Merge remote-tracking branch 'origin/main' into agent_rewrite

This commit is contained in:
Ashwin Bharambe 2025-10-15 09:24:26 -07:00
commit 57b3d14895
30 changed files with 869 additions and 408 deletions

View file

@ -0,0 +1,93 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Unit tests for Stack validation functions.
"""
from unittest.mock import AsyncMock
import pytest
from llama_stack.apis.models import Model, ModelType
from llama_stack.core.stack import validate_default_embedding_model
from llama_stack.providers.datatypes import Api
class TestStackValidation:
"""Test Stack validation functions."""
@pytest.mark.parametrize(
"models,should_raise",
[
([], False), # No models
(
[
Model(
identifier="emb1",
model_type=ModelType.embedding,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="emb1",
)
],
False,
), # Single default
(
[
Model(
identifier="emb1",
model_type=ModelType.embedding,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="emb1",
),
Model(
identifier="emb2",
model_type=ModelType.embedding,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="emb2",
),
],
True,
), # Multiple defaults
(
[
Model(
identifier="emb1",
model_type=ModelType.embedding,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="emb1",
),
Model(
identifier="llm1",
model_type=ModelType.llm,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="llm1",
),
],
False,
), # Ignores non-embedding
],
)
async def test_validate_default_embedding_model(self, models, should_raise):
"""Test validation with various model configurations."""
mock_models_impl = AsyncMock()
mock_models_impl.list_models.return_value = models
impls = {Api.models: mock_models_impl}
if should_raise:
with pytest.raises(ValueError, match="Multiple embedding models marked as default_configured=True"):
await validate_default_embedding_model(impls)
else:
await validate_default_embedding_model(impls)
async def test_validate_default_embedding_model_no_models_api(self):
"""Test validation when models API is not available."""
await validate_default_embedding_model({})

View file

@ -144,6 +144,7 @@ async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inf
config=config,
inference_api=mock_inference_api,
files_api=None,
models_api=None,
)
collection_id = f"sqlite_test_collection_{np.random.randint(1e6)}"
await adapter.initialize()
@ -182,6 +183,7 @@ async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding
config=config,
inference_api=mock_inference_api,
files_api=None,
models_api=None,
)
await adapter.initialize()
await adapter.register_vector_db(

View file

@ -11,6 +11,7 @@ import numpy as np
import pytest
from llama_stack.apis.files import Files
from llama_stack.apis.models import Models
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.providers.datatypes import HealthStatus
@ -75,6 +76,12 @@ def mock_files_api():
return mock_api
@pytest.fixture
def mock_models_api():
mock_api = MagicMock(spec=Models)
return mock_api
@pytest.fixture
def faiss_config():
config = MagicMock(spec=FaissVectorIOConfig)
@ -110,7 +117,7 @@ async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_
assert response.chunks[1] == sample_chunks[1]
async def test_health_success():
async def test_health_success(mock_models_api):
"""Test that the health check returns OK status when faiss is working correctly."""
# Create a fresh instance of FaissVectorIOAdapter for testing
config = MagicMock()
@ -119,7 +126,9 @@ async def test_health_success():
with patch("llama_stack.providers.inline.vector_io.faiss.faiss.faiss.IndexFlatL2") as mock_index_flat:
mock_index_flat.return_value = MagicMock()
adapter = FaissVectorIOAdapter(config=config, inference_api=inference_api, files_api=files_api)
adapter = FaissVectorIOAdapter(
config=config, inference_api=inference_api, models_api=mock_models_api, files_api=files_api
)
# Calling the health method directly
response = await adapter.health()
@ -133,7 +142,7 @@ async def test_health_success():
mock_index_flat.assert_called_once_with(128) # VECTOR_DIMENSION is 128
async def test_health_failure():
async def test_health_failure(mock_models_api):
"""Test that the health check returns ERROR status when faiss encounters an error."""
# Create a fresh instance of FaissVectorIOAdapter for testing
config = MagicMock()
@ -143,7 +152,9 @@ async def test_health_failure():
with patch("llama_stack.providers.inline.vector_io.faiss.faiss.faiss.IndexFlatL2") as mock_index_flat:
mock_index_flat.side_effect = Exception("Test error")
adapter = FaissVectorIOAdapter(config=config, inference_api=inference_api, files_api=files_api)
adapter = FaissVectorIOAdapter(
config=config, inference_api=inference_api, models_api=mock_models_api, files_api=files_api
)
# Calling the health method directly
response = await adapter.health()

