ollama and databricks

This commit is contained in:
Dinesh Yeduguru 2024-11-12 13:17:27 -08:00
parent 8de4cee373
commit 5b2282afd4
2 changed files with 78 additions and 28 deletions

View file

@ -6,6 +6,8 @@
from typing import AsyncGenerator
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
@ -15,7 +17,10 @@ from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.model_registry import (
ModelAlias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
@ -28,16 +33,25 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
from .config import DatabricksImplConfig
DATABRICKS_SUPPORTED_MODELS = {
"Llama3.1-70B-Instruct": "databricks-meta-llama-3-1-70b-instruct",
"Llama3.1-405B-Instruct": "databricks-meta-llama-3-1-405b-instruct",
}
model_aliases = [
ModelAlias(
provider_model_id="databricks-meta-llama-3-1-70b-instruct",
aliases=["Llama3.1-70B-Instruct"],
llama_model=CoreModelId.llama3_1_70b_instruct.value,
),
ModelAlias(
provider_model_id="databricks-meta-llama-3-1-405b-instruct",
aliases=["Llama3.1-405B-Instruct"],
llama_model=CoreModelId.llama3_1_405b_instruct.value,
),
]
class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: DatabricksImplConfig) -> None:
ModelRegistryHelper.__init__(
self, provider_to_common_model_aliases_map=DATABRICKS_SUPPORTED_MODELS
self,
model_aliases=model_aliases,
)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
@ -113,8 +127,10 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": self.map_to_provider_model(request.model),
"prompt": chat_completion_request_to_prompt(request, self.formatter),
"model": request.model,
"prompt": chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
),
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}

View file

@ -7,13 +7,18 @@
from typing import AsyncGenerator
import httpx
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from ollama import AsyncClient
from llama_stack.providers.utils.inference.model_registry import (
ModelAlias,
ModelRegistryHelper,
)
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
@ -33,19 +38,52 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
request_has_media,
)
OLLAMA_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16",
"Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
"Llama3.2-1B-Instruct": "llama3.2:1b-instruct-fp16",
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
"Llama-Guard-3-8B": "llama-guard3:8b",
"Llama-Guard-3-1B": "llama-guard3:1b",
"Llama3.2-11B-Vision-Instruct": "x/llama3.2-vision:11b-instruct-fp16",
}
model_aliases = [
ModelAlias(
provider_model_id="llama3.1:8b-instruct-fp16",
aliases=["Llama3.1-8B-Instruct"],
llama_model=CoreModelId.llama3_1_8b_instruct.value,
),
ModelAlias(
provider_model_id="llama3.1:70b-instruct-fp16",
aliases=["Llama3.1-70B-Instruct"],
llama_model=CoreModelId.llama3_1_70b_instruct.value,
),
ModelAlias(
provider_model_id="llama3.2:1b-instruct-fp16",
aliases=["Llama3.2-1B-Instruct"],
llama_model=CoreModelId.llama3_2_1b_instruct.value,
),
ModelAlias(
provider_model_id="llama3.2:3b-instruct-fp16",
aliases=["Llama3.2-3B-Instruct"],
llama_model=CoreModelId.llama3_2_3b_instruct.value,
),
ModelAlias(
provider_model_id="llama-guard3:8b",
aliases=["Llama-Guard-3-8B"],
llama_model=CoreModelId.llama_guard_3_8b.value,
),
ModelAlias(
provider_model_id="llama-guard3:1b",
aliases=["Llama-Guard-3-1B"],
llama_model=CoreModelId.llama_guard_3_1b.value,
),
ModelAlias(
provider_model_id="x/llama3.2-vision:11b-instruct-fp16",
aliases=["Llama3.2-11B-Vision-Instruct"],
llama_model=CoreModelId.llama3_2_11b_vision_instruct.value,
),
]
class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
class OllamaInferenceAdapter(Inference, ModelRegistryHelper, ModelsProtocolPrivate):
def __init__(self, url: str) -> None:
ModelRegistryHelper.__init__(
self,
model_aliases=model_aliases,
)
self.url = url
self.formatter = ChatFormat(Tokenizer.get_instance())
@ -65,12 +103,6 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def shutdown(self) -> None:
pass
async def register_model(self, model: Model) -> None:
if model.provider_resource_id not in OLLAMA_SUPPORTED_MODELS:
raise ValueError(
f"Model {model.provider_resource_id} is not supported by Ollama"
)
async def list_models(self) -> List[Model]:
ollama_to_llama = {v: k for k, v in OLLAMA_SUPPORTED_MODELS.items()}
@ -103,8 +135,9 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model_id,
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
stream=stream,
@ -160,8 +193,9 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model_id,
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
@ -199,7 +233,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
else:
input_dict["raw"] = True
input_dict["prompt"] = chat_completion_request_to_prompt(
request, self.formatter
request, self.get_llama_model(request.model), self.formatter
)
else:
assert (