feat(responses)!: add support for OpenAI compatible Prompts in Responses API

This commit is contained in:
r3v5 2025-09-21 13:52:55 +01:00
parent bd3c473208
commit 59169bfd25
No known key found for this signature in database
GPG key ID: C7611ACB4FECAD54
33 changed files with 1667 additions and 34 deletions

View file

@ -5574,11 +5574,44 @@ components:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentText'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentImage'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentFile'
discriminator:
propertyName: type
mapping:
input_text: '#/components/schemas/OpenAIResponseInputMessageContentText'
input_image: '#/components/schemas/OpenAIResponseInputMessageContentImage'
input_file: '#/components/schemas/OpenAIResponseInputMessageContentFile'
OpenAIResponseInputMessageContentFile:
type: object
properties:
type:
type: string
const: input_file
default: input_file
description: >-
The type of the input item. Always `input_file`.
file_data:
type: string
description: >-
The data of the file to be sent to the model.
file_id:
type: string
description: >-
(Optional) The ID of the file to be sent to the model.
file_url:
type: string
description: >-
The URL of the file to be sent to the model.
filename:
type: string
description: >-
The name of the file to be sent to the model.
additionalProperties: false
required:
- type
title: OpenAIResponseInputMessageContentFile
description: >-
File content for input messages in OpenAI response format.
OpenAIResponseInputMessageContentImage:
type: object
properties:
@ -5599,6 +5632,10 @@ components:
default: input_image
description: >-
Content type identifier, always "input_image"
file_id:
type: string
description: >-
(Optional) The ID of the file to be sent to the model.
image_url:
type: string
description: (Optional) URL of the image content
@ -6998,6 +7035,10 @@ components:
type: string
description: >-
(Optional) ID of the previous response in a conversation
prompt:
$ref: '#/components/schemas/Prompt'
description: >-
(Optional) Prompt object with ID, version, and variables
status:
type: string
description: >-
@ -7315,6 +7356,29 @@ components:
title: OpenAIResponseInputToolMCP
description: >-
Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
OpenAIResponsePromptParam:
type: object
properties:
id:
type: string
description: Unique identifier of the prompt template
variables:
type: object
additionalProperties:
$ref: '#/components/schemas/OpenAIResponseInputMessageContent'
description: >-
Dictionary of variable names to OpenAIResponseInputMessageContent structure
for template substitution
version:
type: string
description: >-
Version number of the prompt to use (defaults to latest if not specified)
additionalProperties: false
required:
- id
title: OpenAIResponsePromptParam
description: >-
Prompt object that is used for OpenAI responses.
CreateOpenaiResponseRequest:
type: object
properties:
@ -7328,6 +7392,10 @@ components:
model:
type: string
description: The underlying LLM used for completions.
prompt:
$ref: '#/components/schemas/OpenAIResponsePromptParam'
description: >-
Prompt object with ID, version, and variables.
instructions:
type: string
previous_response_id:
@ -7405,6 +7473,10 @@ components:
type: string
description: >-
(Optional) ID of the previous response in a conversation
prompt:
$ref: '#/components/schemas/Prompt'
description: >-
(Optional) Prompt object with ID, version, and variables
status:
type: string
description: >-

View file

@ -8593,16 +8593,53 @@
},
{
"$ref": "#/components/schemas/OpenAIResponseInputMessageContentImage"
},
{
"$ref": "#/components/schemas/OpenAIResponseInputMessageContentFile"
}
],
"discriminator": {
"propertyName": "type",
"mapping": {
"input_text": "#/components/schemas/OpenAIResponseInputMessageContentText",
"input_image": "#/components/schemas/OpenAIResponseInputMessageContentImage"
"input_image": "#/components/schemas/OpenAIResponseInputMessageContentImage",
"input_file": "#/components/schemas/OpenAIResponseInputMessageContentFile"
}
}
},
"OpenAIResponseInputMessageContentFile": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "input_file",
"default": "input_file",
"description": "The type of the input item. Always `input_file`."
},
"file_data": {
"type": "string",
"description": "The data of the file to be sent to the model."
},
"file_id": {
"type": "string",
"description": "(Optional) The ID of the file to be sent to the model."
},
"file_url": {
"type": "string",
"description": "The URL of the file to be sent to the model."
},
"filename": {
"type": "string",
"description": "The name of the file to be sent to the model."
}
},
"additionalProperties": false,
"required": [
"type"
],
"title": "OpenAIResponseInputMessageContentFile",
"description": "File content for input messages in OpenAI response format."
},
"OpenAIResponseInputMessageContentImage": {
"type": "object",
"properties": {
@ -8630,6 +8667,10 @@
"default": "input_image",
"description": "Content type identifier, always \"input_image\""
},
"file_id": {
"type": "string",
"description": "(Optional) The ID of the file to be sent to the model."
},
"image_url": {
"type": "string",
"description": "(Optional) URL of the image content"
@ -8993,6 +9034,10 @@
"type": "string",
"description": "(Optional) ID of the previous response in a conversation"
},
"prompt": {
"$ref": "#/components/schemas/Prompt",
"description": "(Optional) Prompt object with ID, version, and variables"
},
"status": {
"type": "string",
"description": "Current status of the response generation"
@ -9610,6 +9655,44 @@
"title": "OpenAIResponseUsage",
"description": "Usage information for OpenAI response."
},
"Prompt": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The system prompt text with variable placeholders. Variables are only supported when using the Responses API."
},
"version": {
"type": "integer",
"description": "Version (integer starting at 1, incremented on save)"
},
"prompt_id": {
"type": "string",
"description": "Unique identifier formatted as 'pmpt_<48-digit-hash>'"
},
"variables": {
"type": "array",
"items": {
"type": "string"
},
"description": "List of prompt variable names that can be used in the prompt template"
},
"is_default": {
"type": "boolean",
"default": false,
"description": "Boolean indicating whether this version is the default version for this prompt"
}
},
"additionalProperties": false,
"required": [
"version",
"prompt_id",
"variables",
"is_default"
],
"title": "Prompt",
"description": "A prompt resource representing a stored OpenAI Compatible prompt template in Llama Stack."
},
"ResponseGuardrailSpec": {
"type": "object",
"properties": {
@ -9766,6 +9849,32 @@
"title": "OpenAIResponseInputToolMCP",
"description": "Model Context Protocol (MCP) tool configuration for OpenAI response inputs."
},
"OpenAIResponsePromptParam": {
"type": "object",
"properties": {
"id": {
"type": "string",
"description": "Unique identifier of the prompt template"
},
"variables": {
"type": "object",
"additionalProperties": {
"$ref": "#/components/schemas/OpenAIResponseInputMessageContent"
},
"description": "Dictionary of variable names to OpenAIResponseInputMessageContent structure for template substitution"
},
"version": {
"type": "string",
"description": "Version number of the prompt to use (defaults to latest if not specified)"
}
},
"additionalProperties": false,
"required": [
"id"
],
"title": "OpenAIResponsePromptParam",
"description": "Prompt object that is used for OpenAI responses."
},
"CreateOpenaiResponseRequest": {
"type": "object",
"properties": {
@ -9787,6 +9896,10 @@
"type": "string",
"description": "The underlying LLM used for completions."
},
"prompt": {
"$ref": "#/components/schemas/OpenAIResponsePromptParam",
"description": "Prompt object with ID, version, and variables."
},
"instructions": {
"type": "string"
},
@ -9875,6 +9988,10 @@
"type": "string",
"description": "(Optional) ID of the previous response in a conversation"
},
"prompt": {
"$ref": "#/components/schemas/Prompt",
"description": "(Optional) Prompt object with ID, version, and variables"
},
"status": {
"type": "string",
"description": "Current status of the response generation"

