feat(responses)!: add support for OpenAI compatible Prompts in Responses API

This commit is contained in:
r3v5 2025-09-21 13:52:55 +01:00
parent bd3c473208
commit 59169bfd25
No known key found for this signature in database
GPG key ID: C7611ACB4FECAD54
33 changed files with 1667 additions and 34 deletions

View file

@ -16,7 +16,9 @@ from llama_stack.apis.agents import (
)
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.conversations import Conversations
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference
from llama_stack.apis.prompts import Prompts
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
@ -49,6 +51,8 @@ def mock_apis():
"tool_runtime_api": AsyncMock(spec=ToolRuntime),
"tool_groups_api": AsyncMock(spec=ToolGroups),
"conversations_api": AsyncMock(spec=Conversations),
"prompts_api": AsyncMock(spec=Prompts),
"files_api": AsyncMock(spec=Files),
}
@ -81,7 +85,9 @@ async def agents_impl(config, mock_apis):
mock_apis["tool_runtime_api"],
mock_apis["tool_groups_api"],
mock_apis["conversations_api"],
[],
mock_apis["prompts_api"],
mock_apis["files_api"],
[], # policy (empty list for tests)
)
await impl.initialize()
yield impl

View file

@ -40,6 +40,7 @@ from llama_stack.apis.inference import (
OpenAIResponseFormatJSONSchema,
OpenAIUserMessageParam,
)
from llama_stack.apis.prompts import Prompt
from llama_stack.apis.tools.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.core.access_control.access_control import default_policy
from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqliteSqlStoreConfig
@ -97,6 +98,19 @@ def mock_safety_api():
return safety_api
@pytest.fixture
def mock_prompts_api():
prompts_api = AsyncMock()
return prompts_api
@pytest.fixture
def mock_files_api():
"""Mock files API for testing."""
files_api = AsyncMock()
return files_api
@pytest.fixture
def openai_responses_impl(
mock_inference_api,
@ -106,6 +120,8 @@ def openai_responses_impl(
mock_vector_io_api,
mock_safety_api,
mock_conversations_api,
mock_prompts_api,
mock_files_api,
):
return OpenAIResponsesImpl(
inference_api=mock_inference_api,
@ -115,6 +131,8 @@ def openai_responses_impl(
vector_io_api=mock_vector_io_api,
safety_api=mock_safety_api,
conversations_api=mock_conversations_api,
prompts_api=mock_prompts_api,
files_api=mock_files_api,
)
@ -498,7 +516,7 @@ async def test_create_openai_response_with_tool_call_function_arguments_none(ope
mock_inference_api.openai_chat_completion.return_value = fake_stream_toolcall()
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api):
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api, mock_files_api):
"""Test creating an OpenAI response with multiple messages."""
# Setup
input_messages = [
@ -709,7 +727,7 @@ async def test_create_openai_response_with_instructions(openai_responses_impl, m
async def test_create_openai_response_with_instructions_and_multiple_messages(
openai_responses_impl, mock_inference_api
openai_responses_impl, mock_inference_api, mock_files_api
):
# Setup
input_messages = [
@ -1169,3 +1187,657 @@ async def test_create_openai_response_with_invalid_text_format(openai_responses_
model=model,
text=OpenAIResponseText(format={"type": "invalid"}),
)
async def test_create_openai_response_with_prompt(openai_responses_impl, mock_inference_api, mock_prompts_api):
"""Test creating an OpenAI response with a prompt."""
input_text = "What is the capital of Ireland?"
model = "meta-llama/Llama-3.1-8B-Instruct"
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a helpful {{ area_name }} assistant at {{ company_name }}. Always provide accurate information.",
prompt_id=prompt_id,
version=1,
variables=["area_name", "company_name"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentText,
OpenAIResponsePromptParam,
)
prompt_params_with_version_1 = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"area_name": OpenAIResponseInputMessageContentText(text="geography"),
"company_name": OpenAIResponseInputMessageContentText(text="Dummy Company"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
mock_inference_api.openai_chat_completion.return_value = fake_stream()
result = await openai_responses_impl.create_openai_response(
input=input_text,
model=model,
prompt=prompt_params_with_version_1,
)
mock_prompts_api.get_prompt.assert_called_with(prompt_id, 1)
mock_inference_api.openai_chat_completion.assert_called()
call_args = mock_inference_api.openai_chat_completion.call_args
sent_messages = call_args.args[0].messages
assert len(sent_messages) == 2
system_messages = [msg for msg in sent_messages if msg.role == "system"]
assert len(system_messages) == 1
assert (
system_messages[0].content
== "You are a helpful geography assistant at Dummy Company. Always provide accurate information."
)
user_messages = [msg for msg in sent_messages if msg.role == "user"]
assert len(user_messages) == 1
assert user_messages[0].content == input_text
assert result.model == model
assert result.status == "completed"
assert result.prompt.prompt_id == prompt_id
assert result.prompt.variables == ["area_name", "company_name"]
assert result.prompt.version == 1
assert result.prompt.prompt == prompt.prompt
async def test_prepend_prompt_successful_without_variables(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt function without variables."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a helpful assistant. Always provide accurate information.",
prompt_id=prompt_id,
version=1,
variables=[],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import OpenAIResponsePromptParam
from llama_stack.apis.inference import OpenAISystemMessageParam, OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(id=prompt_id, version="1")
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Hello")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, 1)
# Check that prompt was returned
assert result == prompt
# Check that system message was prepended
assert len(messages) == 2
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "You are a helpful assistant. Always provide accurate information."
async def test_prepend_prompt_no_version_specified(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt function when no version is specified (should use None)."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Default prompt text.",
prompt_id=prompt_id,
version=3,
variables=[],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import OpenAIResponsePromptParam
from llama_stack.apis.inference import OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(id=prompt_id) # No version specified
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Test")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, None)
assert result == prompt
assert len(messages) == 2
