mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-01 20:18:50 +00:00
Test responses queries of empty vector stores
Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
de84ee0748
commit
57eccf023d
1 changed files with 80 additions and 30 deletions
|
@ -24,6 +24,33 @@ from tests.verifications.openai_api.fixtures.load import load_test_cases
|
|||
responses_test_cases = load_test_cases("responses")
|
||||
|
||||
|
||||
def _new_vector_store(openai_client, name):
|
||||
# Ensure we don't reuse an existing vector store
|
||||
vector_stores = openai_client.vector_stores.list()
|
||||
for vector_store in vector_stores:
|
||||
if vector_store.name == name:
|
||||
openai_client.vector_stores.delete(vector_store_id=vector_store.id)
|
||||
|
||||
# Create a new vector store
|
||||
vector_store = openai_client.vector_stores.create(
|
||||
name=name,
|
||||
)
|
||||
return vector_store
|
||||
|
||||
|
||||
def _new_file(openai_client, name, content, tmp_path):
|
||||
# Ensure we don't reuse an existing file
|
||||
files = openai_client.files.list()
|
||||
for file in files:
|
||||
if file.filename == name:
|
||||
openai_client.files.delete(file_id=file.id)
|
||||
|
||||
# Upload a text file with our document content
|
||||
file_path = tmp_path / name
|
||||
file_path.write_text(content)
|
||||
return openai_client.files.create(file=open(file_path, "rb"), purpose="assistants")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"case",
|
||||
responses_test_cases["test_response_basic"]["test_params"]["case"],
|
||||
|
@ -264,8 +291,8 @@ def test_response_non_streaming_web_search(request, openai_client, model, provid
|
|||
responses_test_cases["test_response_file_search"]["test_params"]["case"],
|
||||
ids=case_id_generator,
|
||||
)
|
||||
def test_response_non_streaming_file_search(
|
||||
base_url, request, openai_client, model, provider, verification_config, tmp_path, case
|
||||
def test_response_non_streaming_file_search_simple_text(
|
||||
request, openai_client, model, provider, verification_config, tmp_path, case
|
||||
):
|
||||
if isinstance(openai_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Responses API file search is not yet supported in library client.")
|
||||
|
@ -274,33 +301,10 @@ def test_response_non_streaming_file_search(
|
|||
if should_skip_test(verification_config, provider, model, test_name_base):
|
||||
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
|
||||
|
||||
# Ensure we don't reuse an existing vector store
|
||||
vector_stores = openai_client.vector_stores.list()
|
||||
for vector_store in vector_stores:
|
||||
if vector_store.name == "test_vector_store":
|
||||
openai_client.vector_stores.delete(vector_store_id=vector_store.id)
|
||||
vector_store = _new_vector_store(openai_client, "test_vector_store")
|
||||
|
||||
# Create a new vector store
|
||||
vector_store = openai_client.vector_stores.create(
|
||||
name="test_vector_store",
|
||||
# extra_body={
|
||||
# "embedding_model": "all-MiniLM-L6-v2",
|
||||
# "embedding_dimension": 384,
|
||||
# },
|
||||
)
|
||||
|
||||
# Ensure we don't reuse an existing file
|
||||
file_name = "test_response_non_streaming_file_search.txt"
|
||||
files = openai_client.files.list()
|
||||
for file in files:
|
||||
if file.filename == file_name:
|
||||
openai_client.files.delete(file_id=file.id)
|
||||
|
||||
# Upload a text file with our document content
|
||||
doc_content = "Llama 4 Maverick has 128 experts"
|
||||
file_path = tmp_path / file_name
|
||||
file_path.write_text(doc_content)
|
||||
file_response = openai_client.files.create(file=open(file_path, "rb"), purpose="assistants")
|
||||
file_content = "Llama 4 Maverick has 128 experts"
|
||||
file_response = _new_file(openai_client, "test_response_non_streaming_file_search.txt", file_content, tmp_path)
|
||||
|
||||
# Attach our file to the vector store
|
||||
file_attach_response = openai_client.vector_stores.files.create(
|
||||
|
@ -324,7 +328,7 @@ def test_response_non_streaming_file_search(
|
|||
if tool["type"] == "file_search":
|
||||
tool["vector_store_ids"] = [vector_store.id]
|
||||
|
||||
# Create the response request, which should query our document
|
||||
# Create the response request, which should query our vector store
|
||||
response = openai_client.responses.create(
|
||||
model=model,
|
||||
input=case["input"],
|
||||
|
@ -339,7 +343,7 @@ def test_response_non_streaming_file_search(
|
|||
assert response.output[0].status == "completed"
|
||||
assert response.output[0].queries # ensure it's some non-empty list
|
||||
assert response.output[0].results
|
||||
assert response.output[0].results[0].text == doc_content
|
||||
assert response.output[0].results[0].text == file_content
|
||||
assert response.output[0].results[0].score > 0
|
||||
|
||||
# Verify the assistant response that summarizes the results
|
||||
|
@ -350,6 +354,52 @@ def test_response_non_streaming_file_search(
|
|||
assert case["output"].lower() in response.output_text.lower().strip()
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"case",
|
||||
responses_test_cases["test_response_file_search"]["test_params"]["case"],
|
||||
ids=case_id_generator,
|
||||
)
|
||||
def test_response_non_streaming_file_search_empty_vector_store(
|
||||
request, openai_client, model, provider, verification_config, tmp_path, case
|
||||
):
|
||||
if isinstance(openai_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Responses API file search is not yet supported in library client.")
|
||||
|
||||
test_name_base = get_base_test_name(request)
|
||||
if should_skip_test(verification_config, provider, model, test_name_base):
|
||||
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
|
||||
|
||||
vector_store = _new_vector_store(openai_client, "test_vector_store")
|
||||
|
||||
# Update our tools with the right vector store id
|
||||
tools = case["tools"]
|
||||
for tool in tools:
|
||||
if tool["type"] == "file_search":
|
||||
tool["vector_store_ids"] = [vector_store.id]
|
||||
|
||||
# Create the response request, which should query our vector store
|
||||
response = openai_client.responses.create(
|
||||
model=model,
|
||||
input=case["input"],
|
||||
tools=case["tools"],
|
||||
stream=False,
|
||||
include=["file_search_call.results"],
|
||||
)
|
||||
|
||||
# Verify the file_search_tool was called
|
||||
assert len(response.output) > 1
|
||||
assert response.output[0].type == "file_search_call"
|
||||
assert response.output[0].status == "completed"
|
||||
assert response.output[0].queries # ensure it's some non-empty list
|
||||
assert not response.output[0].results # ensure we don't get any results
|
||||
|
||||
# Verify the assistant response that summarizes the results
|
||||
assert response.output[1].type == "message"
|
||||
assert response.output[1].status == "completed"
|
||||
assert response.output[1].role == "assistant"
|
||||
assert len(response.output[1].content) > 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"case",
|
||||
responses_test_cases["test_response_mcp_tool"]["test_params"]["case"],
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue