mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat: Add OpenAI compat /v1/vector_store APIs (#2423)
Some checks failed
Integration Tests / test-matrix (http, 3.10, inference) (push) Failing after 28s
Integration Tests / test-matrix (http, 3.11, agents) (push) Failing after 26s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 32s
Integration Tests / test-matrix (http, 3.11, scoring) (push) Failing after 24s
Integration Tests / test-matrix (http, 3.10, inspect) (push) Failing after 32s
Integration Tests / test-matrix (http, 3.11, datasets) (push) Failing after 30s
Integration Tests / test-matrix (http, 3.11, tool_runtime) (push) Failing after 28s
Integration Tests / test-matrix (http, 3.12, inference) (push) Failing after 28s
Integration Tests / test-matrix (http, 3.12, providers) (push) Failing after 26s
Integration Tests / test-matrix (http, 3.12, tool_runtime) (push) Failing after 24s
Integration Tests / test-matrix (http, 3.10, scoring) (push) Failing after 32s
Integration Tests / test-matrix (http, 3.11, inference) (push) Failing after 39s
Integration Tests / test-matrix (http, 3.12, scoring) (push) Failing after 35s
Integration Tests / test-matrix (http, 3.10, datasets) (push) Failing after 47s
Integration Tests / test-matrix (http, 3.12, post_training) (push) Failing after 22s
Integration Tests / test-matrix (http, 3.11, inspect) (push) Failing after 42s
Integration Tests / test-matrix (http, 3.11, post_training) (push) Failing after 31s
Integration Tests / test-matrix (http, 3.11, providers) (push) Failing after 44s
Integration Tests / test-matrix (http, 3.12, datasets) (push) Failing after 40s
Integration Tests / test-matrix (http, 3.12, inspect) (push) Failing after 42s
Integration Tests / test-matrix (http, 3.10, providers) (push) Failing after 44s
Integration Tests / test-matrix (http, 3.10, agents) (push) Failing after 33s
Integration Tests / test-matrix (http, 3.12, agents) (push) Failing after 37s
Integration Tests / test-matrix (library, 3.10, inspect) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, inference) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.10, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 11s
Integration Tests / test-matrix (http, 3.10, post_training) (push) Failing after 41s
Integration Tests / test-matrix (library, 3.10, datasets) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, post_training) (push) Failing after 13s
Integration Tests / test-matrix (http, 3.10, tool_runtime) (push) Failing after 46s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 16s
Test External Providers / test-external-providers (venv) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 13s
Update ReadTheDocs / update-readthedocs (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 11s
Unit Tests / unit-tests (3.12) (push) Failing after 1m31s
Unit Tests / unit-tests (3.11) (push) Failing after 1m33s
Unit Tests / unit-tests (3.10) (push) Failing after 1m35s
Pre-commit / pre-commit (push) Failing after 3h13m41s
Some checks failed
Integration Tests / test-matrix (http, 3.10, inference) (push) Failing after 28s
Integration Tests / test-matrix (http, 3.11, agents) (push) Failing after 26s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 32s
Integration Tests / test-matrix (http, 3.11, scoring) (push) Failing after 24s
Integration Tests / test-matrix (http, 3.10, inspect) (push) Failing after 32s
Integration Tests / test-matrix (http, 3.11, datasets) (push) Failing after 30s
Integration Tests / test-matrix (http, 3.11, tool_runtime) (push) Failing after 28s
Integration Tests / test-matrix (http, 3.12, inference) (push) Failing after 28s
Integration Tests / test-matrix (http, 3.12, providers) (push) Failing after 26s
Integration Tests / test-matrix (http, 3.12, tool_runtime) (push) Failing after 24s
Integration Tests / test-matrix (http, 3.10, scoring) (push) Failing after 32s
Integration Tests / test-matrix (http, 3.11, inference) (push) Failing after 39s
Integration Tests / test-matrix (http, 3.12, scoring) (push) Failing after 35s
Integration Tests / test-matrix (http, 3.10, datasets) (push) Failing after 47s
Integration Tests / test-matrix (http, 3.12, post_training) (push) Failing after 22s
Integration Tests / test-matrix (http, 3.11, inspect) (push) Failing after 42s
Integration Tests / test-matrix (http, 3.11, post_training) (push) Failing after 31s
Integration Tests / test-matrix (http, 3.11, providers) (push) Failing after 44s
Integration Tests / test-matrix (http, 3.12, datasets) (push) Failing after 40s
Integration Tests / test-matrix (http, 3.12, inspect) (push) Failing after 42s
Integration Tests / test-matrix (http, 3.10, providers) (push) Failing after 44s
Integration Tests / test-matrix (http, 3.10, agents) (push) Failing after 33s
Integration Tests / test-matrix (http, 3.12, agents) (push) Failing after 37s
Integration Tests / test-matrix (library, 3.10, inspect) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, inference) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.10, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 11s
Integration Tests / test-matrix (http, 3.10, post_training) (push) Failing after 41s
Integration Tests / test-matrix (library, 3.10, datasets) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, post_training) (push) Failing after 13s
Integration Tests / test-matrix (http, 3.10, tool_runtime) (push) Failing after 46s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 16s
Test External Providers / test-external-providers (venv) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 13s
Update ReadTheDocs / update-readthedocs (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 11s
Unit Tests / unit-tests (3.12) (push) Failing after 1m31s
Unit Tests / unit-tests (3.11) (push) Failing after 1m33s
Unit Tests / unit-tests (3.10) (push) Failing after 1m35s
Pre-commit / pre-commit (push) Failing after 3h13m41s
Adding OpenAI compat `/v1/vector-store` apis. This PR implements the `faiss` provider with followup PRs coming up for other providers. Added routes to create, update, delete, list vector stores. Also added route to search a vector store Inserting into vector stores is missing and will be a follow up diff. ### Test Plan - Added new integration test for testing the faiss provider ``` pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2 ```
This commit is contained in:
parent
ee57e58f29
commit
5ac43268e8
10 changed files with 2930 additions and 16 deletions
773
docs/_static/llama-stack-spec.html
vendored
773
docs/_static/llama-stack-spec.html
vendored
|
@ -3283,6 +3283,117 @@
|
|||
}
|
||||
}
|
||||
},
|
||||
"/v1/openai/v1/vector_stores": {
|
||||
"get": {
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "A VectorStoreListResponse containing the list of vector stores.",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/VectorStoreListResponse"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"400": {
|
||||
"$ref": "#/components/responses/BadRequest400"
|
||||
},
|
||||
"429": {
|
||||
"$ref": "#/components/responses/TooManyRequests429"
|
||||
},
|
||||
"500": {
|
||||
"$ref": "#/components/responses/InternalServerError500"
|
||||
},
|
||||
"default": {
|
||||
"$ref": "#/components/responses/DefaultError"
|
||||
}
|
||||
},
|
||||
"tags": [
|
||||
"VectorIO"
|
||||
],
|
||||
"description": "Returns a list of vector stores.",
|
||||
"parameters": [
|
||||
{
|
||||
"name": "limit",
|
||||
"in": "query",
|
||||
"description": "A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.",
|
||||
"required": true,
|
||||
"schema": {
|
||||
"type": "integer"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "order",
|
||||
"in": "query",
|
||||
"description": "Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order.",
|
||||
"required": true,
|
||||
"schema": {
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "after",
|
||||
"in": "query",
|
||||
"description": "A cursor for use in pagination. `after` is an object ID that defines your place in the list.",
|
||||
"required": false,
|
||||
"schema": {
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "before",
|
||||
"in": "query",
|
||||
"description": "A cursor for use in pagination. `before` is an object ID that defines your place in the list.",
|
||||
"required": false,
|
||||
"schema": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
"post": {
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "A VectorStoreObject representing the created vector store.",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/VectorStoreObject"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"400": {
|
||||
"$ref": "#/components/responses/BadRequest400"
|
||||
},
|
||||
"429": {
|
||||
"$ref": "#/components/responses/TooManyRequests429"
|
||||
},
|
||||
"500": {
|
||||
"$ref": "#/components/responses/InternalServerError500"
|
||||
},
|
||||
"default": {
|
||||
"$ref": "#/components/responses/DefaultError"
|
||||
}
|
||||
},
|
||||
"tags": [
|
||||
"VectorIO"
|
||||
],
|
||||
"description": "Creates a vector store.",
|
||||
"parameters": [],
|
||||
"requestBody": {
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/OpenaiCreateVectorStoreRequest"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"/v1/openai/v1/files/{file_id}": {
|
||||
"get": {
|
||||
"responses": {
|
||||
|
@ -3367,6 +3478,141 @@
|
|||
]
|
||||
}
|
||||
},
|
||||
"/v1/openai/v1/vector_stores/{vector_store_id}": {
|
||||
"get": {
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "A VectorStoreObject representing the vector store.",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/VectorStoreObject"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"400": {
|
||||
"$ref": "#/components/responses/BadRequest400"
|
||||
},
|
||||
"429": {
|
||||
"$ref": "#/components/responses/TooManyRequests429"
|
||||
},
|
||||
"500": {
|
||||
"$ref": "#/components/responses/InternalServerError500"
|
||||
},
|
||||
"default": {
|
||||
"$ref": "#/components/responses/DefaultError"
|
||||
}
|
||||
},
|
||||
"tags": [
|
||||
"VectorIO"
|
||||
],
|
||||
"description": "Retrieves a vector store.",
|
||||
"parameters": [
|
||||
{
|
||||
"name": "vector_store_id",
|
||||
"in": "path",
|
||||
"description": "The ID of the vector store to retrieve.",
|
||||
"required": true,
|
||||
"schema": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
"post": {
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "A VectorStoreObject representing the updated vector store.",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/VectorStoreObject"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"400": {
|
||||
"$ref": "#/components/responses/BadRequest400"
|
||||
},
|
||||
"429": {
|
||||
"$ref": "#/components/responses/TooManyRequests429"
|
||||
},
|
||||
"500": {
|
||||
"$ref": "#/components/responses/InternalServerError500"
|
||||
},
|
||||
"default": {
|
||||
"$ref": "#/components/responses/DefaultError"
|
||||
}
|
||||
},
|
||||
"tags": [
|
||||
"VectorIO"
|
||||
],
|
||||
"description": "Updates a vector store.",
|
||||
"parameters": [
|
||||
{
|
||||
"name": "vector_store_id",
|
||||
"in": "path",
|
||||
"description": "The ID of the vector store to update.",
|
||||
"required": true,
|
||||
"schema": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
],
|
||||
"requestBody": {
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/OpenaiUpdateVectorStoreRequest"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": true
|
||||
}
|
||||
},
|
||||
"delete": {
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "A VectorStoreDeleteResponse indicating the deletion status.",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/VectorStoreDeleteResponse"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"400": {
|
||||
"$ref": "#/components/responses/BadRequest400"
|
||||
},
|
||||
"429": {
|
||||
"$ref": "#/components/responses/TooManyRequests429"
|
||||
},
|
||||
"500": {
|
||||
"$ref": "#/components/responses/InternalServerError500"
|
||||
},
|
||||
"default": {
|
||||
"$ref": "#/components/responses/DefaultError"
|
||||
}
|
||||
},
|
||||
"tags": [
|
||||
"VectorIO"
|
||||
],
|
||||
"description": "Delete a vector store.",
|
||||
"parameters": [
|
||||
{
|
||||
"name": "vector_store_id",
|
||||
"in": "path",
|
||||
"description": "The ID of the vector store to delete.",
|
||||
"required": true,
|
||||
"schema": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"/v1/openai/v1/embeddings": {
|
||||
"post": {
|
||||
"responses": {
|
||||
|
@ -3610,6 +3856,59 @@
|
|||
]
|
||||
}
|
||||
},
|
||||
"/v1/openai/v1/vector_stores/{vector_store_id}/search": {
|
||||
"post": {
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "A VectorStoreSearchResponse containing the search results.",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/VectorStoreSearchResponse"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"400": {
|
||||
"$ref": "#/components/responses/BadRequest400"
|
||||
},
|
||||
"429": {
|
||||
"$ref": "#/components/responses/TooManyRequests429"
|
||||
},
|
||||
"500": {
|
||||
"$ref": "#/components/responses/InternalServerError500"
|
||||
},
|
||||
"default": {
|
||||
"$ref": "#/components/responses/DefaultError"
|
||||
}
|
||||
},
|
||||
"tags": [
|
||||
"VectorIO"
|
||||
],
|
||||
"description": "Search for chunks in a vector store.\nSearches a vector store for relevant chunks based on a query and optional file attribute filters.",
|
||||
"parameters": [
|
||||
{
|
||||
"name": "vector_store_id",
|
||||
"in": "path",
|
||||
"description": "The ID of the vector store to search.",
|
||||
"required": true,
|
||||
"schema": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
],
|
||||
"requestBody": {
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/OpenaiSearchVectorStoreRequest"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"/v1/post-training/preference-optimize": {
|
||||
"post": {
|
||||
"responses": {
|
||||
|
@ -12174,6 +12473,218 @@
|
|||
"title": "OpenAICompletionChoice",
|
||||
"description": "A choice from an OpenAI-compatible completion response."