async def test_prepend_prompt_invalid_variable(openai_responses_impl, mock_prompts_api):
"""Test error handling in prepend_prompt function when prompt parameters contain invalid variables."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a {{ role }} assistant.",
prompt_id=prompt_id,
version=1,
variables=["role"], # Only "role" is valid
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentText,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"role": OpenAIResponseInputMessageContentText(text="helpful"),
"company": OpenAIResponseInputMessageContentText(
text="Dummy Company"
), # company is not in prompt.variables
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Test prompt")]
# Execute - should raise ValueError for invalid variable
with pytest.raises(ValueError, match="Variable company not found in prompt"):
await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, 1)
async def test_prepend_prompt_not_found(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt function when prompt is not found."""
# Setup
prompt_id = "pmpt_nonexistent"
from llama_stack.apis.agents.openai_responses import OpenAIResponsePromptParam
from llama_stack.apis.inference import OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(id=prompt_id, version="1")
mock_prompts_api.get_prompt.return_value = None # Prompt not found
# Initial messages
messages = [OpenAIUserMessageParam(content="Test prompt")]
initial_length = len(messages)
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, 1)
# Should return None when prompt not found
assert result is None
# Messages should not be modified
assert len(messages) == initial_length
assert messages[0].content == "Test prompt"
async def test_prepend_prompt_no_params(openai_responses_impl, mock_prompts_api):
"""Test handling in prepend_prompt function when prompt_params is None."""
# Setup
from llama_stack.apis.inference import OpenAIUserMessageParam
messages = [OpenAIUserMessageParam(content="Test")]
initial_length = len(messages)
# Execute
result = await openai_responses_impl._prepend_prompt(messages, None)
# Verify
mock_prompts_api.get_prompt.assert_not_called()
# Should return None when no prompt params
assert result is None
# Messages should not be modified
assert len(messages) == initial_length
async def test_prepend_prompt_variable_substitution(openai_responses_impl, mock_prompts_api):
"""Test complex variable substitution with multiple occurrences and special characters in prepend_prompt function."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
# Support all whitespace variations: {{name}}, {{ name }}, {{ name}}, {{name }}, etc.
prompt = Prompt(
prompt="Hello {{name}}! You are working at {{ company}}. Your role is {{role}} at {{company}}. Remember, {{ name }}, to be {{ tone }}.",
prompt_id=prompt_id,
version=1,
variables=["name", "company", "role", "tone"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentText,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import OpenAISystemMessageParam, OpenAIUserMessageParam
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"name": OpenAIResponseInputMessageContentText(text="Alice"),
"company": OpenAIResponseInputMessageContentText(text="Dummy Company"),
"role": OpenAIResponseInputMessageContentText(text="AI Assistant"),
"tone": OpenAIResponseInputMessageContentText(text="professional"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Test")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
assert isinstance(messages[0], OpenAISystemMessageParam)
expected_content = "Hello Alice! You are working at Dummy Company. Your role is AI Assistant at Dummy Company. Remember, Alice, to be professional."
assert messages[0].content == expected_content
async def test_prepend_prompt_with_image_variable(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with image variable - should create placeholder in system message and inject image into user message."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Analyze this {{product_image}} and describe what you see.",
prompt_id=prompt_id,
version=1,
variables=["product_image"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
# Mock file content
mock_file_content = b"fake_image_data"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"product_image": OpenAIResponseInputMessageContentImage(
file_id="file-abc123",
detail="high",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="What do you think?")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Analyze this [Image: product_image] and describe what you see."
# Check user message has image prepended
assert isinstance(messages[1], OpenAIUserMessageParam)
assert isinstance(messages[1].content, list)
assert len(messages[1].content) == 2 # Image + original text
# First part should be image with data URL
assert isinstance(messages[1].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[1].content[0].image_url.url.startswith("data:image/")
assert messages[1].content[0].image_url.detail == "high"
# Second part should be original text
assert messages[1].content[1].text == "What do you think?"
async def test_prepend_prompt_with_file_variable(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with file variable - should create placeholder in system message and inject file into user message."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Review the document {{contract_file}} and summarize key points.",
prompt_id=prompt_id,
version=1,
variables=["contract_file"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentFile,
OpenAIResponsePromptParam,
)
from llama_stack.apis.files import OpenAIFileObject
from llama_stack.apis.inference import (
OpenAIFile,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
# Mock file retrieval
mock_file_content = b"fake_pdf_content"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
mock_files_api.openai_retrieve_file.return_value = OpenAIFileObject(
object="file",
id="file-contract-789",
bytes=len(mock_file_content),
created_at=1234567890,
expires_at=1234567890,
filename="contract.pdf",
purpose="assistants",
)
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"contract_file": OpenAIResponseInputMessageContentFile(
file_id="file-contract-789",
filename="contract.pdf",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Please review this.")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Review the document [File: contract_file] and summarize key points."
# Check user message has file prepended
assert isinstance(messages[1], OpenAIUserMessageParam)
assert isinstance(messages[1].content, list)
assert len(messages[1].content) == 2 # File + original text
# First part should be file with data URL (not file_id)
assert isinstance(messages[1].content[0], OpenAIFile)