View file

@ -6409,11 +6409,44 @@ components:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentText'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentImage'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentFile'
discriminator:
propertyName: type
mapping:
input_text: '#/components/schemas/OpenAIResponseInputMessageContentText'
input_image: '#/components/schemas/OpenAIResponseInputMessageContentImage'
input_file: '#/components/schemas/OpenAIResponseInputMessageContentFile'
OpenAIResponseInputMessageContentFile:
type: object
properties:
type:
type: string
const: input_file
default: input_file
description: >-
The type of the input item. Always `input_file`.
file_data:
type: string
description: >-
The data of the file to be sent to the model.
file_id:
type: string
description: >-
(Optional) The ID of the file to be sent to the model.
file_url:
type: string
description: >-
The URL of the file to be sent to the model.
filename:
type: string
description: >-
The name of the file to be sent to the model.
additionalProperties: false
required:
- type
title: OpenAIResponseInputMessageContentFile
description: >-
File content for input messages in OpenAI response format.
OpenAIResponseInputMessageContentImage:
type: object
properties:
@ -6434,6 +6467,10 @@ components:
default: input_image
description: >-
Content type identifier, always "input_image"
file_id:
type: string
description: >-
(Optional) The ID of the file to be sent to the model.
image_url:
type: string
description: (Optional) URL of the image content
@ -6704,6 +6741,10 @@ components:
type: string
description: >-
(Optional) ID of the previous response in a conversation
prompt:
$ref: '#/components/schemas/Prompt'
description: >-
(Optional) Prompt object with ID, version, and variables
status:
type: string
description: >-
@ -7181,6 +7222,44 @@ components:
- total_tokens
title: OpenAIResponseUsage
description: Usage information for OpenAI response.
Prompt:
type: object
properties:
prompt:
type: string
description: >-
The system prompt text with variable placeholders. Variables are only
supported when using the Responses API.
version:
type: integer
description: >-
Version (integer starting at 1, incremented on save)
prompt_id:
type: string
description: >-
Unique identifier formatted as 'pmpt_<48-digit-hash>'
variables:
type: array
items:
type: string
description: >-
List of prompt variable names that can be used in the prompt template
is_default:
type: boolean
default: false
description: >-
Boolean indicating whether this version is the default version for this
prompt
additionalProperties: false
required:
- version
- prompt_id
- variables
- is_default
title: Prompt
description: >-
A prompt resource representing a stored OpenAI Compatible prompt template
in Llama Stack.
ResponseGuardrailSpec:
type: object
properties:
@ -7287,6 +7366,29 @@ components:
title: OpenAIResponseInputToolMCP
description: >-
Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
OpenAIResponsePromptParam:
type: object
properties:
id:
type: string
description: Unique identifier of the prompt template
variables:
type: object
additionalProperties:
$ref: '#/components/schemas/OpenAIResponseInputMessageContent'
description: >-
Dictionary of variable names to OpenAIResponseInputMessageContent structure
for template substitution
version:
type: string
description: >-
Version number of the prompt to use (defaults to latest if not specified)
additionalProperties: false
required:
- id
title: OpenAIResponsePromptParam
description: >-
Prompt object that is used for OpenAI responses.
CreateOpenaiResponseRequest:
type: object
properties:
@ -7300,6 +7402,10 @@ components:
model:
type: string
description: The underlying LLM used for completions.
prompt:
$ref: '#/components/schemas/OpenAIResponsePromptParam'
description: >-
Prompt object with ID, version, and variables.
instructions:
type: string
previous_response_id:
@ -7377,6 +7483,10 @@ components:
type: string
description: >-
(Optional) ID of the previous response in a conversation
prompt:
$ref: '#/components/schemas/Prompt'
description: >-
(Optional) Prompt object with ID, version, and variables
status:
type: string
description: >-

View file

@ -5729,16 +5729,53 @@
},
{
"$ref": "#/components/schemas/OpenAIResponseInputMessageContentImage"
},
{
"$ref": "#/components/schemas/OpenAIResponseInputMessageContentFile"
}
],
"discriminator": {
"propertyName": "type",
"mapping": {
"input_text": "#/components/schemas/OpenAIResponseInputMessageContentText",
"input_image": "#/components/schemas/OpenAIResponseInputMessageContentImage"
"input_image": "#/components/schemas/OpenAIResponseInputMessageContentImage",
"input_file": "#/components/schemas/OpenAIResponseInputMessageContentFile"
}
}
},
"OpenAIResponseInputMessageContentFile": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "input_file",
"default": "input_file",
"description": "The type of the input item. Always `input_file`."
},
"file_data": {
"type": "string",
"description": "The data of the file to be sent to the model."
},
"file_id": {
"type": "string",
"description": "(Optional) The ID of the file to be sent to the model."
},
"file_url": {
"type": "string",
"description": "The URL of the file to be sent to the model."
},
"filename": {
"type": "string",
"description": "The name of the file to be sent to the model."
}
},
"additionalProperties": false,
"required": [
"type"
],
"title": "OpenAIResponseInputMessageContentFile",
"description": "File content for input messages in OpenAI response format."
},
"OpenAIResponseInputMessageContentImage": {
"type": "object",
"properties": {
@ -5766,6 +5803,10 @@
"default": "input_image",
"description": "Content type identifier, always \"input_image\""
},
"file_id": {
"type": "string",
"description": "(Optional) The ID of the file to be sent to the model."
},
"image_url": {
"type": "string",
"description": "(Optional) URL of the image content"
@ -7569,6 +7610,10 @@
"type": "string",
"description": "(Optional) ID of the previous response in a conversation"
},
"prompt": {
"$ref": "#/components/schemas/Prompt",
"description": "(Optional) Prompt object with ID, version, and variables"
},
"status": {
"type": "string",
"description": "Current status of the response generation"
@ -8013,6 +8058,32 @@
"title": "OpenAIResponseInputToolMCP",
"description": "Model Context Protocol (MCP) tool configuration for OpenAI response inputs."
},
"OpenAIResponsePromptParam": {
"type": "object",
"properties": {
"id": {
"type": "string",
"description": "Unique identifier of the prompt template"
},
"variables": {
"type": "object",
"additionalProperties": {
"$ref": "#/components/schemas/OpenAIResponseInputMessageContent"
},
"description": "Dictionary of variable names to OpenAIResponseInputMessageContent structure for template substitution"
},
"version": {
"type": "string",
"description": "Version number of the prompt to use (defaults to latest if not specified)"
}
},
"additionalProperties": false,
"required": [
"id"
],
"title": "OpenAIResponsePromptParam",
"description": "Prompt object that is used for OpenAI responses."
},
"CreateOpenaiResponseRequest": {
"type": "object",
"properties": {
@ -8034,6 +8105,10 @@
"type": "string",
"description": "The underlying LLM used for completions."
},
"prompt": {
"$ref": "#/components/schemas/OpenAIResponsePromptParam",
"description": "Prompt object with ID, version, and variables."
},
"instructions": {
"type": "string"
},
@ -8122,6 +8197,10 @@
"type": "string",
"description": "(Optional) ID of the previous response in a conversation"
},
"prompt": {
"$ref": "#/components/schemas/Prompt",
"description": "(Optional) Prompt object with ID, version, and variables"
},
"status": {
"type": "string",
"description": "Current status of the response generation"

View file

@ -4361,11 +4361,44 @@ components:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentText'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentImage'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentFile'
discriminator:
propertyName: type
mapping:
input_text: '#/components/schemas/OpenAIResponseInputMessageContentText'
input_image: '#/components/schemas/OpenAIResponseInputMessageContentImage'
input_file: '#/components/schemas/OpenAIResponseInputMessageContentFile'
OpenAIResponseInputMessageContentFile:
type: object
properties:
type:
type: string
const: input_file
default: input_file
description: >-
The type of the input item. Always `input_file`.
file_data:
type: string
description: >-
The data of the file to be sent to the model.
file_id:
type: string
description: >-
(Optional) The ID of the file to be sent to the model.
file_url:
type: string
description: >-
The URL of the file to be sent to the model.
filename:
type: string
description: >-
The name of the file to be sent to the model.
additionalProperties: false
required:
- type
title: OpenAIResponseInputMessageContentFile
description: >-
File content for input messages in OpenAI response format.
OpenAIResponseInputMessageContentImage:
type: object
properties:
@ -4386,6 +4419,10 @@ components:
default: input_image
description: >-
Content type identifier, always "input_image"
file_id:
type: string
description: >-
(Optional) The ID of the file to be sent to the model.
image_url:
type: string
description: (Optional) URL of the image content
@ -5785,6 +5822,10 @@ components:
type: string
description: >-
(Optional) ID of the previous response in a conversation
prompt:
$ref: '#/components/schemas/Prompt'
description: >-
(Optional) Prompt object with ID, version, and variables
status:
type: string
description: >-
@ -6102,6 +6143,29 @@ components:
title: OpenAIResponseInputToolMCP
description: >-
Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
OpenAIResponsePromptParam:
type: object
properties:
id:
type: string
description: Unique identifier of the prompt template
variables:
type: object
additionalProperties:
$ref: '#/components/schemas/OpenAIResponseInputMessageContent'
description: >-
Dictionary of variable names to OpenAIResponseInputMessageContent structure
for template substitution
version:
type: string
description: >-
Version number of the prompt to use (defaults to latest if not specified)
additionalProperties: false
required:
- id
title: OpenAIResponsePromptParam
description: >-
Prompt object that is used for OpenAI responses.
CreateOpenaiResponseRequest:
type: object
properties:
@ -6115,6 +6179,10 @@ components:
model:
type: string
description: The underlying LLM used for completions.
prompt:
$ref: '#/components/schemas/OpenAIResponsePromptParam'
description: >-
Prompt object with ID, version, and variables.
instructions:
type: string
previous_response_id:
@ -6192,6 +6260,10 @@ components:
type: string
description: >-
(Optional) ID of the previous response in a conversation
prompt:
$ref: '#/components/schemas/Prompt'
description: >-
(Optional) Prompt object with ID, version, and variables
status:
type: string
description: >-