|
||||
},
|
||||
"OpenaiCreateVectorStoreRequest": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "A name for the vector store."
|
||||
},
|
||||
"file_ids": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "string"
|
||||
},
|
||||
"description": "A list of File IDs that the vector store should use. Useful for tools like `file_search` that can access files."
|
||||
},
|
||||
"expires_after": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
},
|
||||
"description": "The expiration policy for a vector store."
|
||||
},
|
||||
"chunking_strategy": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
},
|
||||
"description": "The chunking strategy used to chunk the file(s). If not set, will use the `auto` strategy."
|
||||
},
|
||||
"metadata": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
},
|
||||
"description": "Set of 16 key-value pairs that can be attached to an object."
|
||||
},
|
||||
"embedding_model": {
|
||||
"type": "string",
|
||||
"description": "The embedding model to use for this vector store."
|
||||
},
|
||||
"embedding_dimension": {
|
||||
"type": "integer",
|
||||
"description": "The dimension of the embedding vectors (default: 384)."
|
||||
},
|
||||
"provider_id": {
|
||||
"type": "string",
|
||||
"description": "The ID of the provider to use for this vector store."
|
||||
},
|
||||
"provider_vector_db_id": {
|
||||
"type": "string",
|
||||
"description": "The provider-specific vector database ID."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"title": "OpenaiCreateVectorStoreRequest"
|
||||
},
|
||||
"VectorStoreObject": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"id": {
|
||||
"type": "string"
|
||||
},
|
||||
"object": {
|
||||
"type": "string",
|
||||
"default": "vector_store"
|
||||
},
|
||||
"created_at": {
|
||||
"type": "integer"
|
||||
},
|
||||
"name": {
|
||||
"type": "string"
|
||||
},
|
||||
"usage_bytes": {
|
||||
"type": "integer",
|
||||
"default": 0
|
||||
},
|
||||
"file_counts": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"type": "integer"
|
||||
}
|
||||
},
|
||||
"status": {
|
||||
"type": "string",
|
||||
"default": "completed"
|
||||
},
|
||||
"expires_after": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"expires_at": {
|
||||
"type": "integer"
|
||||
},
|
||||
"last_active_at": {
|
||||
"type": "integer"
|
||||
},
|
||||
"metadata": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"id",
|
||||
"object",
|
||||
"created_at",
|
||||
"usage_bytes",
|
||||
"file_counts",
|
||||
"status",
|
||||
"metadata"
|
||||
],
|
||||
"title": "VectorStoreObject",
|
||||
"description": "OpenAI Vector Store object."
|
||||
},
|
||||
"OpenAIFileDeleteResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
@ -12201,6 +12712,30 @@
|
|||
"title": "OpenAIFileDeleteResponse",
|
||||
"description": "Response for deleting a file in OpenAI Files API."
|
||||
},
|
||||
"VectorStoreDeleteResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"id": {
|
||||
"type": "string"
|
||||
},
|
||||
"object": {
|
||||
"type": "string",
|
||||
"default": "vector_store.deleted"
|
||||
},
|
||||
"deleted": {
|
||||
"type": "boolean",
|
||||
"default": true
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"id",
|
||||
"object",
|
||||
"deleted"
|
||||
],
|
||||
"title": "VectorStoreDeleteResponse",
|
||||
"description": "Response from deleting a vector store."
|
||||
},
|
||||
"OpenaiEmbeddingsRequest": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
@ -12473,10 +13008,248 @@
|
|||
],
|
||||
"title": "OpenAIListModelsResponse"
|
||||
},
|
||||
"VectorStoreListResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"object": {
|
||||
"type": "string",
|
||||
"default": "list"
|
||||
},
|
||||
"data": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/VectorStoreObject"
|
||||
}
|
||||
},
|
||||
"first_id": {
|
||||
"type": "string"
|
||||
},
|
||||
"last_id": {
|
||||
"type": "string"
|
||||
},
|
||||
"has_more": {
|
||||
"type": "boolean",
|
||||
"default": false
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"object",
|
||||
"data",
|
||||
"has_more"
|
||||
],
|
||||
"title": "VectorStoreListResponse",
|
||||
"description": "Response from listing vector stores."
|
||||
},
|
||||
"Response": {
|
||||
"type": "object",
|
||||
"title": "Response"
|
||||
},
|
||||
"OpenaiSearchVectorStoreRequest": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
],
|
||||
"description": "The query string or array for performing the search."
|
||||
},
|
||||
"filters": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
},
|
||||
"description": "Filters based on file attributes to narrow the search results."
|
||||
},
|
||||
"max_num_results": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of results to return (1 to 50 inclusive, default 10)."
|
||||
},
|
||||
"ranking_options": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
},
|
||||
"description": "Ranking options for fine-tuning the search results."
|
||||
},
|
||||
"rewrite_query": {
|
||||
"type": "boolean",
|
||||
"description": "Whether to rewrite the natural language query for vector search (default false)"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"query",
|
||||
"max_num_results",
|
||||
"rewrite_query"
|
||||
],
|
||||
"title": "OpenaiSearchVectorStoreRequest"
|
||||
},
|
||||
"VectorStoreSearchResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"object": {
|
||||
"type": "string",
|
||||
"default": "vector_store.search_results.page"
|
||||
},
|
||||
"search_query": {
|
||||
"type": "string"
|
||||
},
|
||||
"data": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"has_more": {
|
||||
"type": "boolean",
|
||||
"default": false
|
||||
},
|
||||
"next_page": {
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"object",
|
||||
"search_query",
|
||||
"data",
|
||||
"has_more"
|
||||
],
|
||||
"title": "VectorStoreSearchResponse",
|
||||
"description": "Response from searching a vector store."
|
||||
},
|
||||
"OpenaiUpdateVectorStoreRequest": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "The name of the vector store."
|
||||
},
|
||||
"expires_after": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
},
|
||||
"description": "The expiration policy for a vector store."
|
||||
},
|
||||
"metadata": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
},
|
||||
"description": "Set of 16 key-value pairs that can be attached to an object."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"title": "OpenaiUpdateVectorStoreRequest"
|
||||
},
|
||||
"DPOAlignmentConfig": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
|
501
docs/_static/llama-stack-spec.yaml
vendored
501
docs/_static/llama-stack-spec.yaml
vendored
|
@ -2294,6 +2294,91 @@ paths:
|
|||
schema:
|
||||
$ref: '#/components/schemas/OpenaiCompletionRequest'
|
||||
required: true
|
||||
/v1/openai/v1/vector_stores:
|
||||
get:
|
||||
responses:
|
||||
'200':
|
||||
description: >-
|
||||
A VectorStoreListResponse containing the list of vector stores.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/VectorStoreListResponse'
|
||||
'400':
|
||||
$ref: '#/components/responses/BadRequest400'
|
||||
'429':
|
||||
$ref: >-
|
||||
#/components/responses/TooManyRequests429
|
||||
'500':
|
||||
$ref: >-
|
||||
#/components/responses/InternalServerError500
|
||||
default:
|
||||
$ref: '#/components/responses/DefaultError'
|
||||
tags:
|
||||
- VectorIO
|
||||
description: Returns a list of vector stores.
|
||||
parameters:
|
||||
- name: limit
|
||||
in: query
|
||||
description: >-
|
||||
A limit on the number of objects to be returned. Limit can range between
|
||||
1 and 100, and the default is 20.
|
||||
required: true
|
||||
schema:
|
||||
type: integer
|
||||
- name: order
|
||||
in: query
|
||||
description: >-
|
||||
Sort order by the `created_at` timestamp of the objects. `asc` for ascending
|
||||
order and `desc` for descending order.