assert messages[1].content[0].file.file_data.startswith("data:application/pdf;base64,")
assert messages[1].content[0].file.filename == "contract.pdf"
# file_id should NOT be set in the OpenAI request
assert messages[1].content[0].file.file_id is None
# Second part should be original text
assert messages[1].content[1].text == "Please review this."
async def test_prepend_prompt_with_mixed_variables(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with text, image, and file variables mixed together."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Hello {{name}}! Analyze {{photo}} and review {{document}}. Provide insights for {{company}}.",
prompt_id=prompt_id,
version=1,
variables=["name", "photo", "document", "company"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentFile,
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponsePromptParam,
)
from llama_stack.apis.files import OpenAIFileObject
from llama_stack.apis.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAIFile,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
# Mock file retrieval for document
mock_file_content = b"fake_doc_content"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
mock_files_api.openai_retrieve_file.return_value = OpenAIFileObject(
object="file",
id="file-doc-456",
bytes=len(mock_file_content),
created_at=1234567890,
expires_at=1234567890,
filename="doc.pdf",
purpose="assistants",
)
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"name": OpenAIResponseInputMessageContentText(text="Alice"),
"photo": OpenAIResponseInputMessageContentImage(file_id="file-photo-123", detail="auto"),
"document": OpenAIResponseInputMessageContentFile(file_id="file-doc-456", filename="doc.pdf"),
"company": OpenAIResponseInputMessageContentText(text="Acme Corp"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Here's my question.")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
# Check system message has text and placeholders
assert isinstance(messages[0], OpenAISystemMessageParam)
expected_system = "Hello Alice! Analyze [Image: photo] and review [File: document]. Provide insights for Acme Corp."
assert messages[0].content == expected_system
# Check user message has media prepended (2 media items + original text)
assert isinstance(messages[1], OpenAIUserMessageParam)
assert isinstance(messages[1].content, list)
assert len(messages[1].content) == 3 # Image + File + original text
# First part should be image with data URL
assert isinstance(messages[1].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[1].content[0].image_url.url.startswith("data:image/")
# Second part should be file with data URL
assert isinstance(messages[1].content[1], OpenAIFile)
assert messages[1].content[1].file.file_data.startswith("data:application/pdf;base64,")
assert messages[1].content[1].file.filename == "doc.pdf"
assert messages[1].content[1].file.file_id is None # file_id should NOT be sent
# Third part should be original text
assert messages[1].content[2].text == "Here's my question."
async def test_prepend_prompt_with_image_using_image_url(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt with image variable using image_url instead of file_id."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Describe {{screenshot}}.",
prompt_id=prompt_id,
version=1,
variables=["screenshot"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={
"screenshot": OpenAIResponseInputMessageContentImage(
image_url="https://example.com/screenshot.png",
detail="low",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="What is this?")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 2
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Describe [Image: screenshot]."
# Check user message has image with URL
assert isinstance(messages[1], OpenAIUserMessageParam)
assert isinstance(messages[1].content, list)
# Image should use the provided URL
assert isinstance(messages[1].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[1].content[0].image_url.url == "https://example.com/screenshot.png"
assert messages[1].content[0].image_url.detail == "low"
async def test_prepend_prompt_with_media_no_user_message(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with media when there's no existing user message - should create one."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Analyze {{image}}.",
prompt_id=prompt_id,
version=1,
variables=["image"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import (
OpenAIAssistantMessageParam,
OpenAIChatCompletionContentPartImageParam,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
)
# Mock file content
mock_file_content = b"fake_image_data"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={"image": OpenAIResponseInputMessageContentImage(file_id="file-img-999")},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages - only assistant message, no user message
messages = [OpenAIAssistantMessageParam(content="Previous response")]
# Execute
result = await openai_responses_impl._prepend_prompt(messages, prompt_params)
# Verify
assert result == prompt
assert len(messages) == 3 # System + Assistant + New User
# Check system message
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Analyze [Image: image]."
# Original assistant message should still be there
assert isinstance(messages[1], OpenAIAssistantMessageParam)
assert messages[1].content == "Previous response"
# New user message with just the image should be appended
assert isinstance(messages[2], OpenAIUserMessageParam)
assert isinstance(messages[2].content, list)
assert len(messages[2].content) == 1
assert isinstance(messages[2].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[2].content[0].image_url.url.startswith("data:image/")
async def test_prepend_prompt_image_variable_missing_required_fields(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt with image variable that has neither file_id nor image_url - should raise error."""
# Setup
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Analyze {{bad_image}}.",
prompt_id=prompt_id,
version=1,
variables=["bad_image"],
is_default=True,
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponsePromptParam,
)
from llama_stack.apis.inference import OpenAIUserMessageParam
# Create image content with neither file_id nor image_url
prompt_params = OpenAIResponsePromptParam(
id=prompt_id,
version="1",
variables={"bad_image": OpenAIResponseInputMessageContentImage()}, # No file_id or image_url
)
mock_prompts_api.get_prompt.return_value = prompt
messages = [OpenAIUserMessageParam(content="Test")]
# Execute - should raise ValueError
with pytest.raises(ValueError, match="Image content must have either 'image_url' or 'file_id'"):
await openai_responses_impl._prepend_prompt(messages, prompt_params)