View file

@ -7401,16 +7401,53 @@
},
{
"$ref": "#/components/schemas/OpenAIResponseInputMessageContentImage"
},
{
"$ref": "#/components/schemas/OpenAIResponseInputMessageContentFile"
}
],
"discriminator": {
"propertyName": "type",
"mapping": {
"input_text": "#/components/schemas/OpenAIResponseInputMessageContentText",
"input_image": "#/components/schemas/OpenAIResponseInputMessageContentImage"
"input_image": "#/components/schemas/OpenAIResponseInputMessageContentImage",
"input_file": "#/components/schemas/OpenAIResponseInputMessageContentFile"
}
}
},
"OpenAIResponseInputMessageContentFile": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "input_file",
"default": "input_file",
"description": "The type of the input item. Always `input_file`."
},
"file_data": {
"type": "string",
"description": "The data of the file to be sent to the model."
},
"file_id": {
"type": "string",
"description": "(Optional) The ID of the file to be sent to the model."
},
"file_url": {
"type": "string",
"description": "The URL of the file to be sent to the model."
},
"filename": {
"type": "string",
"description": "The name of the file to be sent to the model."
}
},
"additionalProperties": false,
"required": [
"type"
],
"title": "OpenAIResponseInputMessageContentFile",
"description": "File content for input messages in OpenAI response format."
},
"OpenAIResponseInputMessageContentImage": {
"type": "object",
"properties": {
@ -7438,6 +7475,10 @@
"default": "input_image",
"description": "Content type identifier, always \"input_image\""
},
"file_id": {
"type": "string",
"description": "(Optional) The ID of the file to be sent to the model."
},
"image_url": {
"type": "string",
"description": "(Optional) URL of the image content"
@ -9241,6 +9282,10 @@
"type": "string",
"description": "(Optional) ID of the previous response in a conversation"
},
"prompt": {
"$ref": "#/components/schemas/Prompt",
"description": "(Optional) Prompt object with ID, version, and variables"
},
"status": {
"type": "string",
"description": "Current status of the response generation"
@ -9685,6 +9730,32 @@
"title": "OpenAIResponseInputToolMCP",
"description": "Model Context Protocol (MCP) tool configuration for OpenAI response inputs."
},
"OpenAIResponsePromptParam": {
"type": "object",
"properties": {
"id": {
"type": "string",
"description": "Unique identifier of the prompt template"
},
"variables": {
"type": "object",
"additionalProperties": {
"$ref": "#/components/schemas/OpenAIResponseInputMessageContent"
},
"description": "Dictionary of variable names to OpenAIResponseInputMessageContent structure for template substitution"
},
"version": {
"type": "string",
"description": "Version number of the prompt to use (defaults to latest if not specified)"
}
},
"additionalProperties": false,
"required": [
"id"
],
"title": "OpenAIResponsePromptParam",
"description": "Prompt object that is used for OpenAI responses."
},
"CreateOpenaiResponseRequest": {
"type": "object",
"properties": {
@ -9706,6 +9777,10 @@
"type": "string",
"description": "The underlying LLM used for completions."
},
"prompt": {
"$ref": "#/components/schemas/OpenAIResponsePromptParam",
"description": "Prompt object with ID, version, and variables."
},
"instructions": {
"type": "string"
},
@ -9794,6 +9869,10 @@
"type": "string",
"description": "(Optional) ID of the previous response in a conversation"
},
"prompt": {
"$ref": "#/components/schemas/Prompt",
"description": "(Optional) Prompt object with ID, version, and variables"
},
"status": {
"type": "string",
"description": "Current status of the response generation"

View file

@ -5574,11 +5574,44 @@ components:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentText'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentImage'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentFile'
discriminator:
propertyName: type
mapping:
input_text: '#/components/schemas/OpenAIResponseInputMessageContentText'
input_image: '#/components/schemas/OpenAIResponseInputMessageContentImage'
input_file: '#/components/schemas/OpenAIResponseInputMessageContentFile'
OpenAIResponseInputMessageContentFile:
type: object
properties:
type:
type: string
const: input_file
default: input_file
description: >-
The type of the input item. Always `input_file`.
file_data:
type: string
description: >-
The data of the file to be sent to the model.
file_id:
type: string
description: >-
(Optional) The ID of the file to be sent to the model.
file_url:
type: string
description: >-
The URL of the file to be sent to the model.
filename:
type: string
description: >-
The name of the file to be sent to the model.
additionalProperties: false
required:
- type
title: OpenAIResponseInputMessageContentFile
description: >-
File content for input messages in OpenAI response format.
OpenAIResponseInputMessageContentImage:
type: object
properties:
@ -5599,6 +5632,10 @@ components:
default: input_image
description: >-
Content type identifier, always "input_image"
file_id:
type: string
description: >-
(Optional) The ID of the file to be sent to the model.
image_url:
type: string
description: (Optional) URL of the image content
@ -6998,6 +7035,10 @@ components:
type: string
description: >-
(Optional) ID of the previous response in a conversation
prompt:
$ref: '#/components/schemas/Prompt'
description: >-
(Optional) Prompt object with ID, version, and variables
status:
type: string
description: >-
@ -7315,6 +7356,29 @@ components:
title: OpenAIResponseInputToolMCP
description: >-
Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
OpenAIResponsePromptParam:
type: object
properties:
id:
type: string
description: Unique identifier of the prompt template
variables:
type: object
additionalProperties:
$ref: '#/components/schemas/OpenAIResponseInputMessageContent'
description: >-
Dictionary of variable names to OpenAIResponseInputMessageContent structure
for template substitution
version:
type: string
description: >-
Version number of the prompt to use (defaults to latest if not specified)
additionalProperties: false
required:
- id
title: OpenAIResponsePromptParam
description: >-
Prompt object that is used for OpenAI responses.
CreateOpenaiResponseRequest:
type: object
properties:
@ -7328,6 +7392,10 @@ components:
model:
type: string
description: The underlying LLM used for completions.
prompt:
$ref: '#/components/schemas/OpenAIResponsePromptParam'
description: >-
Prompt object with ID, version, and variables.
instructions:
type: string
previous_response_id:
@ -7405,6 +7473,10 @@ components:
type: string
description: >-
(Optional) ID of the previous response in a conversation
prompt:
$ref: '#/components/schemas/Prompt'
description: >-
(Optional) Prompt object with ID, version, and variables
status:
type: string
description: >-

View file

@ -38,6 +38,7 @@ from .openai_responses import (
OpenAIResponseInputTool,
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponsePromptParam,
OpenAIResponseText,
)
@ -810,6 +811,7 @@ class Agents(Protocol):
self,
input: str | list[OpenAIResponseInput],
model: str,
prompt: OpenAIResponsePromptParam | None = None,
instructions: str | None = None,
previous_response_id: str | None = None,
conversation: str | None = None,
@ -831,6 +833,7 @@ class Agents(Protocol):
:param input: Input message(s) to create the response.
:param model: The underlying LLM used for completions.
:param prompt: Prompt object with ID, version, and variables.
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
:param conversation: (Optional) The ID of a conversation to add the response to. Must begin with 'conv_'. Input and output messages will be automatically added to the conversation.
:param include: (Optional) Additional fields to include in the response.