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
- name: after
|
||||
in: query
|
||||
description: >-
|
||||
A cursor for use in pagination. `after` is an object ID that defines your
|
||||
place in the list.
|
||||
required: false
|
||||
schema:
|
||||
type: string
|
||||
- name: before
|
||||
in: query
|
||||
description: >-
|
||||
A cursor for use in pagination. `before` is an object ID that defines
|
||||
your place in the list.
|
||||
required: false
|
||||
schema:
|
||||
type: string
|
||||
post:
|
||||
responses:
|
||||
'200':
|
||||
description: >-
|
||||
A VectorStoreObject representing the created vector store.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/VectorStoreObject'
|
||||
'400':
|
||||
$ref: '#/components/responses/BadRequest400'
|
||||
'429':
|
||||
$ref: >-
|
||||
#/components/responses/TooManyRequests429
|
||||
'500':
|
||||
$ref: >-
|
||||
#/components/responses/InternalServerError500
|
||||
default:
|
||||
$ref: '#/components/responses/DefaultError'
|
||||
tags:
|
||||
- VectorIO
|
||||
description: Creates a vector store.
|
||||
parameters: []
|
||||
requestBody:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/OpenaiCreateVectorStoreRequest'
|
||||
required: true
|
||||
/v1/openai/v1/files/{file_id}:
|
||||
get:
|
||||
responses:
|
||||
|
@ -2356,6 +2441,100 @@ paths:
|
|||
required: true
|
||||
schema:
|
||||
type: string
|
||||
/v1/openai/v1/vector_stores/{vector_store_id}:
|
||||
get:
|
||||
responses:
|
||||
'200':
|
||||
description: >-
|
||||
A VectorStoreObject representing the vector store.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/VectorStoreObject'
|
||||
'400':
|
||||
$ref: '#/components/responses/BadRequest400'
|
||||
'429':
|
||||
$ref: >-
|
||||
#/components/responses/TooManyRequests429
|
||||
'500':
|
||||
$ref: >-
|
||||
#/components/responses/InternalServerError500
|
||||
default:
|
||||
$ref: '#/components/responses/DefaultError'
|
||||
tags:
|
||||
- VectorIO
|
||||
description: Retrieves a vector store.
|
||||
parameters:
|
||||
- name: vector_store_id
|
||||
in: path
|
||||
description: The ID of the vector store to retrieve.
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
post:
|
||||
responses:
|
||||
'200':
|
||||
description: >-
|
||||
A VectorStoreObject representing the updated vector store.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/VectorStoreObject'
|
||||
'400':
|
||||
$ref: '#/components/responses/BadRequest400'
|
||||
'429':
|
||||
$ref: >-
|
||||
#/components/responses/TooManyRequests429
|
||||
'500':
|
||||
$ref: >-
|
||||
#/components/responses/InternalServerError500
|
||||
default:
|
||||
$ref: '#/components/responses/DefaultError'
|
||||
tags:
|
||||
- VectorIO
|
||||
description: Updates a vector store.
|
||||
parameters:
|
||||
- name: vector_store_id
|
||||
in: path
|
||||
description: The ID of the vector store to update.
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
requestBody:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/OpenaiUpdateVectorStoreRequest'
|
||||
required: true
|
||||
delete:
|
||||
responses:
|
||||
'200':
|
||||
description: >-
|
||||
A VectorStoreDeleteResponse indicating the deletion status.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/VectorStoreDeleteResponse'
|
||||
'400':
|
||||
$ref: '#/components/responses/BadRequest400'
|
||||
'429':
|
||||
$ref: >-
|
||||
#/components/responses/TooManyRequests429
|
||||
'500':
|
||||
$ref: >-
|
||||
#/components/responses/InternalServerError500
|
||||
default:
|
||||
$ref: '#/components/responses/DefaultError'
|
||||
tags:
|
||||
- VectorIO
|
||||
description: Delete a vector store.
|
||||
parameters:
|
||||
- name: vector_store_id
|
||||
in: path
|
||||
description: The ID of the vector store to delete.
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
/v1/openai/v1/embeddings:
|
||||
post:
|
||||
responses:
|
||||
|
@ -2546,6 +2725,46 @@ paths:
|
|||
required: true
|
||||
schema:
|
||||
type: string
|
||||
/v1/openai/v1/vector_stores/{vector_store_id}/search:
|
||||
post:
|
||||
responses:
|
||||
'200':
|
||||
description: >-
|
||||
A VectorStoreSearchResponse containing the search results.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/VectorStoreSearchResponse'
|
||||
'400':
|
||||
$ref: '#/components/responses/BadRequest400'
|
||||
'429':
|
||||
$ref: >-
|
||||
#/components/responses/TooManyRequests429
|
||||
'500':
|
||||
$ref: >-
|
||||
#/components/responses/InternalServerError500
|
||||
default:
|
||||
$ref: '#/components/responses/DefaultError'
|
||||
tags:
|
||||
- VectorIO
|
||||
description: >-
|
||||
Search for chunks in a vector store.
|
||||
|
||||
Searches a vector store for relevant chunks based on a query and optional
|
||||
file attribute filters.
|
||||
parameters:
|
||||
- name: vector_store_id
|
||||
in: path
|
||||
description: The ID of the vector store to search.
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
requestBody:
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: '#/components/schemas/OpenaiSearchVectorStoreRequest'
|
||||
required: true
|
||||
/v1/post-training/preference-optimize:
|
||||
post:
|
||||
responses:
|
||||
|
@ -8505,6 +8724,131 @@ components:
|
|||
title: OpenAICompletionChoice
|
||||
description: >-
|
||||
A choice from an OpenAI-compatible completion response.
|
||||
OpenaiCreateVectorStoreRequest:
|
||||
type: object
|
||||
properties:
|
||||
name:
|
||||
type: string
|
||||
description: A name for the vector store.
|
||||
file_ids:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
description: >-
|
||||
A list of File IDs that the vector store should use. Useful for tools
|
||||
like `file_search` that can access files.
|
||||
expires_after:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
The expiration policy for a vector store.
|
||||
chunking_strategy:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
The chunking strategy used to chunk the file(s). If not set, will use
|
||||
the `auto` strategy.
|
||||
metadata:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
Set of 16 key-value pairs that can be attached to an object.
|
||||
embedding_model:
|
||||
type: string
|
||||
description: >-
|
||||
The embedding model to use for this vector store.
|
||||
embedding_dimension:
|
||||
type: integer
|
||||
description: >-
|
||||
The dimension of the embedding vectors (default: 384).
|
||||
provider_id:
|
||||
type: string
|
||||
description: >-
|
||||
The ID of the provider to use for this vector store.
|
||||
provider_vector_db_id:
|
||||
type: string
|
||||
description: >-
|
||||
The provider-specific vector database ID.
|
||||
additionalProperties: false
|
||||
title: OpenaiCreateVectorStoreRequest
|
||||
VectorStoreObject:
|
||||
type: object
|
||||
properties:
|
||||
id:
|
||||
type: string
|
||||
object:
|
||||
type: string
|
||||
default: vector_store
|
||||
created_at:
|
||||
type: integer
|
||||
name:
|
||||
type: string
|
||||
usage_bytes:
|
||||
type: integer
|
||||
default: 0
|
||||
file_counts:
|
||||
type: object
|
||||
additionalProperties:
|
||||
type: integer
|
||||
status:
|
||||
type: string
|
||||
default: completed
|
||||
expires_after:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
expires_at:
|
||||
type: integer
|
||||
last_active_at:
|
||||
type: integer
|
||||
metadata:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
additionalProperties: false
|
||||
required:
|
||||
- id
|
||||
- object
|
||||
- created_at
|
||||
- usage_bytes
|
||||
- file_counts
|
||||
- status
|
||||
- metadata
|
||||
title: VectorStoreObject
|
||||
description: OpenAI Vector Store object.
|
||||
OpenAIFileDeleteResponse:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -8528,6 +8872,24 @@ components:
|
|||
title: OpenAIFileDeleteResponse
|
||||
description: >-
|
||||
Response for deleting a file in OpenAI Files API.
|
||||
VectorStoreDeleteResponse:
|
||||
type: object
|
||||
properties:
|
||||
id:
|
||||
type: string
|
||||
object:
|
||||
type: string
|
||||
default: vector_store.deleted
|
||||
deleted:
|
||||
type: boolean
|
||||
default: true
|
||||
additionalProperties: false
|
||||
required:
|
||||
- id
|
||||
- object
|
||||
- deleted
|
||||
title: VectorStoreDeleteResponse
|
||||
description: Response from deleting a vector store.
|
||||
OpenaiEmbeddingsRequest:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -8751,9 +9113,148 @@ components:
|
|||
required:
|
||||
- data
|
||||
title: OpenAIListModelsResponse
|
||||
VectorStoreListResponse:
|
||||
type: object
|
||||
properties:
|
||||
object:
|
||||
type: string
|
||||
default: list
|
||||
data:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/VectorStoreObject'
|
||||
first_id:
|
||||
type: string
|
||||
last_id:
|
||||
type: string
|
||||
has_more:
|
||||
type: boolean
|
||||
default: false
|
||||
additionalProperties: false
|
||||
required:
|
||||
- object
|
||||
- data
|
||||
- has_more
|
||||
title: VectorStoreListResponse
|
||||
description: Response from listing vector stores.
|
||||
Response:
|
||||
type: object
|
||||
title: Response
|
||||
OpenaiSearchVectorStoreRequest:
|
||||
type: object
|
||||
properties:
|
||||
query:
|
||||
oneOf:
|
||||
- type: string
|
||||
- type: array
|
||||
items:
|
||||
type: string
|
||||
description: >-
|
||||
The query string or array for performing the search.
|
||||
filters:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
Filters based on file attributes to narrow the search results.