View file

@ -39,6 +39,8 @@ def responses_impl_with_conversations(
mock_vector_io_api,
mock_conversations_api,
mock_safety_api,
mock_prompts_api,
mock_files_api,
):
"""Create OpenAIResponsesImpl instance with conversations API."""
return OpenAIResponsesImpl(
@ -49,6 +51,8 @@ def responses_impl_with_conversations(
vector_io_api=mock_vector_io_api,
conversations_api=mock_conversations_api,
safety_api=mock_safety_api,
prompts_api=mock_prompts_api,
files_api=mock_files_api,
)

View file

@ -5,6 +5,8 @@
# the root directory of this source tree.
from unittest.mock import AsyncMock
import pytest
from llama_stack.apis.agents.openai_responses import (
@ -46,6 +48,12 @@ from llama_stack.providers.inline.agents.meta_reference.responses.utils import (
)
@pytest.fixture
def mock_files_api():
"""Mock files API for testing."""
return AsyncMock()
class TestConvertChatChoiceToResponseMessage:
async def test_convert_string_content(self):
choice = OpenAIChoice(
@ -78,17 +86,17 @@ class TestConvertChatChoiceToResponseMessage:
class TestConvertResponseContentToChatContent:
async def test_convert_string_content(self):
result = await convert_response_content_to_chat_content("Simple string")
async def test_convert_string_content(self, mock_files_api):
result = await convert_response_content_to_chat_content("Simple string", mock_files_api)
assert result == "Simple string"
async def test_convert_text_content_parts(self):
async def test_convert_text_content_parts(self, mock_files_api):
content = [
OpenAIResponseInputMessageContentText(text="First part"),
OpenAIResponseOutputMessageContentOutputText(text="Second part"),
]
result = await convert_response_content_to_chat_content(content)
result = await convert_response_content_to_chat_content(content, mock_files_api)
assert len(result) == 2
assert isinstance(result[0], OpenAIChatCompletionContentPartTextParam)
@ -96,10 +104,10 @@ class TestConvertResponseContentToChatContent:
assert isinstance(result[1], OpenAIChatCompletionContentPartTextParam)
assert result[1].text == "Second part"
async def test_convert_image_content(self):
async def test_convert_image_content(self, mock_files_api):
content = [OpenAIResponseInputMessageContentImage(image_url="https://example.com/image.jpg", detail="high")]
result = await convert_response_content_to_chat_content(content)
result = await convert_response_content_to_chat_content(content, mock_files_api)
assert len(result) == 1
assert isinstance(result[0], OpenAIChatCompletionContentPartImageParam)

View file

@ -30,6 +30,8 @@ def mock_apis():
"vector_io_api": AsyncMock(),
"conversations_api": AsyncMock(),
"safety_api": AsyncMock(),
"prompts_api": AsyncMock(),
"files_api": AsyncMock(),
}