View file

@ -6,9 +6,10 @@
from typing import Annotated, Any, Literal
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, model_validator
from typing_extensions import TypedDict
from llama_stack.apis.prompts.prompts import Prompt
from llama_stack.apis.vector_io import SearchRankingOptions as FileSearchRankingOptions
from llama_stack.schema_utils import json_schema_type, register_schema
@ -46,18 +47,44 @@ class OpenAIResponseInputMessageContentImage(BaseModel):
:param detail: Level of detail for image processing, can be "low", "high", or "auto"
:param type: Content type identifier, always "input_image"
:param file_id: (Optional) The ID of the file to be sent to the model.
:param image_url: (Optional) URL of the image content
"""
detail: Literal["low"] | Literal["high"] | Literal["auto"] = "auto"
type: Literal["input_image"] = "input_image"
# TODO: handle file_id
file_id: str | None = None
image_url: str | None = None
# TODO: handle file content types
@json_schema_type
class OpenAIResponseInputMessageContentFile(BaseModel):
"""File content for input messages in OpenAI response format.
:param type: The type of the input item. Always `input_file`.
:param file_data: The data of the file to be sent to the model.
:param file_id: (Optional) The ID of the file to be sent to the model.
:param file_url: The URL of the file to be sent to the model.
:param filename: The name of the file to be sent to the model.
"""
type: Literal["input_file"] = "input_file"
file_data: str | None = None
file_id: str | None = None
file_url: str | None = None
filename: str | None = None
@model_validator(mode="after")
def validate_file_source(self) -> "OpenAIResponseInputMessageContentFile":
if not any([self.file_id, self.file_data, self.file_url]):
raise ValueError("At least one of 'file_id', 'file_data', or 'file_url' must be provided for file content")
return self
OpenAIResponseInputMessageContent = Annotated[
OpenAIResponseInputMessageContentText | OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText
| OpenAIResponseInputMessageContentImage
| OpenAIResponseInputMessageContentFile,
Field(discriminator="type"),
]
register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMessageContent")
@ -348,6 +375,20 @@ class OpenAIResponseTextFormat(TypedDict, total=False):
strict: bool | None
@json_schema_type
class OpenAIResponsePromptParam(BaseModel):
"""Prompt object that is used for OpenAI responses.
:param id: Unique identifier of the prompt template
:param variables: Dictionary of variable names to OpenAIResponseInputMessageContent structure for template substitution
:param version: Version number of the prompt to use (defaults to latest if not specified)
"""
id: str
variables: dict[str, OpenAIResponseInputMessageContent] | None = None
version: str | None = None
@json_schema_type
class OpenAIResponseText(BaseModel):
"""Text response configuration for OpenAI responses.
@ -537,6 +578,7 @@ class OpenAIResponseObject(BaseModel):
:param object: Object type identifier, always "response"
:param output: List of generated output items (messages, tool calls, etc.)
:param parallel_tool_calls: Whether tool calls can be executed in parallel
:param prompt: (Optional) Prompt object with ID, version, and variables
:param previous_response_id: (Optional) ID of the previous response in a conversation
:param status: Current status of the response generation
:param temperature: (Optional) Sampling temperature used for generation
@ -556,6 +598,7 @@ class OpenAIResponseObject(BaseModel):
output: list[OpenAIResponseOutput]
parallel_tool_calls: bool = False
previous_response_id: str | None = None
prompt: Prompt | None = None
status: str
temperature: float | None = None
# Default to text format to avoid breaking the loading of old responses

View file

@ -247,6 +247,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models: []
shields:

View file

@ -109,6 +109,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models:
- metadata: {}

View file

@ -105,6 +105,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models:
- metadata: {}

View file

@ -122,6 +122,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models:
- metadata: {}

View file

@ -112,6 +112,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models:
- metadata: {}

View file

@ -111,6 +111,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models:
- metadata: {}

View file

@ -100,6 +100,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models: []
shields: []

View file

@ -142,6 +142,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models:
- metadata: {}

View file

@ -87,6 +87,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models:
- metadata: {}

View file

@ -250,6 +250,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models: []
shields:

View file

@ -247,6 +247,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models: []
shields:

View file

@ -257,6 +257,10 @@ class RunConfigSettings(BaseModel):
backend="sql_default",
table_name="openai_conversations",
).model_dump(exclude_none=True),
"prompts": SqlStoreReference(
backend="sql_default",
table_name="prompts",
).model_dump(exclude_none=True),
}
storage_config = dict(

View file

@ -115,6 +115,9 @@ storage:
conversations:
table_name: openai_conversations
backend: sql_default
prompts:
table_name: prompts
backend: sql_default
registered_resources:
models: []
shields: []

View file

@ -20,15 +20,17 @@ async def get_provider_impl(
from .agents import MetaReferenceAgentsImpl
impl = MetaReferenceAgentsImpl(
config,
deps[Api.inference],
deps[Api.vector_io],
deps[Api.safety],
deps[Api.tool_runtime],
deps[Api.tool_groups],
deps[Api.conversations],
policy,
telemetry_enabled,
config=config,
inference_api=deps[Api.inference],
vector_io_api=deps[Api.vector_io],
safety_api=deps[Api.safety],
tool_runtime_api=deps[Api.tool_runtime],
tool_groups_api=deps[Api.tool_groups],
conversations_api=deps[Api.conversations],
prompts_api=deps[Api.prompts],
files_api=deps[Api.files],
telemetry_enabled=Api.telemetry in deps,
policy=policy,
)
await impl.initialize()
return impl

View file

@ -29,9 +29,10 @@ from llama_stack.apis.agents import (
Turn,
)
from llama_stack.apis.agents.agents import ResponseGuardrail
from llama_stack.apis.agents.openai_responses import OpenAIResponseText
from llama_stack.apis.agents.openai_responses import OpenAIResponsePromptParam, OpenAIResponseText
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.conversations import Conversations
from llama_stack.apis.files import Files
from llama_stack.apis.inference import (
Inference,
ToolConfig,
@ -39,6 +40,7 @@ from llama_stack.apis.inference import (
ToolResponseMessage,
UserMessage,
)
from llama_stack.apis.prompts import Prompts
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
@ -66,6 +68,8 @@ class MetaReferenceAgentsImpl(Agents):
tool_runtime_api: ToolRuntime,
tool_groups_api: ToolGroups,
conversations_api: Conversations,
prompts_api: Prompts,
files_api: Files,
policy: list[AccessRule],
telemetry_enabled: bool = False,
):
@ -77,7 +81,8 @@ class MetaReferenceAgentsImpl(Agents):
self.tool_groups_api = tool_groups_api
self.conversations_api = conversations_api
self.telemetry_enabled = telemetry_enabled
self.prompts_api = prompts_api
self.files_api = files_api
self.in_memory_store = InmemoryKVStoreImpl()
self.openai_responses_impl: OpenAIResponsesImpl | None = None
self.policy = policy
@ -94,6 +99,8 @@ class MetaReferenceAgentsImpl(Agents):
vector_io_api=self.vector_io_api,
safety_api=self.safety_api,
conversations_api=self.conversations_api,
prompts_api=self.prompts_api,
files_api=self.files_api,
)
async def create_agent(
@ -329,6 +336,7 @@ class MetaReferenceAgentsImpl(Agents):
self,
input: str | list[OpenAIResponseInput],
model: str,
prompt: OpenAIResponsePromptParam | None = None,
instructions: str | None = None,
previous_response_id: str | None = None,
conversation: str | None = None,
@ -344,6 +352,7 @@ class MetaReferenceAgentsImpl(Agents):
return await self.openai_responses_impl.create_openai_response(
input,
model,
prompt,
instructions,
previous_response_id,
conversation,