|
||||
max_num_results:
|
||||
type: integer
|
||||
description: >-
|
||||
Maximum number of results to return (1 to 50 inclusive, default 10).
|
||||
ranking_options:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
Ranking options for fine-tuning the search results.
|
||||
rewrite_query:
|
||||
type: boolean
|
||||
description: >-
|
||||
Whether to rewrite the natural language query for vector search (default
|
||||
false)
|
||||
additionalProperties: false
|
||||
required:
|
||||
- query
|
||||
- max_num_results
|
||||
- rewrite_query
|
||||
title: OpenaiSearchVectorStoreRequest
|
||||
VectorStoreSearchResponse:
|
||||
type: object
|
||||
properties:
|
||||
object:
|
||||
type: string
|
||||
default: vector_store.search_results.page
|
||||
search_query:
|
||||
type: string
|
||||
data:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
has_more:
|
||||
type: boolean
|
||||
default: false
|
||||
next_page:
|
||||
type: string
|
||||
additionalProperties: false
|
||||
required:
|
||||
- object
|
||||
- search_query
|
||||
- data
|
||||
- has_more
|
||||
title: VectorStoreSearchResponse
|
||||
description: Response from searching a vector store.
|
||||
OpenaiUpdateVectorStoreRequest:
|
||||
type: object
|
||||
properties:
|
||||
name:
|
||||
type: string
|
||||
description: The name of the vector store.
|
||||
expires_after:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
The expiration policy for a vector store.
|
||||
metadata:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
Set of 16 key-value pairs that can be attached to an object.
|
||||
additionalProperties: false
|
||||
title: OpenaiUpdateVectorStoreRequest
|
||||
DPOAlignmentConfig:
|
||||
type: object
|
||||
properties:
|
||||
|
|
|
@ -37,6 +37,85 @@ class QueryChunksResponse(BaseModel):
|
|||
scores: list[float]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreObject(BaseModel):
|
||||
"""OpenAI Vector Store object."""
|
||||
|
||||
id: str
|
||||
object: str = "vector_store"
|
||||
created_at: int
|
||||
name: str | None = None
|
||||
usage_bytes: int = 0
|
||||
file_counts: dict[str, int] = Field(default_factory=dict)
|
||||
status: str = "completed"
|
||||
expires_after: dict[str, Any] | None = None
|
||||
expires_at: int | None = None
|
||||
last_active_at: int | None = None
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreCreateRequest(BaseModel):
|
||||
"""Request to create a vector store."""
|
||||
|
||||
name: str | None = None
|
||||
file_ids: list[str] = Field(default_factory=list)
|
||||
expires_after: dict[str, Any] | None = None
|
||||
chunking_strategy: dict[str, Any] | None = None
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreModifyRequest(BaseModel):
|
||||
"""Request to modify a vector store."""
|
||||
|
||||
name: str | None = None
|
||||
expires_after: dict[str, Any] | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreListResponse(BaseModel):
|
||||
"""Response from listing vector stores."""
|
||||
|
||||
object: str = "list"
|
||||
data: list[VectorStoreObject]
|
||||
first_id: str | None = None
|
||||
last_id: str | None = None
|
||||
has_more: bool = False
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreSearchRequest(BaseModel):
|
||||
"""Request to search a vector store."""
|
||||
|
||||
query: str | list[str]
|
||||
filters: dict[str, Any] | None = None
|
||||
max_num_results: int = 10
|
||||
ranking_options: dict[str, Any] | None = None
|
||||
rewrite_query: bool = False
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreSearchResponse(BaseModel):
|
||||
"""Response from searching a vector store."""
|
||||
|
||||
object: str = "vector_store.search_results.page"
|
||||
search_query: str
|
||||
data: list[dict[str, Any]]
|
||||
has_more: bool = False
|
||||
next_page: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreDeleteResponse(BaseModel):
|
||||
"""Response from deleting a vector store."""
|
||||
|
||||
id: str
|
||||
object: str = "vector_store.deleted"
|
||||
deleted: bool = True
|
||||
|
||||
|
||||
class VectorDBStore(Protocol):
|
||||
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
|
||||
|
||||
|
@ -81,3 +160,116 @@ class VectorIO(Protocol):
|
|||
:returns: A QueryChunksResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
# OpenAI Vector Stores API endpoints
|
||||
@webmethod(route="/openai/v1/vector_stores", method="POST")
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
"""Creates a vector store.
|
||||
|
||||
:param name: A name for the vector store.
|
||||
:param file_ids: A list of File IDs that the vector store should use. Useful for tools like `file_search` that can access files.
|
||||
:param expires_after: The expiration policy for a vector store.
|
||||
:param chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` strategy.
|
||||
:param metadata: Set of 16 key-value pairs that can be attached to an object.
|
||||
:param embedding_model: The embedding model to use for this vector store.
|
||||
:param embedding_dimension: The dimension of the embedding vectors (default: 384).
|
||||
:param provider_id: The ID of the provider to use for this vector store.
|
||||
:param provider_vector_db_id: The provider-specific vector database ID.
|
||||
:returns: A VectorStoreObject representing the created vector store.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores", method="GET")
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int = 20,
|
||||
order: str = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
"""Returns a list of vector stores.
|
||||
|
||||
:param limit: A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
|
||||
:param order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order.
|
||||
:param after: A cursor for use in pagination. `after` is an object ID that defines your place in the list.
|
||||
:param before: A cursor for use in pagination. `before` is an object ID that defines your place in the list.
|
||||
:returns: A VectorStoreListResponse containing the list of vector stores.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="GET")
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
"""Retrieves a vector store.
|
||||
|
||||
:param vector_store_id: The ID of the vector store to retrieve.
|
||||
:returns: A VectorStoreObject representing the vector store.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="POST")
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
"""Updates a vector store.
|
||||
|
||||
:param vector_store_id: The ID of the vector store to update.
|
||||
:param name: The name of the vector store.
|
||||
:param expires_after: The expiration policy for a vector store.
|
||||
:param metadata: Set of 16 key-value pairs that can be attached to an object.
|
||||
:returns: A VectorStoreObject representing the updated vector store.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="DELETE")
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
"""Delete a vector store.
|
||||
|
||||
:param vector_store_id: The ID of the vector store to delete.
|
||||
:returns: A VectorStoreDeleteResponse indicating the deletion status.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/search", method="POST")
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
rewrite_query: bool = False,
|
||||
) -> VectorStoreSearchResponse:
|
||||
"""Search for chunks in a vector store.
|
||||
|
||||
Searches a vector store for relevant chunks based on a query and optional file attribute filters.
|
||||
|
||||
:param vector_store_id: The ID of the vector store to search.
|
||||
:param query: The query string or array for performing the search.
|
||||
:param filters: Filters based on file attributes to narrow the search results.
|
||||
:param max_num_results: Maximum number of results to return (1 to 50 inclusive, default 10).
|
||||
:param ranking_options: Ranking options for fine-tuning the search results.
|
||||
:param rewrite_query: Whether to rewrite the natural language query for vector search (default false)
|
||||
:returns: A VectorStoreSearchResponse containing the search results.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -9,7 +9,16 @@ from typing import Any
|
|||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponse,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import RoutingTable
|
||||
|
||||
|
@ -34,6 +43,31 @@ class VectorIORouter(VectorIO):
|
|||
logger.debug("VectorIORouter.shutdown")
|
||||
pass
|
||||
|
||||
async def _get_first_embedding_model(self) -> tuple[str, int] | None:
|
||||
"""Get the first available embedding model identifier."""