View file

@ -6,16 +6,18 @@
import json
import time
from unittest.mock import AsyncMock, patch
from unittest.mock import AsyncMock, Mock, patch
import numpy as np
import pytest
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
OpenAICreateVectorStoreRequestWithExtraBody,
QueryChunksResponse,
VectorStoreChunkingStrategyAuto,
VectorStoreFileObject,
@ -961,3 +963,264 @@ async def test_max_concurrent_files_per_batch(vector_io_adapter):
assert batch.status == "in_progress"
assert batch.file_counts.total == 8
assert batch.file_counts.in_progress == 8
async def test_get_default_embedding_model_success(vector_io_adapter):
"""Test successful default embedding model detection."""
# Mock models API with a default model
mock_models_api = Mock()
mock_models_api.list_models = AsyncMock(
return_value=Mock(
data=[
Model(
identifier="nomic-embed-text-v1.5",
model_type=ModelType.embedding,
provider_id="test-provider",
metadata={
"embedding_dimension": 768,
"default_configured": True,
},
)
]
)
)
vector_io_adapter.models_api = mock_models_api
result = await vector_io_adapter._get_default_embedding_model_and_dimension()
assert result is not None
model_id, dimension = result
assert model_id == "nomic-embed-text-v1.5"
assert dimension == 768
async def test_get_default_embedding_model_multiple_defaults_error(vector_io_adapter):
"""Test error when multiple models are marked as default."""
mock_models_api = Mock()
mock_models_api.list_models = AsyncMock(
return_value=Mock(
data=[
Model(
identifier="model1",
model_type=ModelType.embedding,
provider_id="test-provider",
metadata={"embedding_dimension": 768, "default_configured": True},
),
Model(
identifier="model2",
model_type=ModelType.embedding,
provider_id="test-provider",
metadata={"embedding_dimension": 512, "default_configured": True},
),
]
)
)
vector_io_adapter.models_api = mock_models_api
with pytest.raises(ValueError, match="Multiple embedding models marked as default_configured=True"):
await vector_io_adapter._get_default_embedding_model_and_dimension()
async def test_openai_create_vector_store_uses_default_model(vector_io_adapter):
"""Test that vector store creation uses default embedding model when none specified."""
# Mock models API and dependencies
mock_models_api = Mock()
mock_models_api.list_models = AsyncMock(
return_value=Mock(
data=[
Model(
identifier="default-model",
model_type=ModelType.embedding,
provider_id="test-provider",
metadata={"embedding_dimension": 512, "default_configured": True},
)
]
)
)
vector_io_adapter.models_api = mock_models_api
vector_io_adapter.register_vector_db = AsyncMock()
vector_io_adapter.__provider_id__ = "test-provider"
# Create vector store without specifying embedding model
params = OpenAICreateVectorStoreRequestWithExtraBody(name="test-store")
result = await vector_io_adapter.openai_create_vector_store(params)
# Verify the vector store was created with default model
assert result.name == "test-store"
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
assert call_args.embedding_model == "default-model"
assert call_args.embedding_dimension == 512
async def test_embedding_config_from_metadata(vector_io_adapter):
"""Test that embedding configuration is correctly extracted from metadata."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
# Test with embedding config in metadata
params = OpenAICreateVectorStoreRequestWithExtraBody(
name="test_store",
metadata={
"embedding_model": "test-embedding-model",
"embedding_dimension": "512",
},
model_extra={},
)
await vector_io_adapter.openai_create_vector_store(params)
# Verify VectorDB was registered with correct embedding config from metadata
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
assert call_args.embedding_model == "test-embedding-model"
assert call_args.embedding_dimension == 512
async def test_embedding_config_from_extra_body(vector_io_adapter):
"""Test that embedding configuration is correctly extracted from extra_body when metadata is empty."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