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
import time
import uuid
from collections.abc import AsyncIterator
@ -17,11 +18,14 @@ from llama_stack.apis.agents.openai_responses import (
ListOpenAIResponseObject,
OpenAIDeleteResponseObject,
OpenAIResponseInput,
OpenAIResponseInputMessageContentFile,
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputTool,
OpenAIResponseMessage,
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponsePromptParam,
OpenAIResponseText,
OpenAIResponseTextFormat,
)
@ -30,11 +34,17 @@ from llama_stack.apis.common.errors import (
)
from llama_stack.apis.conversations import Conversations
from llama_stack.apis.conversations.conversations import ConversationItem
from llama_stack.apis.files import Files
from llama_stack.apis.inference import (
Inference,
OpenAIChatCompletionContentPartParam,
OpenAIChatCompletionContentPartTextParam,
OpenAIMessageParam,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
from llama_stack.apis.prompts import Prompts
from llama_stack.apis.prompts.prompts import Prompt
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
@ -71,6 +81,8 @@ class OpenAIResponsesImpl:
vector_io_api: VectorIO, # VectorIO
safety_api: Safety,
conversations_api: Conversations,
prompts_api: Prompts,
files_api: Files,
):
self.inference_api = inference_api
self.tool_groups_api = tool_groups_api
@ -84,6 +96,8 @@ class OpenAIResponsesImpl:
tool_runtime_api=tool_runtime_api,
vector_io_api=vector_io_api,
)
self.prompts_api = prompts_api
self.files_api = files_api
async def _prepend_previous_response(
self,
@ -123,11 +137,13 @@ class OpenAIResponsesImpl:
# Use stored messages directly and convert only new input
message_adapter = TypeAdapter(list[OpenAIMessageParam])
messages = message_adapter.validate_python(previous_response.messages)
new_messages = await convert_response_input_to_chat_messages(input, previous_messages=messages)
new_messages = await convert_response_input_to_chat_messages(
input, previous_messages=messages, files_api=self.files_api
)
messages.extend(new_messages)
else:
# Backward compatibility: reconstruct from inputs
messages = await convert_response_input_to_chat_messages(all_input)
messages = await convert_response_input_to_chat_messages(all_input, files_api=self.files_api)
tool_context.recover_tools_from_previous_response(previous_response)
elif conversation is not None:
@ -139,7 +155,7 @@ class OpenAIResponsesImpl:
all_input = input
if not conversation_items.data:
# First turn - just convert the new input
messages = await convert_response_input_to_chat_messages(input)
messages = await convert_response_input_to_chat_messages(input, files_api=self.files_api)
else:
if not stored_messages:
all_input = conversation_items.data
@ -155,14 +171,114 @@ class OpenAIResponsesImpl:
all_input = input
messages = stored_messages or []
new_messages = await convert_response_input_to_chat_messages(all_input, previous_messages=messages)
new_messages = await convert_response_input_to_chat_messages(
all_input, previous_messages=messages, files_api=self.files_api
)
messages.extend(new_messages)
else:
all_input = input
messages = await convert_response_input_to_chat_messages(all_input)
messages = await convert_response_input_to_chat_messages(all_input, files_api=self.files_api)
return all_input, messages, tool_context
async def _prepend_prompt(
self,
messages: list[OpenAIMessageParam],
prompt_params: OpenAIResponsePromptParam,
) -> Prompt:
"""Prepend prompt template to messages, resolving text/image/file variables.
For text-only prompts: Inserts as system message
For prompts with media: Inserts text as system message + media into first user message
"""
if not prompt_params or not prompt_params.id:
return None
prompt_version = int(prompt_params.version) if prompt_params.version else None
cur_prompt = await self.prompts_api.get_prompt(prompt_params.id, prompt_version)
if not cur_prompt:
return None
cur_prompt_text = cur_prompt.prompt
cur_prompt_variables = cur_prompt.variables
if not prompt_params.variables:
messages.insert(0, OpenAISystemMessageParam(content=cur_prompt_text))
return cur_prompt
# Validate that all provided variables exist in the prompt
for name in prompt_params.variables.keys():
if name not in cur_prompt_variables:
raise ValueError(f"Variable {name} not found in prompt {prompt_params.id}")
# Separate text and media variables
text_substitutions = {}
media_content_parts = []
for name, value in prompt_params.variables.items():
# Text variable found
if isinstance(value, OpenAIResponseInputMessageContentText):
text_substitutions[name] = value.text
# Media variable found
elif isinstance(value, OpenAIResponseInputMessageContentImage | OpenAIResponseInputMessageContentFile):
# use existing converter to achieve OpenAI Chat Completion format
from .utils import convert_response_content_to_chat_content
converted_parts = await convert_response_content_to_chat_content([value], files_api=self.files_api)
media_content_parts.extend(converted_parts)
# Eg: {{product_photo}} becomes "[Image: product_photo]"
# This gives the model textual context about what media exists in the prompt
var_type = value.type.replace("input_", "").replace("_", " ").title()
text_substitutions[name] = f"[{var_type}: {name}]"
def replace_variable(match: re.Match[str]) -> str:
var_name = match.group(1).strip()
return str(text_substitutions.get(var_name, match.group(0)))
pattern = r"\{\{\s*(\w+)\s*\}\}"
resolved_prompt_text = re.sub(pattern, replace_variable, cur_prompt_text)
# Insert system message with resolved text
messages.insert(0, OpenAISystemMessageParam(content=resolved_prompt_text))
# If we have media, prepend to first user message
if media_content_parts:
self._prepend_media_into_first_user_message(messages, media_content_parts)
return cur_prompt
def _prepend_media_into_first_user_message(
self, messages: list[OpenAIMessageParam], media_parts: list[OpenAIChatCompletionContentPartParam]
) -> None:
"""Prepend media content parts into the first user message."""
# Find first user message (skip the system message we just added)
first_user_msg_index = None
for i, message in enumerate(messages):
if isinstance(message, OpenAIUserMessageParam):
first_user_msg_index = i
break
if first_user_msg_index is not None:
user_msg = messages[first_user_msg_index]
# Convert string content to parts if needed, otherwise use existing parts directly
if isinstance(user_msg.content, str):
existing_parts = [OpenAIChatCompletionContentPartTextParam(text=user_msg.content)]
else:
existing_parts = user_msg.content
# Prepend media before user's content
combined_parts = media_parts + existing_parts
messages[first_user_msg_index] = OpenAIUserMessageParam(content=combined_parts, name=user_msg.name)
else:
# No user message exists - append one with just media
messages.append(OpenAIUserMessageParam(content=media_parts))
async def get_openai_response(
self,
response_id: str,
@ -239,6 +355,7 @@ class OpenAIResponsesImpl:
self,
input: str | list[OpenAIResponseInput],
model: str,
prompt: OpenAIResponsePromptParam | None = None,
instructions: str | None = None,
previous_response_id: str | None = None,
conversation: str | None = None,
@ -269,6 +386,7 @@ class OpenAIResponsesImpl:
input=input,
conversation=conversation,
model=model,
prompt=prompt,
instructions=instructions,
previous_response_id=previous_response_id,
store=store,
@ -314,6 +432,7 @@ class OpenAIResponsesImpl:
self,
input: str | list[OpenAIResponseInput],
model: str,
prompt: OpenAIResponsePromptParam | None = None,
instructions: str | None = None,
previous_response_id: str | None = None,
conversation: str | None = None,
@ -332,6 +451,9 @@ class OpenAIResponsesImpl:
if instructions:
messages.insert(0, OpenAISystemMessageParam(content=instructions))
# Prepend reusable prompt (if provided)
prompt_obj = await self._prepend_prompt(messages, prompt)
# Structured outputs
response_format = await convert_response_text_to_chat_response_format(text)
@ -354,6 +476,7 @@ class OpenAIResponsesImpl:
ctx=ctx,
response_id=response_id,
created_at=created_at,
prompt=prompt_obj,
text=text,
max_infer_iters=max_infer_iters,
tool_executor=self.tool_executor,

View file

@ -65,6 +65,7 @@ from llama_stack.apis.inference import (
OpenAIChoice,
OpenAIMessageParam,
)
from llama_stack.apis.prompts.prompts import Prompt
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
from llama_stack.providers.utils.telemetry import tracing
@ -107,6 +108,7 @@ class StreamingResponseOrchestrator:
ctx: ChatCompletionContext,
response_id: str,
created_at: int,
prompt: Prompt | None,
text: OpenAIResponseText,
max_infer_iters: int,
tool_executor, # Will be the tool execution logic from the main class
@ -118,6 +120,7 @@ class StreamingResponseOrchestrator:
self.ctx = ctx
self.response_id = response_id
self.created_at = created_at
self.prompt = prompt
self.text = text
self.max_infer_iters = max_infer_iters
self.tool_executor = tool_executor
@ -175,6 +178,7 @@ class StreamingResponseOrchestrator:
object="response",
status=status,
output=self._clone_outputs(outputs),
prompt=self.prompt,
text=self.text,
tools=self.ctx.available_tools(),
error=error,