|
||||
try:
|
||||
# Get all models from the routing table
|
||||
all_models = await self.routing_table.get_all_with_type("model")
|
||||
|
||||
# Filter for embedding models
|
||||
embedding_models = [
|
||||
model
|
||||
for model in all_models
|
||||
if hasattr(model, "model_type") and model.model_type == ModelType.embedding
|
||||
]
|
||||
|
||||
if embedding_models:
|
||||
dimension = embedding_models[0].metadata.get("embedding_dimension", None)
|
||||
if dimension is None:
|
||||
raise ValueError(f"Embedding model {embedding_models[0].identifier} has no embedding dimension")
|
||||
return embedding_models[0].identifier, dimension
|
||||
else:
|
||||
logger.warning("No embedding models found in the routing table")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting embedding models: {e}")
|
||||
return None
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
|
@ -70,3 +104,153 @@ class VectorIORouter(VectorIO):
|
|||
) -> QueryChunksResponse:
|
||||
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
|
||||
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(vector_db_id, query, params)
|
||||
|
||||
# OpenAI Vector Stores API endpoints
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = None,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_create_vector_store: name={name}, provider_id={provider_id}")
|
||||
|
||||
# If no embedding model is provided, use the first available one
|
||||
if embedding_model is None:
|
||||
embedding_model_info = await self._get_first_embedding_model()
|
||||
if embedding_model_info is None:
|
||||
raise ValueError("No embedding model provided and no embedding models available in the system")
|
||||
embedding_model, embedding_dimension = embedding_model_info
|
||||
logger.info(f"No embedding model specified, using first available: {embedding_model}")
|
||||
|
||||
vector_db_id = name
|
||||
registered_vector_db = await self.routing_table.register_vector_db(
|
||||
vector_db_id,
|
||||
embedding_model,
|
||||
embedding_dimension,
|
||||
provider_id,
|
||||
provider_vector_db_id,
|
||||
)
|
||||
|
||||
return await self.routing_table.get_provider_impl(registered_vector_db.identifier).openai_create_vector_store(
|
||||
vector_db_id,
|
||||
file_ids=file_ids,
|
||||
expires_after=expires_after,
|
||||
chunking_strategy=chunking_strategy,
|
||||
metadata=metadata,
|
||||
embedding_model=embedding_model,
|
||||
embedding_dimension=embedding_dimension,
|
||||
provider_id=registered_vector_db.provider_id,
|
||||
provider_vector_db_id=registered_vector_db.provider_resource_id,
|
||||
)
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int = 20,
|
||||
order: str = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
logger.debug(f"VectorIORouter.openai_list_vector_stores: limit={limit}")
|
||||
# Route to default provider for now - could aggregate from all providers in the future
|
||||
# call retrieve on each vector dbs to get list of vector stores
|
||||
vector_dbs = await self.routing_table.get_all_with_type("vector_db")
|
||||
all_stores = []
|
||||
for vector_db in vector_dbs:
|
||||
vector_store = await self.routing_table.get_provider_impl(
|
||||
vector_db.identifier
|
||||
).openai_retrieve_vector_store(vector_db.identifier)
|
||||
all_stores.append(vector_store)
|
||||
|
||||
# Sort by created_at
|
||||
reverse_order = order == "desc"
|
||||
all_stores.sort(key=lambda x: x.created_at, reverse=reverse_order)
|
||||
|
||||
# Apply cursor-based pagination
|
||||
if after:
|
||||
after_index = next((i for i, store in enumerate(all_stores) if store.id == after), -1)
|
||||
if after_index >= 0:
|
||||
all_stores = all_stores[after_index + 1 :]
|
||||
|
||||
if before:
|
||||
before_index = next((i for i, store in enumerate(all_stores) if store.id == before), len(all_stores))
|
||||
all_stores = all_stores[:before_index]
|
||||
|
||||
# Apply limit
|
||||
limited_stores = all_stores[:limit]
|
||||
|
||||
# Determine pagination info
|
||||
has_more = len(all_stores) > limit
|
||||
first_id = limited_stores[0].id if limited_stores else None
|
||||
last_id = limited_stores[-1].id if limited_stores else None
|
||||
|
||||
return VectorStoreListResponse(
|
||||
data=limited_stores,
|
||||
has_more=has_more,
|
||||
first_id=first_id,
|
||||
last_id=last_id,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_retrieve_vector_store: {vector_store_id}")
|
||||
# Route based on vector store ID
|
||||
provider = self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store(vector_store_id)
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_update_vector_store: {vector_store_id}")
|
||||
# Route based on vector store ID
|
||||
provider = self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_update_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
name=name,
|
||||
expires_after=expires_after,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
logger.debug(f"VectorIORouter.openai_delete_vector_store: {vector_store_id}")
|
||||
# Route based on vector store ID
|
||||
provider = self.routing_table.get_provider_impl(vector_store_id)
|
||||
result = await provider.openai_delete_vector_store(vector_store_id)
|
||||
# drop from registry
|
||||
await self.routing_table.unregister_vector_db(vector_store_id)
|
||||
return result
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
rewrite_query: bool = False,
|
||||
) -> VectorStoreSearchResponse:
|
||||
logger.debug(f"VectorIORouter.openai_search_vector_store: {vector_store_id}")
|
||||
# Route based on vector store ID
|
||||
provider = self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
query=query,
|
||||
filters=filters,
|
||||
max_num_results=max_num_results,
|
||||
ranking_options=ranking_options,
|
||||
rewrite_query=rewrite_query,
|
||||
)
|
||||
|
|
|
@ -9,16 +9,26 @@ import base64
|
|||
import io
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
import time
|
||||
import uuid
|
||||
from typing import Any, Literal
|
||||
|
||||
import faiss
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponse,
|
||||
)
|
||||
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
|
@ -34,6 +44,11 @@ logger = logging.getLogger(__name__)
|
|||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::"
|
||||
FAISS_INDEX_PREFIX = f"faiss_index:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::"
|
||||
|
||||
|
||||
# In faiss, since we do
|
||||
CHUNK_MULTIPLIER = 5
|
||||
|
||||
|
||||
class FaissIndex(EmbeddingIndex):
|
||||
|
@ -131,6 +146,7 @@ class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self.inference_api = inference_api
|
||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
@ -148,6 +164,15 @@ class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
)
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
||||
# Load existing OpenAI vector stores
|
||||
start_key = OPENAI_VECTOR_STORES_PREFIX
|
||||
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
|
||||
stored_openai_stores = await self.kvstore.values_in_range(start_key, end_key)
|
||||
|
||||
for store_data in stored_openai_stores:
|
||||
store_info = json.loads(store_data)
|
||||
self.openai_vector_stores[store_info["id"]] = store_info
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
# Cleanup if needed
|
||||
pass
|
||||
|
@ -208,3 +233,286 @@ class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
# OpenAI Vector Stores API endpoints implementation
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
"""Creates a vector store."""
|
||||
assert self.kvstore is not None
|
||||
# store and vector_db have the same id
|
||||
store_id = name or str(uuid.uuid4())
|
||||
created_at = int(time.time())
|
||||
|
||||
if provider_id is None:
|
||||
raise ValueError("Provider ID is required")
|
||||
|
||||
if embedding_model is None:
|
||||
raise ValueError("Embedding model is required")
|
||||
|
||||
# Use provided embedding dimension or default to 384
|
||||
if embedding_dimension is None:
|
||||
raise ValueError("Embedding dimension is required")
|
||||
|
||||
provider_vector_db_id = provider_vector_db_id or store_id
|
||||
vector_db = VectorDB(
|
||||
identifier=store_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
embedding_model=embedding_model,
|
||||
provider_id=provider_id,
|
||||
provider_resource_id=provider_vector_db_id,
|
||||
)
|
||||
|
||||
# Register the vector DB
|
||||
await self.register_vector_db(vector_db)
|
||||
|
||||
# Create OpenAI vector store metadata
|
||||
store_info = {
|
||||
"id": store_id,
|
||||
"object": "vector_store",
|
||||
"created_at": created_at,
|
||||
"name": store_id,
|
||||
"usage_bytes": 0,
|
||||
"file_counts": {},
|
||||
"status": "completed",
|
||||
"expires_after": expires_after,
|
||||
"expires_at": None,
|
||||
"last_active_at": created_at,
|
||||
"file_ids": file_ids or [],
|
||||
"chunking_strategy": chunking_strategy,
|
||||
}
|
||||
|
||||
# Add provider information to metadata if provided
|
||||
metadata = metadata or {}
|
||||
if provider_id:
|
||||
metadata["provider_id"] = provider_id
|
||||
if provider_vector_db_id:
|
||||
metadata["provider_vector_db_id"] = provider_vector_db_id
|
||||
store_info["metadata"] = metadata
|
||||
|
||||
# Store in kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
|
||||
# Store in memory cache
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
|
||||
return VectorStoreObject(
|
||||
id=store_id,
|
||||
created_at=created_at,
|
||||
name=store_id,
|
||||
usage_bytes=0,
|
||||
file_counts={},
|
||||
status="completed",
|
||||
expires_after=expires_after,
|
||||
expires_at=None,
|
||||
last_active_at=created_at,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int = 20,
|
||||
order: str = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
"""Returns a list of vector stores."""
|
||||
# Get all vector stores
|
||||
all_stores = list(self.openai_vector_stores.values())
|
||||
|
||||
# Sort by created_at
|
||||
reverse_order = order == "desc"
|
||||
all_stores.sort(key=lambda x: x["created_at"], reverse=reverse_order)
|
||||
|
||||
# Apply cursor-based pagination
|
||||
if after:
|
||||
after_index = next((i for i, store in enumerate(all_stores) if store["id"] == after), -1)
|
||||
if after_index >= 0:
|
||||
all_stores = all_stores[after_index + 1 :]
|
||||
|
||||
if before:
|
||||
before_index = next((i for i, store in enumerate(all_stores) if store["id"] == before), len(all_stores))
|
||||
all_stores = all_stores[:before_index]
|
||||
|
||||
# Apply limit
|
||||
limited_stores = all_stores[:limit]
|
||||
# Convert to VectorStoreObject instances
|
||||
data = [VectorStoreObject(**store) for store in limited_stores]
|
||||
|
||||
# Determine pagination info
|
||||
has_more = len(all_stores) > limit
|
||||
first_id = data[0].id if data else None
|
||||
last_id = data[-1].id if data else None
|
||||
|
||||
return VectorStoreListResponse(
|
||||
data=data,
|
||||
has_more=has_more,
|
||||
first_id=first_id,
|
||||
last_id=last_id,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
"""Retrieves a vector store."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id]
|
||||
return VectorStoreObject(**store_info)
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
"""Modifies a vector store."""
|
||||
assert self.kvstore is not None
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||
|
||||
# Update fields if provided
|
||||
if name is not None:
|
||||
store_info["name"] = name
|
||||
if expires_after is not None:
|
||||
store_info["expires_after"] = expires_after
|
||||
if metadata is not None:
|
||||
store_info["metadata"] = metadata
|
||||
|
||||
# Update last_active_at
|
||||
store_info["last_active_at"] = int(time.time())
|
||||
|
||||
# Save to kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{vector_store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
|
||||
# Update in-memory cache
|
||||
self.openai_vector_stores[vector_store_id] = store_info
|
||||
|
||||
return VectorStoreObject(**store_info)
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
"""Delete a vector store."""
