_models()
|
||||
if model not in permitted_models:
|
||||
model_list = "\n\t".join(permitted_models)
|
||||
raise ValueError(
|
||||
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
|
||||
)
|
||||
return model
|
||||
|
|
|
@ -1,33 +1,356 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.inference.inference import CompletionResponse, CompletionResponseStreamChunk, LogProbConfig, ChatCompletionResponse, ChatCompletionResponseStreamChunk, EmbeddingsResponse
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
CompletionMessage,
|
||||
InterleavedTextMedia,
|
||||
Message,
|
||||
StopReason,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.sampling_params import SamplingParams
|
||||
|
||||
from llama_stack.apis.inference import ChatCompletionRequest, Inference
|
||||
|
||||
from llama_stack.apis.inference.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
LogProbConfig,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.augment_messages import (
|
||||
augment_messages_for_tools,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.routable import RoutableProviderForModels
|
||||
|
||||
from .config import VLLMConfig
|
||||
|
||||
from llama_models.llama3.api.datatypes import InterleavedTextMedia, Message, ToolChoice, ToolDefinition, ToolPromptFormat
|
||||
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class VLLMInferenceImpl(Inference):
|
||||
def _random_uuid() -> str:
|
||||
return str(uuid.uuid4().hex)
|
||||
|
||||
|
||||
def _vllm_sampling_params(sampling_params: Any) -> SamplingParams:
|
||||
"""Convert sampling params to vLLM sampling params."""
|
||||
if sampling_params is None:
|
||||
return SamplingParams()
|
||||
|
||||
# TODO convert what I saw in my first test ... but surely there's more to do here
|
||||
kwargs = {
|
||||
"temperature": sampling_params.temperature,
|
||||
}
|
||||
if sampling_params.top_k >= 1:
|
||||
kwargs["top_k"] = sampling_params.top_k
|
||||
if sampling_params.top_p:
|
||||
kwargs["top_p"] = sampling_params.top_p
|
||||
if sampling_params.max_tokens >= 1:
|
||||
kwargs["max_tokens"] = sampling_params.max_tokens
|
||||
if sampling_params.repetition_penalty > 0:
|
||||
kwargs["repetition_penalty"] = sampling_params.repetition_penalty
|
||||
|
||||
return SamplingParams().from_optional(**kwargs)
|
||||
|
||||
|
||||
class VLLMInferenceImpl(Inference, RoutableProviderForModels):
|
||||
"""Inference implementation for vLLM."""
|
||||
|
||||
HF_MODEL_MAPPINGS = {
|
||||
# TODO: seems like we should be able to build this table dynamically ...
|
||||
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
|
||||
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
|
||||
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
|
||||
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
|
||||
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
|
||||
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
|
||||
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
|
||||
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
|
||||
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
|
||||
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
|
||||
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
|
||||
"Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision",
|
||||
"Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision",
|
||||
"Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct",
|
||||
"Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
"Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct",
|
||||
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
|
||||
"Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4",
|
||||
"Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
|
||||
"Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
|
||||
"Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8",
|
||||
"Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M",
|
||||
"Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B",
|
||||
}
|
||||
|
||||
def __init__(self, config: VLLMConfig):
|
||||
Inference.__init__(self)
|
||||
RoutableProviderForModels.__init__(
|
||||
self,
|
||||
stack_to_provider_models_map=self.HF_MODEL_MAPPINGS,
|
||||
)
|
||||
self.config = config
|
||||
self.engine = None
|
||||
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
self.formatter = ChatFormat(tokenizer)
|
||||
|
||||
async def initialize(self):
|
||||
"""Initialize the vLLM inference adapter."""
|
||||
|
||||
log.info("Initializing vLLM inference adapter")
|
||||
pass
|
||||
|
||||
async def completion(self, model: str, content: InterleavedTextMedia, sampling_params: Any | None = ..., stream: bool | None = False, logprobs: LogProbConfig | None = None) -> CompletionResponse | CompletionResponseStreamChunk:
|
||||
# Disable usage stats reporting. This would be a surprising thing for most
|
||||
# people to find out was on by default.
|
||||
# https://docs.vllm.ai/en/latest/serving/usage_stats.html
|
||||
if "VLLM_NO_USAGE_STATS" not in os.environ:
|
||||
os.environ["VLLM_NO_USAGE_STATS"] = "1"
|
||||
|
||||
hf_model = self.HF_MODEL_MAPPINGS.get(self.config.model)
|
||||
|
||||
# TODO -- there are a ton of options supported here ...
|
||||
engine_args = AsyncEngineArgs()
|
||||
engine_args.model = hf_model
|
||||
# We will need a new config item for this in the future if model support is more broad
|
||||
# than it is today (llama only)
|
||||
engine_args.tokenizer = hf_model
|
||||
engine_args.tensor_parallel_size = self.config.tensor_parallel_size
|
||||
|
||||
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
|
||||
async def shutdown(self):
|
||||
"""Shutdown the vLLM inference adapter."""