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
import asyncio
import base64
import re
import uuid
@ -14,6 +15,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInput,
OpenAIResponseInputFunctionToolCallOutput,
OpenAIResponseInputMessageContent,
OpenAIResponseInputMessageContentFile,
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputTool,
@ -27,6 +29,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseText,
)
from llama_stack.apis.files import Files
from llama_stack.apis.inference import (
OpenAIAssistantMessageParam,
OpenAIChatCompletionContentPartImageParam,
@ -36,6 +39,8 @@ from llama_stack.apis.inference import (
OpenAIChatCompletionToolCallFunction,
OpenAIChoice,
OpenAIDeveloperMessageParam,
OpenAIFile,
OpenAIFileFile,
OpenAIImageURL,
OpenAIJSONSchema,
OpenAIMessageParam,
@ -50,6 +55,49 @@ from llama_stack.apis.inference import (
from llama_stack.apis.safety import Safety
async def extract_file_content(file_id: str, files_api: Files) -> bytes:
"""
Retrieve file content directly using the Files API.
:param file_id: The file identifier (e.g., "file-abc123")
:param files_api: Files API instance
:returns: Raw file content as bytes
:raises: ValueError if file cannot be retrieved
"""
try:
response = await files_api.openai_retrieve_file_content(file_id)
if hasattr(response, "body"):
return response.body
elif hasattr(response, "content"):
return response.content
else:
raise AttributeError(f"Response object has no 'body' or 'content' attribute. Type: {type(response)}")
except Exception as e:
raise ValueError(f"Failed to retrieve file content for file_id '{file_id}': {str(e)}") from e
def get_mime_type_from_filename(filename: str | None) -> str:
"""
Determine MIME type from filename extension.
:param filename: The filename to analyze
:returns: MIME type string (defaults to "application/octet-stream" if unknown)
"""
if not filename:
return "application/octet-stream"
filename_lower = filename.lower()
if filename_lower.endswith(".pdf"):
return "application/pdf"
elif filename_lower.endswith((".png", ".jpg", ".jpeg")):
ext = filename_lower.split(".")[-1]
return f"image/{ext.replace('jpg', 'jpeg')}"
elif filename_lower.endswith(".txt"):
return "text/plain"
else:
return "application/octet-stream"
async def convert_chat_choice_to_response_message(
choice: OpenAIChoice,
citation_files: dict[str, str] | None = None,
@ -79,11 +127,15 @@ async def convert_chat_choice_to_response_message(
async def convert_response_content_to_chat_content(
content: (str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent]),
files_api: Files,
) -> str | list[OpenAIChatCompletionContentPartParam]:
"""
Convert the content parts from an OpenAI Response API request into OpenAI Chat Completion content parts.
The content schemas of each API look similar, but are not exactly the same.
:param content: The content to convert
:param files_api: Files API for resolving file_id to raw file content (required)
"""
if isinstance(content, str):
return content
@ -95,9 +147,69 @@ async def convert_response_content_to_chat_content(
elif isinstance(content_part, OpenAIResponseOutputMessageContentOutputText):
converted_parts.append(OpenAIChatCompletionContentPartTextParam(text=content_part.text))
elif isinstance(content_part, OpenAIResponseInputMessageContentImage):
detail = content_part.detail
if content_part.image_url:
image_url = OpenAIImageURL(url=content_part.image_url, detail=content_part.detail)
image_url = OpenAIImageURL(url=content_part.image_url, detail=detail)
converted_parts.append(OpenAIChatCompletionContentPartImageParam(image_url=image_url))
elif content_part.file_id:
file_content = await extract_file_content(content_part.file_id, files_api)
encoded_content = base64.b64encode(file_content).decode("utf-8")
data_url = f"data:image/png;base64,{encoded_content}"
image_url = OpenAIImageURL(url=data_url, detail=detail)
converted_parts.append(OpenAIChatCompletionContentPartImageParam(image_url=image_url))
else:
raise ValueError(
f"Image content must have either 'image_url' or 'file_id'. "
f"Got image_url={content_part.image_url}, file_id={content_part.file_id}"
)
elif isinstance(content_part, OpenAIResponseInputMessageContentFile):
file_data = getattr(content_part, "file_data", None)
file_id = getattr(content_part, "file_id", None)
file_url = getattr(content_part, "file_url", None)
filename = getattr(content_part, "filename", None)
if not any([file_id, file_data, file_url]):
raise ValueError(
f"File content must have at least one of 'file_id', 'file_data', or 'file_url'. "
f"Got file_id={file_id}, file_data={'<data>' if file_data else None}, file_url={file_url}"
)
resolved_file_data = None
if file_id:
file_content = await extract_file_content(file_id, files_api)
# If filename is not provided, fetch it from the Files API
if not filename:
file_metadata = await files_api.openai_retrieve_file(file_id)
filename = file_metadata.filename
# Determine MIME type and encode as data URL
mime_type = get_mime_type_from_filename(filename)
base64_content = base64.b64encode(file_content).decode("utf-8")
resolved_file_data = f"data:{mime_type};base64,{base64_content}"
elif file_data:
# If file_data provided directly
if file_data.startswith("data:"):
resolved_file_data = file_data
else:
# Raw base64 data, wrap in data URL format
mime_type = get_mime_type_from_filename(filename)
resolved_file_data = f"data:{mime_type};base64,{file_data}"
elif file_url:
resolved_file_data = file_url
converted_parts.append(
OpenAIFile(
file=OpenAIFileFile(
file_data=resolved_file_data,
filename=filename,
)
)
)
elif isinstance(content_part, str):
converted_parts.append(OpenAIChatCompletionContentPartTextParam(text=content_part))
else:
@ -110,12 +222,14 @@ async def convert_response_content_to_chat_content(
async def convert_response_input_to_chat_messages(
input: str | list[OpenAIResponseInput],
previous_messages: list[OpenAIMessageParam] | None = None,
files_api: Files | None = None,
) -> list[OpenAIMessageParam]:
"""
Convert the input from an OpenAI Response API request into OpenAI Chat Completion messages.
:param input: The input to convert
:param previous_messages: Optional previous messages to check for function_call references
:param files_api: Files API for resolving file_id to raw file content (optional, required for file/image content)
"""
messages: list[OpenAIMessageParam] = []
if isinstance(input, list):
@ -173,7 +287,7 @@ async def convert_response_input_to_chat_messages(
# these are handled by the responses impl itself and not pass through to chat completions
pass
else:
content = await convert_response_content_to_chat_content(input_item.content)
content = await convert_response_content_to_chat_content(input_item.content, files_api)
message_type = await get_message_type_by_role(input_item.role)
if message_type is None:
raise ValueError(

View file

@ -35,6 +35,8 @@ def available_providers() -> list[ProviderSpec]:
Api.tool_runtime,
Api.tool_groups,
Api.conversations,
Api.prompts,
Api.files,
],
description="Meta's reference implementation of an agent system that can use tools, access vector databases, and perform complex reasoning tasks.",
),

View file

@ -16,7 +16,9 @@ from llama_stack.apis.agents import (
)
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.conversations import Conversations
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference
from llama_stack.apis.prompts import Prompts
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
@ -49,6 +51,8 @@ def mock_apis():
"tool_runtime_api": AsyncMock(spec=ToolRuntime),
"tool_groups_api": AsyncMock(spec=ToolGroups),
"conversations_api": AsyncMock(spec=Conversations),
"prompts_api": AsyncMock(spec=Prompts),
"files_api": AsyncMock(spec=Files),
}
@ -81,7 +85,9 @@ async def agents_impl(config, mock_apis):
mock_apis["tool_runtime_api"],
mock_apis["tool_groups_api"],
mock_apis["conversations_api"],
[],
mock_apis["prompts_api"],
mock_apis["files_api"],
[], # policy (empty list for tests)
)
await impl.initialize()
yield impl

