ollama and databricks

This commit is contained in:
Dinesh Yeduguru 2024-11-12 13:17:27 -08:00
parent 8de4cee373
commit 5b2282afd4
2 changed files with 78 additions and 28 deletions

View file

@ -6,6 +6,8 @@
from typing import AsyncGenerator
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
@ -15,7 +17,10 @@ from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.model_registry import (
ModelAlias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
@ -28,16 +33,25 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
from .config import DatabricksImplConfig
DATABRICKS_SUPPORTED_MODELS = {
"Llama3.1-70B-Instruct": "databricks-meta-llama-3-1-70b-instruct",
"Llama3.1-405B-Instruct": "databricks-meta-llama-3-1-405b-instruct",
}
model_aliases = [
ModelAlias(
provider_model_id="databricks-meta-llama-3-1-70b-instruct",
aliases=["Llama3.1-70B-Instruct"],
llama_model=CoreModelId.llama3_1_70b_instruct.value,
),
ModelAlias(
provider_model_id="databricks-meta-llama-3-1-405b-instruct",
aliases=["Llama3.1-405B-Instruct"],
llama_model=CoreModelId.llama3_1_405b_instruct.value,
),
]
class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: DatabricksImplConfig) -> None:
ModelRegistryHelper.__init__(
self, provider_to_common_model_aliases_map=DATABRICKS_SUPPORTED_MODELS
self,
model_aliases=model_aliases,
)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
@ -113,8 +127,10 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": self.map_to_provider_model(request.model),
"prompt": chat_completion_request_to_prompt(request, self.formatter),
"model": request.model,
"prompt": chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
),
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}