|
||||
log.info("Shutting down vLLM inference adapter")
|
||||
if self.engine:
|
||||
self.engine.shutdown_background_loop()
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Any | None = ...,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | CompletionResponseStreamChunk:
|
||||
log.info("vLLM completion")
|
||||
return None
|
||||
messages = [Message(role="user", content=content)]
|
||||
async for result in self.chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
):
|
||||
yield result
|
||||
|
||||
async def chat_completion(self, model: str, messages: list[Message], sampling_params: Any | None = ..., tools: list[ToolDefinition] | None = ..., tool_choice: ToolChoice | None = ..., tool_prompt_format: ToolPromptFormat | None = ..., stream: bool | None = False, logprobs: LogProbConfig | None = None) -> ChatCompletionResponse | ChatCompletionResponseStreamChunk:
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[Message],
|
||||
sampling_params: Any | None = ...,
|
||||
tools: list[ToolDefinition] | None = ...,
|
||||
tool_choice: ToolChoice | None = ...,
|
||||
tool_prompt_format: ToolPromptFormat | None = ...,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> ChatCompletionResponse | ChatCompletionResponseStreamChunk:
|
||||
log.info("vLLM chat completion")
|
||||
return None
|
||||
|
||||
async def embeddings(self, model: str, contents: list[InterleavedTextMedia]) -> EmbeddingsResponse:
|
||||
assert self.engine is not None
|
||||
|
||||
request = ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
log.info("Sampling params: %s", sampling_params)
|
||||
vllm_sampling_params = _vllm_sampling_params(sampling_params)
|
||||
|
||||
messages = augment_messages_for_tools(request)
|
||||
log.info("Augmented messages: %s", messages)
|
||||
prompt = "".join([str(message.content) for message in messages])
|
||||
|
||||
request_id = _random_uuid()
|
||||
results_generator = self.engine.generate(
|
||||
prompt, vllm_sampling_params, request_id
|
||||
)
|
||||
|
||||
if not stream:
|
||||
# Non-streaming case
|
||||
final_output = None
|
||||
stop_reason = None
|
||||
async for request_output in results_generator:
|
||||
final_output = request_output
|
||||
if stop_reason is None and request_output.outputs:
|
||||
reason = request_output.outputs[-1].stop_reason
|
||||
if reason == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
if not stop_reason:
|
||||
stop_reason = StopReason.end_of_message
|
||||
|
||||
if final_output:
|
||||
response = "".join([output.text for output in final_output.outputs])
|
||||
yield ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=response,
|
||||
stop_reason=stop_reason,
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
else:
|
||||
# Streaming case
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta="",
|
||||
)
|
||||
)
|
||||
|
||||
buffer = ""
|
||||
last_chunk = ""
|
||||
ipython = False
|
||||
stop_reason = None
|
||||
|
||||
async for chunk in results_generator:
|
||||
if not chunk.outputs:
|
||||
log.warning("Empty chunk received")
|
||||
continue
|
||||
|
||||
if chunk.outputs[-1].stop_reason:
|
||||
reason = chunk.outputs[-1].stop_reason
|
||||
if stop_reason is None and reason == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif stop_reason is None and reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
|
||||
text = "".join([output.text for output in chunk.outputs])
|
||||
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.started,
|
||||
),
|
||||
)
|
||||
)
|
||||
buffer += text
|
||||
continue
|
||||
|
||||
if ipython:
|
||||
if text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
continue
|
||||
elif text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
continue
|
||||
|
||||
buffer += text
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=delta,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
else:
|
||||
last_chunk_len = len(last_chunk)
|
||||
last_chunk = text
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=text[last_chunk_len:],
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
if not stop_reason:
|
||||
stop_reason = StopReason.end_of_message
|
||||
|
||||
# parse tool calls and report errors
|
||||
message = self.formatter.decode_assistant_message_from_content(
|
||||
buffer, stop_reason
|
||||
)
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.failure,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content=tool_call,
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
async def embeddings(
|
||||
self, model: str, contents: list[InterleavedTextMedia]
|
||||
) -> EmbeddingsResponse:
|
||||
log.info("vLLM embeddings")
|
||||
# TODO
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -106,7 +106,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_id="vllm",
|
||||
provider_type="vllm",
|
||||
pip_packages=[
|
||||
"vllm",
|
||||
],
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue