validate scorer input

This commit is contained in:
Xi Yan 2024-10-23 17:43:41 -07:00
parent 0ee82571a8
commit 59c93548bc
2 changed files with 23 additions and 0 deletions

View file

@ -25,6 +25,11 @@ class EqualityScorer(BaseScorer):
) )
def score_row(self, input_row: Dict[str, Any]) -> ScoringResult: def score_row(self, input_row: Dict[str, Any]) -> ScoringResult:
assert "expected_answer" in input_row, "Expected answer not found in input row."
assert (
"generated_answer" in input_row
), "Generated answer not found in input row."
expected_answer = input_row["expected_answer"] expected_answer = input_row["expected_answer"]
generated_answer = input_row["generated_answer"] generated_answer = input_row["generated_answer"]
score = 1.0 if expected_answer == generated_answer else 0.0 score = 1.0 if expected_answer == generated_answer else 0.0

View file

@ -49,12 +49,30 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
"Dynamically registering scoring functions is not supported" "Dynamically registering scoring functions is not supported"
) )
async def validate_scoring_input_dataset_schema(self, dataset_id: str) -> None:
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
raise ValueError(
f"Dataset {dataset_id} does not have a schema defined. Please define a schema for the dataset."
)
for required_column in ["generated_answer", "expected_answer", "input_query"]:
if required_column not in dataset_def.dataset_schema:
raise ValueError(
f"Dataset {dataset_id} does not have a '{required_column}' column. Please make sure '{required_column}' column is in the dataset."
)
if dataset_def.dataset_schema[required_column].type != "string":
raise ValueError(
f"Dataset {dataset_id} does not have a '{required_column}' column of type 'string'. Please make sure '{required_column}' column is of type 'string'."
)
async def score_batch( async def score_batch(
self, self,
dataset_id: str, dataset_id: str,
scoring_functions: List[str], scoring_functions: List[str],
save_results_dataset: bool = False, save_results_dataset: bool = False,
) -> ScoreBatchResponse: ) -> ScoreBatchResponse:
await self.validate_scoring_input_dataset_schema(dataset_id=dataset_id)
rows_paginated = await self.datasetio_api.get_rows_paginated( rows_paginated = await self.datasetio_api.get_rows_paginated(
dataset_id=dataset_id, dataset_id=dataset_id,
rows_in_page=-1, rows_in_page=-1,