View file

@ -40,6 +40,7 @@ from llama_stack.apis.inference import (
OpenAIResponseFormatJSONSchema,
OpenAIUserMessageParam,
)
from llama_stack.apis.prompts import Prompt
from llama_stack.apis.tools.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.core.access_control.access_control import default_policy
from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqliteSqlStoreConfig
@ -97,6 +98,19 @@ def mock_safety_api():
return safety_api
@pytest.fixture
def mock_prompts_api():
prompts_api = AsyncMock()
return prompts_api
@pytest.fixture
def mock_files_api():
"""Mock files API for testing."""
files_api = AsyncMock()
return files_api
@pytest.fixture
def openai_responses_impl(
mock_inference_api,
@ -106,6 +120,8 @@ def openai_responses_impl(
mock_vector_io_api,
mock_safety_api,
mock_conversations_api,
mock_prompts_api,
mock_files_api,
):
return OpenAIResponsesImpl(
inference_api=mock_inference_api,
@ -115,6 +131,8 @@ def openai_responses_impl(
vector_io_api=mock_vector_io_api,
safety_api=mock_safety_api,
conversations_api=mock_conversations_api,
prompts_api=mock_prompts_api,
files_api=mock_files_api,
)
@ -498,7 +516,7 @@ async def test_create_openai_response_with_tool_call_function_arguments_none(ope
mock_inference_api.openai_chat_completion.return_value = fake_stream_toolcall()
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api):
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api, mock_files_api):
"""Test creating an OpenAI response with multiple messages."""
# Setup
input_messages = [
@ -709,7 +727,7 @@ async def test_create_openai_response_with_instructions(openai_responses_impl, m
async def test_create_openai_response_with_instructions_and_multiple_messages(
openai_responses_impl, mock_inference_api
openai_responses_impl, mock_inference_api, mock_files_api
):
# Setup
input_messages = [
@ -1169,3 +1187,657 @@ async def test_create_openai_response_with_invalid_text_format(openai_responses_
model=model,
text=OpenAIResponseText(format={"type": "invalid"}),
)
async def test_create_openai_response_with_prompt(openai_responses_impl, mock_inference_api, mock_prompts_api):
"""Test creating an OpenAI response with a prompt."""
input_text = "What is the capital of Ireland?"
model = "meta-llama/Llama-3.1-8B-Instruct"
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a helpful {{ area_name }} assistant at {{ company_name }}. Always provide accurate information.",
prompt_id=prompt_id,
version=1,
variables=["area_name", "company_name"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentText,
OpenAIResponsePromptParam,
)
prompt_params_with_version_1 = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"area_name": OpenAIResponseInputMessageContentText(text="geography"),
"company_name": OpenAIResponseInputMessageContentText(text="Dummy Company"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
mock_inference_api.openai_chat_completion.return_value = fake_stream()
result = await openai_responses_impl.create_openai_response(
input=input_text,
model=model,
prompt=prompt_params_with_version_1,
)
mock_prompts_api.get_prompt.assert_called_with(prompt_id, 1)
mock_inference_api.openai_chat_completion.assert_called()
call_args = mock_inference_api.openai_chat_completion.call_args
sent_messages = call_args.args[0].messages
assert len(sent_messages) == 2
system_messages = [msg for msg in sent_messages if msg.role == "system"]
assert len(system_messages) == 1
assert (
system_messages[0].content
== "You are a helpful geography assistant at Dummy Company. Always provide accurate information."
)
user_messages = [msg for msg in sent_messages if msg.role == "user"]
assert len(user_messages) == 1
assert user_messages[0].content == input_text
assert result.model == model
assert result.status == "completed"
assert result.prompt.prompt_id == prompt_id
assert result.prompt.variables == ["area_name", "company_name"]
assert result.prompt.version == 1
assert result.prompt.prompt == prompt.prompt
async def test_prepend_prompt_successful_without_variables(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt function without variables."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a helpful assistant. Always provide accurate information.",
prompt_id=prompt_id,
version=1,
variables=[],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import OpenAIResponsePromptParam
from llama_stack.apis.inference import OpenAISystemMessageParam, OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(id=prompt_id, version="1")
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Hello")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, 1)
# Check that prompt was returned
assert result == prompt
# Check that system message was prepended
assert len(messages) == 2
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "You are a helpful assistant. Always provide accurate information."
async def test_prepend_prompt_no_version_specified(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt function when no version is specified (should use None)."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Default prompt text.",
prompt_id=prompt_id,
version=3,
variables=[],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import OpenAIResponsePromptParam
from llama_stack.apis.inference import OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(id=prompt_id) # No version specified
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Test")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, None)
assert result == prompt
assert len(messages) == 2
async def test_prepend_prompt_invalid_variable(openai_responses_impl, mock_prompts_api):
"""Test error handling in prepend_prompt function when prompt parameters contain invalid variables."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a {{ role }} assistant.",
prompt_id=prompt_id,
version=1,
variables=["role"], # Only "role" is valid
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentText,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"role": OpenAIResponseInputMessageContentText(text="helpful"),
"company": OpenAIResponseInputMessageContentText(
text="Dummy Company"
), # company is not in prompt.variables
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Test prompt")]
# Execute - should raise ValueError for invalid variable
with pytest.raises(ValueError, match="Variable company not found in prompt"):
await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, 1)
async def test_prepend_prompt_not_found(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt function when prompt is not found."""
# Setup
prompt_id = "pmpt_nonexistent"
from llama_stack.apis.agents.openai_responses import OpenAIResponsePromptParam
from llama_stack.apis.inference import OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(id=prompt_id, version="1")
mock_prompts_api.get_prompt.return_value = None # Prompt not found
# Initial messages
messages = [OpenAIUserMessageParam(content="Test prompt")]
initial_length = len(messages)
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, 1)
# Should return None when prompt not found
assert result is None
# Messages should not be modified
assert len(messages) == initial_length
assert messages[0].content == "Test prompt"
async def test_prepend_prompt_no_params(openai_responses_impl, mock_prompts_api):
"""Test handling in prepend_prompt function when prompt_params is None."""
# Setup
from llama_stack.apis.inference import OpenAIUserMessageParam
messages = [OpenAIUserMessageParam(content="Test")]
initial_length = len(messages)
# Execute
result = await openai_responses_impl._prepend_prompt(messages, None)
# Verify
mock_prompts_api.get_prompt.assert_not_called()
# Should return None when no prompt params
assert result is None
# Messages should not be modified
assert len(messages) == initial_length
async def test_prepend_prompt_variable_substitution(openai_responses_impl, mock_prompts_api):
"""Test complex variable substitution with multiple occurrences and special characters in prepend_prompt function."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
# Support all whitespace variations: {{name}}, {{ name }}, {{ name}}, {{name }}, etc.
prompt = Prompt(
prompt="Hello {{name}}! You are working at {{ company}}. Your role is {{role}} at {{company}}. Remember, {{ name }}, to be {{ tone }}.",
prompt_id=prompt_id,
version=1,
variables=["name", "company", "role", "tone"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentText,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import OpenAISystemMessageParam, OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"name": OpenAIResponseInputMessageContentText(text="Alice"),
"company": OpenAIResponseInputMessageContentText(text="Dummy Company"),
"role": OpenAIResponseInputMessageContentText(text="AI Assistant"),
"tone": OpenAIResponseInputMessageContentText(text="professional"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Test")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
assert isinstance(messages[0], OpenAISystemMessageParam)
expected_content = "Hello Alice! You are working at Dummy Company. Your role is AI Assistant at Dummy Company. Remember, Alice, to be professional."
assert messages[0].content == expected_content
async def test_prepend_prompt_with_image_variable(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with image variable - should create placeholder in system message and inject image into user message."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Analyze this {{product_image}} and describe what you see.",
prompt_id=prompt_id,
version=1,
variables=["product_image"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
# Mock file content
mock_file_content = b"fake_image_data"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"product_image": OpenAIResponseInputMessageContentImage(
file_id="file-abc123",
detail="high",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="What do you think?")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Analyze this [Image: product_image] and describe what you see."
# Check user message has image prepended
assert isinstance(messages[1], OpenAIUserMessageParam)
assert isinstance(messages[1].content, list)
assert len(messages[1].content) == 2 # Image + original text
# First part should be image with data URL
assert isinstance(messages[1].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[1].content[0].image_url.url.startswith("data:image/")
assert messages[1].content[0].image_url.detail == "high"
# Second part should be original text
assert messages[1].content[1].text == "What do you think?"
async def test_prepend_prompt_with_file_variable(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with file variable - should create placeholder in system message and inject file into user message."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Review the document {{contract_file}} and summarize key points.",
prompt_id=prompt_id,
version=1,
variables=["contract_file"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentFile,
OpenAIResponsePromptParam,
)
from llama_stack.apis.files import OpenAIFileObject
from llama_stack.apis.inference import (
OpenAIFile,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
# Mock file retrieval
mock_file_content = b"fake_pdf_content"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
mock_files_api.openai_retrieve_file.return_value = OpenAIFileObject(
object="file",
id="file-contract-789",
bytes=len(mock_file_content),
created_at=1234567890,
expires_at=1234567890,
filename="contract.pdf",
purpose="assistants",
)
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"contract_file": OpenAIResponseInputMessageContentFile(
file_id="file-contract-789",
filename="contract.pdf",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Please review this.")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Review the document [File: contract_file] and summarize key points."
# Check user message has file prepended
assert isinstance(messages[1], OpenAIUserMessageParam)
assert isinstance(messages[1].content, list)
assert len(messages[1].content) == 2 # File + original text
# First part should be file with data URL (not file_id)
assert isinstance(messages[1].content[0], OpenAIFile)
assert messages[1].content[0].file.file_data.startswith("data:application/pdf;base64,")
assert messages[1].content[0].file.filename == "contract.pdf"
# file_id should NOT be set in the OpenAI request
assert messages[1].content[0].file.file_id is None
# Second part should be original text
assert messages[1].content[1].text == "Please review this."
async def test_prepend_prompt_with_mixed_variables(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with text, image, and file variables mixed together."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Hello {{name}}! Analyze {{photo}} and review {{document}}. Provide insights for {{company}}.",
prompt_id=prompt_id,
version=1,
variables=["name", "photo", "document", "company"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentFile,
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponsePromptParam,
)
from llama_stack.apis.files import OpenAIFileObject
from llama_stack.apis.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAIFile,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
# Mock file retrieval for document
mock_file_content = b"fake_doc_content"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
mock_files_api.openai_retrieve_file.return_value = OpenAIFileObject(
object="file",
id="file-doc-456",
bytes=len(mock_file_content),
created_at=1234567890,
expires_at=1234567890,
filename="doc.pdf",
purpose="assistants",
)
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"name": OpenAIResponseInputMessageContentText(text="Alice"),
"photo": OpenAIResponseInputMessageContentImage(file_id="file-photo-123", detail="auto"),
"document": OpenAIResponseInputMessageContentFile(file_id="file-doc-456", filename="doc.pdf"),
"company": OpenAIResponseInputMessageContentText(text="Acme Corp"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Here's my question.")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
# Check system message has text and placeholders
assert isinstance(messages[0], OpenAISystemMessageParam)
expected_system = "Hello Alice! Analyze [Image: photo] and review [File: document]. Provide insights for Acme Corp."
assert messages[0].content == expected_system
# Check user message has media prepended (2 media items + original text)
assert isinstance(messages[1], OpenAIUserMessageParam)
assert isinstance(messages[1].content, list)
assert len(messages[1].content) == 3 # Image + File + original text
# First part should be image with data URL
assert isinstance(messages[1].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[1].content[0].image_url.url.startswith("data:image/")
# Second part should be file with data URL
assert isinstance(messages[1].content[1], OpenAIFile)
assert messages[1].content[1].file.file_data.startswith("data:application/pdf;base64,")
assert messages[1].content[1].file.filename == "doc.pdf"
assert messages[1].content[1].file.file_id is None # file_id should NOT be sent
# Third part should be original text
assert messages[1].content[2].text == "Here's my question."
async def test_prepend_prompt_with_image_using_image_url(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt with image variable using image_url instead of file_id."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Describe {{screenshot}}.",
prompt_id=prompt_id,
version=1,
variables=["screenshot"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"screenshot": OpenAIResponseInputMessageContentImage(
image_url="https://example.com/screenshot.png",
detail="low",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="What is this?")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Describe [Image: screenshot]."
# Check user message has image with URL
assert isinstance(messages[1], OpenAIUserMessageParam)
assert isinstance(messages[1].content, list)
# Image should use the provided URL
assert isinstance(messages[1].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[1].content[0].image_url.url == "https://example.com/screenshot.png"
assert messages[1].content[0].image_url.detail == "low"
async def test_prepend_prompt_with_media_no_user_message(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with media when there's no existing user message - should create one."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Analyze {{image}}.",
prompt_id=prompt_id,
version=1,
variables=["image"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import (
OpenAIAssistantMessageParam,
OpenAIChatCompletionContentPartImageParam,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
# Mock file content
mock_file_content = b"fake_image_data"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={"image": OpenAIResponseInputMessageContentImage(file_id="file-img-999")},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages - only assistant message, no user message
messages = [OpenAIAssistantMessageParam(content="Previous response")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 3 # System + Assistant + New User
# Check system message
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Analyze [Image: image]."
# Original assistant message should still be there
assert isinstance(messages[1], OpenAIAssistantMessageParam)
assert messages[1].content == "Previous response"
# New user message with just the image should be appended
assert isinstance(messages[2], OpenAIUserMessageParam)
assert isinstance(messages[2].content, list)
assert len(messages[2].content) == 1
assert isinstance(messages[2].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[2].content[0].image_url.url.startswith("data:image/")
async def test_prepend_prompt_image_variable_missing_required_fields(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt with image variable that has neither file_id nor image_url - should raise error."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Analyze {{bad_image}}.",
prompt_id=prompt_id,
version=1,
variables=["bad_image"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import OpenAIUserMessageParam
# Create image content with neither file_id nor image_url
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={"bad_image": OpenAIResponseInputMessageContentImage()}, # No file_id or image_url
)
mock_prompts_api.get_prompt.return_value = prompt
messages = [OpenAIUserMessageParam(content="Test")]
# Execute - should raise ValueError
with pytest.raises(ValueError, match="Image content must have either 'image_url' or 'file_id'"):
await openai_responses_impl._prepend_prompt(messages, prompt_params)

