Test responses queries of empty vector stores

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-06-11 11:42:07 -04:00
parent de84ee0748
commit 57eccf023d

View file

@ -24,6 +24,33 @@ from tests.verifications.openai_api.fixtures.load import load_test_cases
responses_test_cases = load_test_cases("responses")
def _new_vector_store(openai_client, name):
# Ensure we don't reuse an existing vector store
vector_stores = openai_client.vector_stores.list()
for vector_store in vector_stores:
if vector_store.name == name:
openai_client.vector_stores.delete(vector_store_id=vector_store.id)
# Create a new vector store
vector_store = openai_client.vector_stores.create(
name=name,
)
return vector_store
def _new_file(openai_client, name, content, tmp_path):
# Ensure we don't reuse an existing file
files = openai_client.files.list()
for file in files:
if file.filename == name:
openai_client.files.delete(file_id=file.id)
# Upload a text file with our document content
file_path = tmp_path / name
file_path.write_text(content)
return openai_client.files.create(file=open(file_path, "rb"), purpose="assistants")
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_basic"]["test_params"]["case"],
@ -264,8 +291,8 @@ def test_response_non_streaming_web_search(request, openai_client, model, provid
responses_test_cases["test_response_file_search"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_file_search(
base_url, request, openai_client, model, provider, verification_config, tmp_path, case
def test_response_non_streaming_file_search_simple_text(
request, openai_client, model, provider, verification_config, tmp_path, case
):
if isinstance(openai_client, LlamaStackAsLibraryClient):
pytest.skip("Responses API file search is not yet supported in library client.")
@ -274,33 +301,10 @@ def test_response_non_streaming_file_search(
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
# Ensure we don't reuse an existing vector store
vector_stores = openai_client.vector_stores.list()
for vector_store in vector_stores:
if vector_store.name == "test_vector_store":
openai_client.vector_stores.delete(vector_store_id=vector_store.id)
vector_store = _new_vector_store(openai_client, "test_vector_store")
# Create a new vector store
vector_store = openai_client.vector_stores.create(
name="test_vector_store",
# extra_body={
# "embedding_model": "all-MiniLM-L6-v2",
# "embedding_dimension": 384,
# },
)
# Ensure we don't reuse an existing file
file_name = "test_response_non_streaming_file_search.txt"
files = openai_client.files.list()
for file in files:
if file.filename == file_name:
openai_client.files.delete(file_id=file.id)
# Upload a text file with our document content
doc_content = "Llama 4 Maverick has 128 experts"
file_path = tmp_path / file_name
file_path.write_text(doc_content)
file_response = openai_client.files.create(file=open(file_path, "rb"), purpose="assistants")
file_content = "Llama 4 Maverick has 128 experts"
file_response = _new_file(openai_client, "test_response_non_streaming_file_search.txt", file_content, tmp_path)
# Attach our file to the vector store
file_attach_response = openai_client.vector_stores.files.create(
@ -324,7 +328,7 @@ def test_response_non_streaming_file_search(
if tool["type"] == "file_search":
tool["vector_store_ids"] = [vector_store.id]
# Create the response request, which should query our document
# Create the response request, which should query our vector store
response = openai_client.responses.create(
model=model,
input=case["input"],
@ -339,7 +343,7 @@ def test_response_non_streaming_file_search(
assert response.output[0].status == "completed"
assert response.output[0].queries # ensure it's some non-empty list
assert response.output[0].results
assert response.output[0].results[0].text == doc_content
assert response.output[0].results[0].text == file_content
assert response.output[0].results[0].score > 0
# Verify the assistant response that summarizes the results
@ -350,6 +354,52 @@ def test_response_non_streaming_file_search(
assert case["output"].lower() in response.output_text.lower().strip()
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_file_search"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_file_search_empty_vector_store(
request, openai_client, model, provider, verification_config, tmp_path, case
):
if isinstance(openai_client, LlamaStackAsLibraryClient):
pytest.skip("Responses API file search is not yet supported in library client.")
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
vector_store = _new_vector_store(openai_client, "test_vector_store")
# Update our tools with the right vector store id
tools = case["tools"]
for tool in tools:
if tool["type"] == "file_search":
tool["vector_store_ids"] = [vector_store.id]
# Create the response request, which should query our vector store
response = openai_client.responses.create(
model=model,
input=case["input"],
tools=case["tools"],
stream=False,
include=["file_search_call.results"],
)
# Verify the file_search_tool was called
assert len(response.output) > 1
assert response.output[0].type == "file_search_call"
assert response.output[0].status == "completed"
assert response.output[0].queries # ensure it's some non-empty list
assert not response.output[0].results # ensure we don't get any results
# Verify the assistant response that summarizes the results
assert response.output[1].type == "message"
assert response.output[1].status == "completed"
assert response.output[1].role == "assistant"
assert len(response.output[1].content) > 0
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_mcp_tool"]["test_params"]["case"],