# Test with embedding config in extra_body only (metadata has no embedding_model)
params = OpenAICreateVectorStoreRequestWithExtraBody(
name="test_store",
metadata={}, # Empty metadata to ensure extra_body is used
**{
"embedding_model": "extra-body-model",
"embedding_dimension": 1024,
},
)
await vector_io_adapter.openai_create_vector_store(params)
# Verify VectorDB was registered with correct embedding config from extra_body
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
assert call_args.embedding_model == "extra-body-model"
assert call_args.embedding_dimension == 1024
async def test_embedding_config_consistency_check_passes(vector_io_adapter):
"""Test that consistent embedding config in both metadata and extra_body passes validation."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
# Test with consistent embedding config in both metadata and extra_body
params = OpenAICreateVectorStoreRequestWithExtraBody(
name="test_store",
metadata={
"embedding_model": "consistent-model",
"embedding_dimension": "768",
},
**{
"embedding_model": "consistent-model",
"embedding_dimension": 768,
},
)
await vector_io_adapter.openai_create_vector_store(params)
# Should not raise any error and use metadata config
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
assert call_args.embedding_model == "consistent-model"
assert call_args.embedding_dimension == 768
async def test_embedding_config_inconsistency_errors(vector_io_adapter):
"""Test that inconsistent embedding config between metadata and extra_body raises errors."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
# Test with inconsistent embedding model
params = OpenAICreateVectorStoreRequestWithExtraBody(
name="test_store",
metadata={
"embedding_model": "metadata-model",
"embedding_dimension": "768",
},
**{
"embedding_model": "extra-body-model",
"embedding_dimension": 768,
},
)
with pytest.raises(ValueError, match="Embedding model inconsistent between metadata"):
await vector_io_adapter.openai_create_vector_store(params)
# Reset mock for second test
vector_io_adapter.register_vector_db.reset_mock()
# Test with inconsistent embedding dimension
params = OpenAICreateVectorStoreRequestWithExtraBody(
name="test_store",
metadata={
"embedding_model": "same-model",
"embedding_dimension": "512",
},
**{
"embedding_model": "same-model",
"embedding_dimension": 1024,
},
)
with pytest.raises(ValueError, match="Embedding dimension inconsistent between metadata"):
await vector_io_adapter.openai_create_vector_store(params)
async def test_embedding_config_defaults_when_missing(vector_io_adapter):
"""Test that embedding dimension defaults to 768 when not provided."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
# Test with only embedding model, no dimension (metadata empty to use extra_body)
params = OpenAICreateVectorStoreRequestWithExtraBody(
name="test_store",
metadata={}, # Empty metadata to ensure extra_body is used
**{
"embedding_model": "model-without-dimension",
},
)
await vector_io_adapter.openai_create_vector_store(params)
# Should default to 768 dimensions
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
assert call_args.embedding_model == "model-without-dimension"
assert call_args.embedding_dimension == 768
async def test_embedding_config_required_model_missing(vector_io_adapter):
"""Test that missing embedding model raises error."""
# Mock register_vector_db to avoid actual registration
vector_io_adapter.register_vector_db = AsyncMock()
# Set provider_id attribute for the adapter
vector_io_adapter.__provider_id__ = "test_provider"
# Mock the default model lookup to return None (no default model available)
vector_io_adapter._get_default_embedding_model_and_dimension = AsyncMock(return_value=None)
# Test with no embedding model provided
params = OpenAICreateVectorStoreRequestWithExtraBody(name="test_store", metadata={})
with pytest.raises(ValueError, match="embedding_model is required in extra_body when creating a vector store"):
await vector_io_adapter.openai_create_vector_store(params)