|
||||
assert self.kvstore is not None
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
# Delete from kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{vector_store_id}"
|
||||
await self.kvstore.delete(key)
|
||||
|
||||
# Delete from in-memory cache
|
||||
del self.openai_vector_stores[vector_store_id]
|
||||
|
||||
# Also delete the underlying vector DB
|
||||
try:
|
||||
await self.unregister_vector_db(vector_store_id)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete underlying vector DB {vector_store_id}: {e}")
|
||||
|
||||
return VectorStoreDeleteResponse(
|
||||
id=vector_store_id,
|
||||
deleted=True,
|
||||
)
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
rewrite_query: bool = False,
|
||||
search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
|
||||
) -> VectorStoreSearchResponse:
|
||||
"""Search for chunks in a vector store."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
if isinstance(query, list):
|
||||
search_query = " ".join(query)
|
||||
else:
|
||||
search_query = query
|
||||
|
||||
try:
|
||||
score_threshold = ranking_options.get("score_threshold", 0.0) if ranking_options else 0.0
|
||||
params = {
|
||||
"max_chunks": max_num_results * CHUNK_MULTIPLIER,
|
||||
"score_threshold": score_threshold,
|
||||
"mode": search_mode,
|
||||
}
|
||||
# TODO: Add support for ranking_options.ranker
|
||||
|
||||
response = await self.query_chunks(
|
||||
vector_db_id=vector_store_id,
|
||||
query=search_query,
|
||||
params=params,
|
||||
)
|
||||
|
||||
# Convert response to OpenAI format
|
||||
data = []
|
||||
for i, (chunk, score) in enumerate(zip(response.chunks, response.scores, strict=False)):
|
||||
# Apply score based filtering
|
||||
if score < score_threshold:
|
||||
continue
|
||||
|
||||
# Apply filters if provided
|
||||
if filters:
|
||||
# Simple metadata filtering
|
||||
if not self._matches_filters(chunk.metadata, filters):
|
||||
continue
|
||||
|
||||
chunk_data = {
|
||||
"id": f"chunk_{i}",
|
||||
"object": "vector_store.search_result",
|
||||
"score": score,
|
||||
"content": chunk.content.content if hasattr(chunk.content, "content") else str(chunk.content),
|
||||
"metadata": chunk.metadata,
|
||||
}
|
||||
data.append(chunk_data)
|
||||
if len(data) >= max_num_results:
|
||||
break
|
||||
|
||||
return VectorStoreSearchResponse(
|
||||
search_query=search_query,
|
||||
data=data,
|
||||
has_more=False, # For simplicity, we don't implement pagination here
|
||||
next_page=None,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error searching vector store {vector_store_id}: {e}")
|
||||
# Return empty results on error
|
||||
return VectorStoreSearchResponse(
|
||||
search_query=search_query,
|
||||
data=[],
|
||||
has_more=False,
|
||||
next_page=None,
|
||||
)
|
||||
|
||||
def _matches_filters(self, metadata: dict[str, Any], filters: dict[str, Any]) -> bool:
|
||||
"""Check if metadata matches the provided filters."""
|
||||
for key, value in filters.items():
|
||||
if key not in metadata:
|
||||
return False
|
||||
if metadata[key] != value:
|
||||
return False
|
||||
return True
|
||||
|
|
|
@ -6,11 +6,13 @@
|
|||
|
||||
import asyncio
|
||||
import hashlib
|
||||
import json
|
||||
import logging
|
||||
import sqlite3
|
||||
import struct
|
||||
import time
|
||||
import uuid
|
||||
from typing import Any
|
||||
from typing import Any, Literal
|
||||
|
||||
import numpy as np
|
||||
import sqlite_vec
|
||||
|
@ -18,7 +20,15 @@ from numpy.typing import NDArray
|
|||
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponse,
|
||||
)
|
||||
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import EmbeddingIndex, VectorDBWithIndex
|
||||
|
||||
|
@ -29,6 +39,11 @@ VECTOR_SEARCH = "vector"
|
|||
KEYWORD_SEARCH = "keyword"
|
||||
SEARCH_MODES = {VECTOR_SEARCH, KEYWORD_SEARCH}
|
||||
|
||||
# Constants for OpenAI vector stores (similar to faiss)
|
||||
VERSION = "v3"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::"
|
||||
CHUNK_MULTIPLIER = 5
|
||||
|
||||
|
||||
def serialize_vector(vector: list[float]) -> bytes:
|
||||
"""Serialize a list of floats into a compact binary representation."""
|
||||
|
@ -299,6 +314,7 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
def _setup_connection():
|
||||
|
@ -313,17 +329,29 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
metadata TEXT
|
||||
);
|
||||
""")
|
||||
# Create a table to persist OpenAI vector stores.
|
||||
cur.execute("""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_stores (
|
||||
id TEXT PRIMARY KEY,
|
||||
metadata TEXT
|
||||
);
|
||||
""")
|
||||
connection.commit()
|
||||
# Load any existing vector DB registrations.
|
||||
cur.execute("SELECT metadata FROM vector_dbs")
|
||||
rows = cur.fetchall()
|
||||
return rows
|
||||
vector_db_rows = cur.fetchall()
|
||||
# Load any existing OpenAI vector stores.
|
||||
cur.execute("SELECT metadata FROM openai_vector_stores")
|
||||
openai_store_rows = cur.fetchall()
|
||||
return vector_db_rows, openai_store_rows
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
rows = await asyncio.to_thread(_setup_connection)
|
||||
for row in rows:
|
||||
vector_db_rows, openai_store_rows = await asyncio.to_thread(_setup_connection)
|
||||
|
||||
# Load existing vector DBs
|
||||
for row in vector_db_rows:
|
||||
vector_db_data = row[0]
|
||||
vector_db = VectorDB.model_validate_json(vector_db_data)
|
||||
index = await SQLiteVecIndex.create(
|
||||
|
@ -331,6 +359,12 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
|
||||
# Load existing OpenAI vector stores
|
||||
for row in openai_store_rows:
|
||||
store_data = row[0]
|
||||
store_info = json.loads(store_data)
|
||||
self.openai_vector_stores[store_info["id"]] = store_info
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
# nothing to do since we don't maintain a persistent connection
|
||||
pass
|
||||
|
@ -389,6 +423,318 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
return await self.cache[vector_db_id].query_chunks(query, params)
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
"""Creates a vector store."""
|
||||
# store and vector_db have the same id
|
||||
store_id = name or str(uuid.uuid4())
|
||||
created_at = int(time.time())
|
||||
|
||||
if provider_id is None:
|
||||
raise ValueError("Provider ID is required")
|
||||
|
||||
if embedding_model is None:
|
||||
raise ValueError("Embedding model is required")
|
||||
|
||||
# Use provided embedding dimension or default to 384
|
||||
if embedding_dimension is None:
|
||||
raise ValueError("Embedding dimension is required")
|
||||
|
||||
provider_vector_db_id = provider_vector_db_id or store_id
|
||||
vector_db = VectorDB(
|
||||
identifier=store_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
embedding_model=embedding_model,
|
||||
provider_id=provider_id,
|
||||
provider_resource_id=provider_vector_db_id,
|
||||
)
|
||||
|
||||
# Register the vector DB
|
||||
await self.register_vector_db(vector_db)
|
||||
|
||||
# Create OpenAI vector store metadata
|
||||
store_info = {
|
||||
"id": store_id,
|
||||
"object": "vector_store",
|
||||
"created_at": created_at,
|
||||
"name": store_id,
|
||||
"usage_bytes": 0,
|
||||
"file_counts": {},
|
||||
"status": "completed",
|
||||
"expires_after": expires_after,
|
||||
"expires_at": None,
|
||||
"last_active_at": created_at,
|
||||
"file_ids": file_ids or [],
|
||||
"chunking_strategy": chunking_strategy,
|
||||
}
|
||||
|
||||
# Add provider information to metadata if provided
|
||||
metadata = metadata or {}
|
||||
if provider_id:
|
||||
metadata["provider_id"] = provider_id
|
||||
if provider_vector_db_id:
|
||||
metadata["provider_vector_db_id"] = provider_vector_db_id
|
||||
store_info["metadata"] = metadata
|
||||
|
||||
# Store in SQLite database
|
||||
def _store_openai_vector_store():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"INSERT OR REPLACE INTO openai_vector_stores (id, metadata) VALUES (?, ?)",
|
||||
(store_id, json.dumps(store_info)),
|
||||
)
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_store_openai_vector_store)
|
||||
|
||||
# Store in memory cache
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
|
||||
return VectorStoreObject(
|
||||
id=store_id,
|
||||
created_at=created_at,
|
||||
name=store_id,
|
||||
usage_bytes=0,
|
||||
file_counts={},
|
||||
status="completed",
|
||||
expires_after=expires_after,
|
||||
expires_at=None,
|
||||
last_active_at=created_at,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int = 20,
|
||||
order: str = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
"""Returns a list of vector stores."""