View file

@ -39,6 +39,8 @@ def responses_impl_with_conversations(
mock_vector_io_api,
mock_conversations_api,
mock_safety_api,
mock_prompts_api,
mock_files_api,
):
"""Create OpenAIResponsesImpl instance with conversations API."""
return OpenAIResponsesImpl(
@ -49,6 +51,8 @@ def responses_impl_with_conversations(
vector_io_api=mock_vector_io_api,
conversations_api=mock_conversations_api,
safety_api=mock_safety_api,
prompts_api=mock_prompts_api,
files_api=mock_files_api,
)

View file

@ -5,6 +5,8 @@
# the root directory of this source tree.
from unittest.mock import AsyncMock
import pytest
from llama_stack.apis.agents.openai_responses import (
@ -46,6 +48,12 @@ from llama_stack.providers.inline.agents.meta_reference.responses.utils import (
)
@pytest.fixture
def mock_files_api():
"""Mock files API for testing."""
return AsyncMock()
class TestConvertChatChoiceToResponseMessage:
async def test_convert_string_content(self):
choice = OpenAIChoice(
@ -78,17 +86,17 @@ class TestConvertChatChoiceToResponseMessage:
class TestConvertResponseContentToChatContent:
async def test_convert_string_content(self):
result = await convert_response_content_to_chat_content("Simple string")
async def test_convert_string_content(self, mock_files_api):
result = await convert_response_content_to_chat_content("Simple string", mock_files_api)
assert result == "Simple string"
async def test_convert_text_content_parts(self):
async def test_convert_text_content_parts(self, mock_files_api):
content = [
OpenAIResponseInputMessageContentText(text="First part"),
OpenAIResponseOutputMessageContentOutputText(text="Second part"),
]
result = await convert_response_content_to_chat_content(content)
result = await convert_response_content_to_chat_content(content, mock_files_api)
assert len(result) == 2
assert isinstance(result[0], OpenAIChatCompletionContentPartTextParam)
@ -96,10 +104,10 @@ class TestConvertResponseContentToChatContent:
assert isinstance(result[1], OpenAIChatCompletionContentPartTextParam)
assert result[1].text == "Second part"
async def test_convert_image_content(self):
async def test_convert_image_content(self, mock_files_api):
content = [OpenAIResponseInputMessageContentImage(image_url="https://example.com/image.jpg", detail="high")]
result = await convert_response_content_to_chat_content(content)
result = await convert_response_content_to_chat_content(content, mock_files_api)
assert len(result) == 1
assert isinstance(result[0], OpenAIChatCompletionContentPartImageParam)

View file

@ -30,6 +30,8 @@ def mock_apis():
"vector_io_api": AsyncMock(),
"conversations_api": AsyncMock(),
"safety_api": AsyncMock(),
"prompts_api": AsyncMock(),
"files_api": AsyncMock(),
}