mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-11 12:38:02 +00:00
feat: adding a Makefile and a test script for sqlite-vec
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
de878e15a9
commit
5a05553e93
2 changed files with 145 additions and 0 deletions
33
Makefile
Normal file
33
Makefile
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
ROOT_DIR := $(shell dirname $(realpath $(firstword $(MAKEFILE_LIST))))
|
||||||
|
OS := linux
|
||||||
|
ifeq ($(shell uname -s), Darwin)
|
||||||
|
OS = osx
|
||||||
|
endif
|
||||||
|
|
||||||
|
PYTHON_VERSION = ${shell python --version | grep -Eo '[0-9]\.[0-9]+'}
|
||||||
|
PYTHON_VERSIONS := 3.10 3.11
|
||||||
|
|
||||||
|
build-dev:
|
||||||
|
uv sync --extra dev --extra test
|
||||||
|
uv pip install -e .
|
||||||
|
. .venv/bin/activate
|
||||||
|
uv pip install sqlite-vec chardet datasets sentence_transformers pypdf
|
||||||
|
|
||||||
|
build-ollama: fix-line-endings
|
||||||
|
llama stack build --template ollama --image-type venv
|
||||||
|
|
||||||
|
fix-line-endings:
|
||||||
|
sed -i '' 's/\r$$//' llama_stack/distribution/common.sh
|
||||||
|
sed -i '' 's/\r$$//' llama_stack/distribution/build_venv.sh
|
||||||
|
|
||||||
|
test-sqlite-vec:
|
||||||
|
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py \
|
||||||
|
-v -s --tb=short --disable-warnings --asyncio-mode=auto
|
||||||
|
|
||||||
|
test-ollama-vector-integration:
|
||||||
|
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama \
|
||||||
|
pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
|
||||||
|
|
||||||
|
|
||||||
|
make serve-ollama:
|
||||||
|
ollama run llama3.2:3b-instruct-fp16 --keepalive 24h
|
112
sqlite_vec_test.py
Normal file
112
sqlite_vec_test.py
Normal file
|
@ -0,0 +1,112 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import os
|
||||||
|
import uuid
|
||||||
|
|
||||||
|
from termcolor import cprint
|
||||||
|
|
||||||
|
# Set environment variables
|
||||||
|
os.environ["INFERENCE_MODEL"] = "llama3.2:3b-instruct-fp16"
|
||||||
|
os.environ["LLAMA_STACK_CONFIG"] = "ollama"
|
||||||
|
|
||||||
|
# Import libraries after setting environment variables
|
||||||
|
from llama_stack_client.lib.agents.agent import Agent
|
||||||
|
from llama_stack_client.lib.agents.event_logger import EventLogger
|
||||||
|
from llama_stack_client.types import Document
|
||||||
|
from llama_stack_client.types.agent_create_params import AgentConfig
|
||||||
|
|
||||||
|
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# Initialize the client
|
||||||
|
client = LlamaStackAsLibraryClient("ollama")
|
||||||
|
vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"
|
||||||
|
|
||||||
|
_ = client.initialize()
|
||||||
|
|
||||||
|
model_id = "llama3.2:3b-instruct-fp16"
|
||||||
|
|
||||||
|
# Define the list of document URLs and create Document objects
|
||||||
|
urls = [
|
||||||
|
"chat.rst",
|
||||||
|
"llama3.rst",
|
||||||
|
"memory_optimizations.rst",
|
||||||
|
"lora_finetune.rst",
|
||||||
|
]
|
||||||
|
documents = [
|
||||||
|
Document(
|
||||||
|
document_id=f"num-{i}",
|
||||||
|
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
|
||||||
|
mime_type="text/plain",
|
||||||
|
metadata={},
|
||||||
|
)
|
||||||
|
for i, url in enumerate(urls)
|
||||||
|
]
|
||||||
|
# (Optional) Use the documents as needed with your client here
|
||||||
|
|
||||||
|
client.vector_dbs.register(
|
||||||
|
provider_id="sqlite_vec",
|
||||||
|
vector_db_id=vector_db_id,
|
||||||
|
embedding_model="all-MiniLM-L6-v2",
|
||||||
|
embedding_dimension=384,
|
||||||
|
)
|
||||||
|
|
||||||
|
client.tool_runtime.rag_tool.insert(
|
||||||
|
documents=documents,
|
||||||
|
vector_db_id=vector_db_id,
|
||||||
|
chunk_size_in_tokens=512,
|
||||||
|
)
|
||||||
|
# Create agent configuration
|
||||||
|
agent_config = AgentConfig(
|
||||||
|
model=model_id,
|
||||||
|
instructions="You are a helpful assistant",
|
||||||
|
enable_session_persistence=False,
|
||||||
|
toolgroups=[
|
||||||
|
{
|
||||||
|
"name": "builtin::rag",
|
||||||
|
"args": {
|
||||||
|
"vector_db_ids": [vector_db_id],
|
||||||
|
},
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Instantiate the Agent
|
||||||
|
agent = Agent(client, agent_config)
|
||||||
|
|
||||||
|
# List of user prompts
|
||||||
|
user_prompts = [
|
||||||
|
"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.",
|
||||||
|
"Was anything related to 'Llama3' discussed, if so what?",
|
||||||
|
"Tell me how to use LoRA",
|
||||||
|
"What about Quantization?",
|
||||||
|
]
|
||||||
|
|
||||||
|
# Create a session for the agent
|
||||||
|
session_id = agent.create_session("test-session")
|
||||||
|
|
||||||
|
# Process each prompt and display the output
|
||||||
|
for prompt in user_prompts:
|
||||||
|
cprint(f"User> {prompt}", "green")
|
||||||
|
response = agent.create_turn(
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": prompt,
|
||||||
|
}
|
||||||
|
],
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
# Log and print events from the response
|
||||||
|
for log in EventLogger().log(response):
|
||||||
|
log.print()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Add table
Add a link
Reference in a new issue