|
||||
# Get all vector stores
|
||||
all_stores = list(self.openai_vector_stores.values())
|
||||
|
||||
# Sort by created_at
|
||||
reverse_order = order == "desc"
|
||||
all_stores.sort(key=lambda x: x["created_at"], reverse=reverse_order)
|
||||
|
||||
# Apply cursor-based pagination
|
||||
if after:
|
||||
after_index = next((i for i, store in enumerate(all_stores) if store["id"] == after), -1)
|
||||
if after_index >= 0:
|
||||
all_stores = all_stores[after_index + 1 :]
|
||||
|
||||
if before:
|
||||
before_index = next((i for i, store in enumerate(all_stores) if store["id"] == before), len(all_stores))
|
||||
all_stores = all_stores[:before_index]
|
||||
|
||||
# Apply limit
|
||||
limited_stores = all_stores[:limit]
|
||||
# Convert to VectorStoreObject instances
|
||||
data = [VectorStoreObject(**store) for store in limited_stores]
|
||||
|
||||
# Determine pagination info
|
||||
has_more = len(all_stores) > limit
|
||||
first_id = data[0].id if data else None
|
||||
last_id = data[-1].id if data else None
|
||||
|
||||
return VectorStoreListResponse(
|
||||
data=data,
|
||||
has_more=has_more,
|
||||
first_id=first_id,
|
||||
last_id=last_id,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
"""Retrieves a vector store."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id]
|
||||
return VectorStoreObject(**store_info)
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
"""Modifies a vector store."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||
|
||||
# Update fields if provided
|
||||
if name is not None:
|
||||
store_info["name"] = name
|
||||
if expires_after is not None:
|
||||
store_info["expires_after"] = expires_after
|
||||
if metadata is not None:
|
||||
store_info["metadata"] = metadata
|
||||
|
||||
# Update last_active_at
|
||||
store_info["last_active_at"] = int(time.time())
|
||||
|
||||
# Save to SQLite database
|
||||
def _update_openai_vector_store():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"UPDATE openai_vector_stores SET metadata = ? WHERE id = ?",
|
||||
(json.dumps(store_info), vector_store_id),
|
||||
)
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_update_openai_vector_store)
|
||||
|
||||
# Update in-memory cache
|
||||
self.openai_vector_stores[vector_store_id] = store_info
|
||||
|
||||
return VectorStoreObject(**store_info)
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
"""Delete a vector store."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
# Delete from SQLite database
|
||||
def _delete_openai_vector_store():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute("DELETE FROM openai_vector_stores WHERE id = ?", (vector_store_id,))
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_delete_openai_vector_store)
|
||||
|
||||
# Delete from in-memory cache
|
||||
del self.openai_vector_stores[vector_store_id]
|
||||
|
||||
# Also delete the underlying vector DB
|
||||
try:
|
||||
await self.unregister_vector_db(vector_store_id)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete underlying vector DB {vector_store_id}: {e}")
|
||||
|
||||
return VectorStoreDeleteResponse(
|
||||
id=vector_store_id,
|
||||
deleted=True,
|
||||
)
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
rewrite_query: bool = False,
|
||||
search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
|
||||
) -> VectorStoreSearchResponse:
|
||||
"""Search for chunks in a vector store."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
if isinstance(query, list):
|
||||
search_query = " ".join(query)
|
||||
else:
|
||||
search_query = query
|
||||
|
||||
try:
|
||||
score_threshold = ranking_options.get("score_threshold", 0.0) if ranking_options else 0.0
|
||||
params = {
|
||||
"max_chunks": max_num_results * CHUNK_MULTIPLIER,
|
||||
"score_threshold": score_threshold,
|
||||
"mode": search_mode,
|
||||
}
|
||||
# TODO: Add support for ranking_options.ranker
|
||||
|
||||
response = await self.query_chunks(
|
||||
vector_db_id=vector_store_id,
|
||||
query=search_query,
|
||||
params=params,
|
||||
)
|
||||
|
||||
# Convert response to OpenAI format
|
||||
data = []
|
||||
for i, (chunk, score) in enumerate(zip(response.chunks, response.scores, strict=False)):
|
||||
# Apply score based filtering
|
||||
if score < score_threshold:
|
||||
continue
|
||||
|
||||
# Apply filters if provided
|
||||
if filters:
|
||||
# Simple metadata filtering
|
||||
if not self._matches_filters(chunk.metadata, filters):
|
||||
continue
|
||||
|
||||
chunk_data = {
|
||||
"id": f"chunk_{i}",
|
||||
"object": "vector_store.search_result",
|
||||
"score": score,
|
||||
"content": chunk.content.content if hasattr(chunk.content, "content") else str(chunk.content),
|
||||
"metadata": chunk.metadata,
|
||||
}
|
||||
data.append(chunk_data)
|
||||
if len(data) >= max_num_results:
|
||||
break
|
||||
|
||||
return VectorStoreSearchResponse(
|
||||
search_query=search_query,
|
||||
data=data,
|
||||
has_more=False, # For simplicity, we don't implement pagination here
|
||||
next_page=None,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error searching vector store {vector_store_id}: {e}")
|
||||
# Return empty results on error
|
||||
return VectorStoreSearchResponse(
|
||||
search_query=search_query,
|
||||
data=[],
|
||||
has_more=False,
|
||||
next_page=None,
|
||||
)
|
||||
|
||||
def _matches_filters(self, metadata: dict[str, Any], filters: dict[str, Any]) -> bool:
|
||||
"""Check if metadata matches the provided filters."""
|
||||
for key, value in filters.items():
|
||||
if key not in metadata:
|
||||
return False
|
||||
if metadata[key] != value:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
||||
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
from typing import Any, Literal
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import chromadb
|
||||
|
@ -14,7 +14,15 @@ from numpy.typing import NDArray
|
|||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponse,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
|
@ -178,3 +186,59 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
index = VectorDBWithIndex(vector_db, ChromaIndex(self.client, collection), self.inference_api)
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int = 20,
|
||||
order: str = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
rewrite_query: bool = False,
|
||||
search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
|
||||
) -> VectorStoreSearchResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
|
|
@ -9,14 +9,22 @@ import hashlib
|
|||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any
|
||||
from typing import Any, Literal
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from pymilvus import MilvusClient
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponse,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
|
@ -177,6 +185,62 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int = 20,
|
||||
order: str = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
rewrite_query: bool = False,
|
||||
search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
|
||||
) -> VectorStoreSearchResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
|
||||
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
||||
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any
|
||||
from typing import Any, Literal
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from qdrant_client import AsyncQdrantClient, models
|
||||
|
@ -14,7 +14,15 @@ from qdrant_client.models import PointStruct
|
|||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponse,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
|
@ -178,3 +186,59 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int = 20,
|
||||
order: str = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int = 10,
|
||||
ranking_options: dict[str, Any] | None = None,
|
||||
rewrite_query: bool = False,
|
||||
search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
|
||||
) -> VectorStoreSearchResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
|
418
tests/integration/vector_io/test_openai_vector_stores.py
Normal file
418
tests/integration/vector_io/test_openai_vector_stores.py
Normal file
|
@ -0,0 +1,418 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
import time
|
||||
|
||||
import pytest
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.vector_io import Chunk
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def skip_if_provider_doesnt_support_openai_vector_stores(client_with_models):
|
||||
if isinstance(client_with_models, LlamaStackAsLibraryClient):
|
||||
pytest.skip("OpenAI vector stores are not supported when testing with library client yet.")
|
||||
|
||||
vector_io_providers = [p for p in client_with_models.providers.list() if p.api == "vector_io"]
|
||||
for p in vector_io_providers:
|
||||
if p.provider_type in ["inline::faiss", "inline::sqlite-vec"]:
|
||||
return
|
||||
|
||||
pytest.skip("OpenAI vector stores are not supported by any provider")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def openai_client(client_with_models):
|
||||
base_url = f"{client_with_models.base_url}/v1/openai/v1"
|
||||
return OpenAI(base_url=base_url, api_key="fake")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def sample_chunks():
|
||||
return [
|
||||
Chunk(
|
||||
content="Python is a high-level programming language that emphasizes code readability and allows programmers to express concepts in fewer lines of code than would be possible in languages such as C++ or Java.",
|
||||
metadata={"document_id": "doc1", "topic": "programming"},
|
||||
),
|
||||
Chunk(
|
||||
content="Machine learning is a subset of artificial intelligence that enables systems to automatically learn and improve from experience without being explicitly programmed, using statistical techniques to give computer systems the ability to progressively improve performance on a specific task.",
|
||||
metadata={"document_id": "doc2", "topic": "ai"},
|
||||
),
|
||||
Chunk(
|
||||
content="Data structures are fundamental to computer science because they provide organized ways to store and access data efficiently, enable faster processing of data through optimized algorithms, and form the building blocks for more complex software systems.",
|
||||
metadata={"document_id": "doc3", "topic": "computer_science"},
|
||||
),
|
||||
Chunk(
|
||||
content="Neural networks are inspired by biological neural networks found in animal brains, using interconnected nodes called artificial neurons to process information through weighted connections that can be trained to recognize patterns and solve complex problems through iterative learning.",
|
||||
metadata={"document_id": "doc4", "topic": "ai"},
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def openai_client_with_empty_stores(openai_client):
|
||||
def clear_vector_stores():
|
||||
# List and delete all existing vector stores
|
||||
try:
|
||||
response = openai_client.vector_stores.list()
|
||||
for store in response.data:
|
||||
openai_client.vector_stores.delete(vector_store_id=store.id)
|
||||
except Exception:
|
||||
# If the API is not available or fails, just continue
|
||||
logger.warning("Failed to clear vector stores")
|
||||
pass
|
||||
|
||||
clear_vector_stores()
|
||||
yield openai_client
|
||||
|
||||
# Clean up after the test
|
||||
clear_vector_stores()
|
||||
|
||||
|
||||
def test_openai_create_vector_store(openai_client_with_empty_stores, client_with_models):
|
||||
"""Test creating a vector store using OpenAI API."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
client = openai_client_with_empty_stores
|
||||
|
||||
# Create a vector store
|
||||
vector_store = client.vector_stores.create(
|
||||
name="test_vector_store", metadata={"purpose": "testing", "environment": "integration"}
|
||||
)
|
||||
|
||||
assert vector_store is not None
|
||||
assert vector_store.name == "test_vector_store"
|
||||
assert vector_store.object == "vector_store"
|
||||
assert vector_store.status in ["completed", "in_progress"]
|
||||
assert vector_store.metadata["purpose"] == "testing"
|
||||
assert vector_store.metadata["environment"] == "integration"
|
||||
assert hasattr(vector_store, "id")
|
||||
assert hasattr(vector_store, "created_at")
|
||||
|
||||
|
||||
def test_openai_list_vector_stores(openai_client_with_empty_stores, client_with_models):
|
||||
"""Test listing vector stores using OpenAI API."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
client = openai_client_with_empty_stores
|
||||
|
||||
# Create a few vector stores
|
||||
store1 = client.vector_stores.create(name="store1", metadata={"type": "test"})
|
||||
store2 = client.vector_stores.create(name="store2", metadata={"type": "test"})
|
||||
|
||||
# List vector stores
|
||||
response = client.vector_stores.list()
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "data")
|
||||
assert len(response.data) >= 2
|
||||
|
||||
# Check that our stores are in the list
|
||||
store_ids = [store.id for store in response.data]
|
||||
assert store1.id in store_ids
|
||||
assert store2.id in store_ids
|
||||
|
||||
# Test pagination with limit
|
||||
limited_response = client.vector_stores.list(limit=1)
|
||||
assert len(limited_response.data) == 1
|
||||
|
||||
|
||||
def test_openai_retrieve_vector_store(openai_client_with_empty_stores, client_with_models):
|
||||
"""Test retrieving a specific vector store using OpenAI API."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
client = openai_client_with_empty_stores
|
||||
|
||||
# Create a vector store
|
||||
created_store = client.vector_stores.create(name="retrieve_test_store", metadata={"purpose": "retrieval_test"})
|
||||
|
||||
# Retrieve the store
|
||||
retrieved_store = client.vector_stores.retrieve(vector_store_id=created_store.id)
|
||||
|
||||
assert retrieved_store is not None
|
||||
assert retrieved_store.id == created_store.id
|
||||
assert retrieved_store.name == "retrieve_test_store"
|
||||
assert retrieved_store.metadata["purpose"] == "retrieval_test"
|
||||
assert retrieved_store.object == "vector_store"
|
||||
|
||||
|
||||
def test_openai_update_vector_store(openai_client_with_empty_stores, client_with_models):
|
||||
"""Test modifying a vector store using OpenAI API."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
client = openai_client_with_empty_stores
|
||||
|
||||
# Create a vector store
|
||||
created_store = client.vector_stores.create(name="original_name", metadata={"version": "1.0"})
|
||||
time.sleep(1)
|
||||
# Modify the store
|
||||
modified_store = client.vector_stores.update(
|
||||
vector_store_id=created_store.id, name="modified_name", metadata={"version": "1.1", "updated": "true"}
|
||||
)
|
||||
|
||||
assert modified_store is not None
|
||||
assert modified_store.id == created_store.id
|
||||
assert modified_store.name == "modified_name"
|
||||
assert modified_store.metadata["version"] == "1.1"
|
||||
assert modified_store.metadata["updated"] == "true"
|
||||
# last_active_at should be updated
|
||||
assert modified_store.last_active_at > created_store.last_active_at
|
||||
|
||||
|
||||
def test_openai_delete_vector_store(openai_client_with_empty_stores, client_with_models):
|
||||
"""Test deleting a vector store using OpenAI API."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
client = openai_client_with_empty_stores
|
||||
|
||||
# Create a vector store
|
||||
created_store = client.vector_stores.create(name="delete_test_store", metadata={"purpose": "deletion_test"})
|
||||
|
||||
# Delete the store
|
||||
delete_response = client.vector_stores.delete(vector_store_id=created_store.id)
|
||||
|
||||
assert delete_response is not None
|
||||
assert delete_response.id == created_store.id
|
||||
assert delete_response.deleted is True
|
||||
assert delete_response.object == "vector_store.deleted"
|
||||
|
||||
# Verify the store is deleted - attempting to retrieve should fail
|
||||
with pytest.raises(Exception): # noqa: B017
|
||||
client.vector_stores.retrieve(vector_store_id=created_store.id)
|
||||
|
||||
|
||||
def test_openai_vector_store_search_empty(openai_client_with_empty_stores, client_with_models):
|
||||
"""Test searching an empty vector store using OpenAI API."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
client = openai_client_with_empty_stores
|
||||
|
||||
# Create a vector store
|
||||
vector_store = client.vector_stores.create(name="search_test_store", metadata={"purpose": "search_testing"})
|
||||
|
||||
# Search the empty store
|
||||
search_response = client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query="test query", max_num_results=5
|
||||
)
|
||||
|
||||
assert search_response is not None
|
||||
assert hasattr(search_response, "data")
|
||||
assert len(search_response.data) == 0 # Empty store should return no results
|
||||
assert search_response.search_query == "test query"
|
||||
assert search_response.has_more is False
|
||||
|
||||
|
||||
def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client_with_models, sample_chunks):
|
||||
"""Test vector store functionality with actual chunks using both OpenAI and native APIs."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
openai_client = openai_client_with_empty_stores
|
||||
llama_client = client_with_models
|
||||
|
||||
# Create a vector store using OpenAI API
|
||||
vector_store = openai_client.vector_stores.create(name="chunks_test_store", metadata={"purpose": "chunks_testing"})
|
||||
|
||||
# Insert chunks using the native LlamaStack API (since OpenAI API doesn't have direct chunk insertion)
|
||||
llama_client.vector_io.insert(
|
||||
vector_db_id=vector_store.id,
|
||||
chunks=sample_chunks,
|
||||
)
|
||||
|
||||
# Search using OpenAI API
|
||||
search_response = openai_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query="What is Python programming language?", max_num_results=3
|
||||
)
|
||||
assert search_response is not None
|
||||
assert len(search_response.data) > 0
|
||||
|
||||
# The top result should be about Python (doc1)
|
||||
top_result = search_response.data[0]
|
||||
assert "python" in top_result.content.lower() or "programming" in top_result.content.lower()
|
||||
assert top_result.metadata["document_id"] == "doc1"
|
||||
|
||||
# Test filtering by metadata
|
||||
filtered_search = openai_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query="artificial intelligence", filters={"topic": "ai"}, max_num_results=5
|
||||
)
|
||||
|
||||
assert filtered_search is not None
|
||||
# All results should have topic "ai"
|
||||
for result in filtered_search.data:
|
||||
assert result.metadata["topic"] == "ai"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
("What makes Python different from other languages?", "doc1", "programming"),
|
||||
("How do systems learn automatically?", "doc2", "ai"),
|
||||
("Why are data structures important?", "doc3", "computer_science"),
|
||||
("What inspires neural networks?", "doc4", "ai"),
|
||||
],
|
||||
)
|
||||
def test_openai_vector_store_search_relevance(
|
||||
openai_client_with_empty_stores, client_with_models, sample_chunks, test_case
|
||||
):
|
||||
"""Test that OpenAI vector store search returns relevant results for different queries."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
openai_client = openai_client_with_empty_stores
|
||||
llama_client = client_with_models
|
||||
|
||||
query, expected_doc_id, expected_topic = test_case
|
||||
|
||||
# Create a vector store
|
||||
vector_store = openai_client.vector_stores.create(
|
||||
name=f"relevance_test_{expected_doc_id}", metadata={"purpose": "relevance_testing"}
|
||||
)
|
||||
|
||||
# Insert chunks using native API
|
||||
llama_client.vector_io.insert(
|
||||
vector_db_id=vector_store.id,
|
||||
chunks=sample_chunks,
|
||||
)
|
||||
|
||||
# Search using OpenAI API
|
||||
search_response = openai_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query=query, max_num_results=4
|
||||
)
|
||||
|
||||
assert search_response is not None
|
||||
assert len(search_response.data) > 0
|
||||
|
||||
# The top result should match the expected document
|
||||
top_result = search_response.data[0]
|
||||
assert top_result.metadata["document_id"] == expected_doc_id
|
||||
assert top_result.metadata["topic"] == expected_topic
|
||||
|
||||
# Verify score is included and reasonable
|
||||
assert isinstance(top_result.score, int | float)
|
||||
assert top_result.score > 0
|
||||
|
||||
|
||||
def test_openai_vector_store_search_with_ranking_options(
|
||||
openai_client_with_empty_stores, client_with_models, sample_chunks
|
||||
):
|
||||
"""Test OpenAI vector store search with ranking options."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
openai_client = openai_client_with_empty_stores
|
||||
llama_client = client_with_models
|
||||
|
||||
# Create a vector store
|
||||
vector_store = openai_client.vector_stores.create(
|
||||
name="ranking_test_store", metadata={"purpose": "ranking_testing"}
|
||||
)
|
||||
|
||||
# Insert chunks
|
||||
llama_client.vector_io.insert(
|
||||
vector_db_id=vector_store.id,
|
||||
chunks=sample_chunks,
|
||||
)
|
||||
|
||||
# Search with ranking options
|
||||
threshold = 0.1
|
||||
search_response = openai_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query="machine learning and artificial intelligence",
|
||||
max_num_results=3,
|
||||
ranking_options={"score_threshold": threshold},
|
||||
)
|
||||
|
||||
assert search_response is not None
|
||||
assert len(search_response.data) > 0
|
||||
|
||||
# All results should meet the score threshold
|
||||
for result in search_response.data:
|
||||
assert result.score >= threshold
|
||||
|
||||
|
||||
def test_openai_vector_store_search_with_high_score_filter(
|
||||
openai_client_with_empty_stores, client_with_models, sample_chunks
|
||||
):
|
||||
"""Test that searching with text very similar to a document and high score threshold returns only that document."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
openai_client = openai_client_with_empty_stores
|
||||
llama_client = client_with_models
|
||||
|
||||
# Create a vector store
|
||||
vector_store = openai_client.vector_stores.create(
|
||||
name="high_score_filter_test", metadata={"purpose": "high_score_filtering"}
|
||||
)
|
||||
|
||||
# Insert chunks
|
||||
llama_client.vector_io.insert(
|
||||
vector_db_id=vector_store.id,
|
||||
chunks=sample_chunks,
|
||||
)
|
||||
|
||||
# Query with text very similar to the Python document (doc1)
|
||||
# This should match very closely to the first sample chunk about Python
|
||||
query = "Python is a high-level programming language with code readability and fewer lines than C++ or Java"
|
||||
|
||||
# picking up thrshold to be slightly higher than the second result
|
||||
search_response = openai_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query=query,
|
||||
max_num_results=3,
|
||||
)
|
||||
assert len(search_response.data) > 1, "Expected more than one result"
|
||||
threshold = search_response.data[1].score + 0.0001
|
||||
|
||||
# we expect only one result with the requested threshold
|
||||
search_response = openai_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query=query,
|
||||
max_num_results=10, # Allow more results but expect filtering
|
||||
ranking_options={"score_threshold": threshold},
|
||||
)
|
||||
|
||||
# With high threshold and similar query, we should get only the Python document
|
||||
assert len(search_response.data) == 1, "Expected only one result with high threshold"
|
||||
|
||||
# The top result should be the Python document (doc1)
|
||||
top_result = search_response.data[0]
|
||||
assert top_result.metadata["document_id"] == "doc1"
|
||||
assert top_result.metadata["topic"] == "programming"
|
||||
assert top_result.score >= threshold
|
||||
|
||||
# Verify the content contains Python-related terms
|
||||
assert "python" in top_result.content.lower() or "programming" in top_result.content.lower()
|
||||
|
||||
|
||||
def test_openai_vector_store_search_with_max_num_results(
|
||||
openai_client_with_empty_stores, client_with_models, sample_chunks
|
||||
):
|
||||
"""Test OpenAI vector store search with max_num_results."""
|
||||
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
|
||||
|
||||
openai_client = openai_client_with_empty_stores
|
||||
llama_client = client_with_models
|
||||
|
||||
# Create a vector store
|
||||
vector_store = openai_client.vector_stores.create(
|
||||
name="max_num_results_test_store", metadata={"purpose": "max_num_results_testing"}
|
||||
)
|
||||
|
||||
# Insert chunks
|
||||
llama_client.vector_io.insert(
|
||||
vector_db_id=vector_store.id,
|
||||
chunks=sample_chunks,
|
||||
)
|
||||
|
||||
# Search with max_num_results
|
||||
search_response = openai_client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query="machine learning and artificial intelligence",
|
||||
max_num_results=2,
|
||||
)
|
||||
|
||||
assert search_response is not None
|
||||
assert len(search_response.data) == 2
|
Loading…
Add table
Add a link
Reference in a new issue