mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-15 14:08:00 +00:00
feat(responses): improve streaming for function calls (#3124)
Some checks failed
Integration Tests (Replay) / discover-tests (push) Successful in 3s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 8s
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 10s
Test Llama Stack Build / generate-matrix (push) Successful in 9s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 13s
Python Package Build Test / build (3.13) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 11s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 8s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 7s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 21s
Python Package Build Test / build (3.12) (push) Failing after 9s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 15s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 29s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Test External API and Providers / test-external (venv) (push) Failing after 13s
Update ReadTheDocs / update-readthedocs (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 26s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 22s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 17s
Pre-commit / pre-commit (push) Successful in 1m10s
Test Llama Stack Build / build (push) Failing after 12s
Some checks failed
Integration Tests (Replay) / discover-tests (push) Successful in 3s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 8s
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 10s
Test Llama Stack Build / generate-matrix (push) Successful in 9s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 13s
Python Package Build Test / build (3.13) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 11s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 8s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 7s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 21s
Python Package Build Test / build (3.12) (push) Failing after 9s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 15s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 29s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Test External API and Providers / test-external (venv) (push) Failing after 13s
Update ReadTheDocs / update-readthedocs (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 26s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 22s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 17s
Pre-commit / pre-commit (push) Successful in 1m10s
Test Llama Stack Build / build (push) Failing after 12s
Emit streaming events for function calls ## Test Plan Improved the test case
This commit is contained in:
parent
d6ae54723d
commit
5b312a80b9
3 changed files with 250 additions and 33 deletions
|
@ -33,6 +33,10 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta,
|
||||
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone,
|
||||
OpenAIResponseObjectStreamResponseOutputItemAdded,
|
||||
OpenAIResponseObjectStreamResponseOutputItemDone,
|
||||
OpenAIResponseObjectStreamResponseOutputTextDelta,
|
||||
OpenAIResponseOutput,
|
||||
OpenAIResponseOutputMessageContent,
|
||||
|
@ -73,7 +77,9 @@ from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
|
|||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_tooldef_to_openai_tool,
|
||||
)
|
||||
from llama_stack.providers.utils.responses.responses_store import ResponsesStore
|
||||
|
||||
logger = get_logger(name=__name__, category="openai_responses")
|
||||
|
@ -82,7 +88,7 @@ OPENAI_RESPONSES_PREFIX = "openai_responses:"
|
|||
|
||||
|
||||
async def _convert_response_content_to_chat_content(
|
||||
content: str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent],
|
||||
content: (str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent]),
|
||||
) -> str | list[OpenAIChatCompletionContentPartParam]:
|
||||
"""
|
||||
Convert the content parts from an OpenAI Response API request into OpenAI Chat Completion content parts.
|
||||
|
@ -150,7 +156,9 @@ async def _convert_response_input_to_chat_messages(
|
|||
return messages
|
||||
|
||||
|
||||
async def _convert_chat_choice_to_response_message(choice: OpenAIChoice) -> OpenAIResponseMessage:
|
||||
async def _convert_chat_choice_to_response_message(
|
||||
choice: OpenAIChoice,
|
||||
) -> OpenAIResponseMessage:
|
||||
"""
|
||||
Convert an OpenAI Chat Completion choice into an OpenAI Response output message.
|
||||
"""
|
||||
|
@ -172,7 +180,9 @@ async def _convert_chat_choice_to_response_message(choice: OpenAIChoice) -> Open
|
|||
)
|
||||
|
||||
|
||||
async def _convert_response_text_to_chat_response_format(text: OpenAIResponseText) -> OpenAIResponseFormatParam:
|
||||
async def _convert_response_text_to_chat_response_format(
|
||||
text: OpenAIResponseText,
|
||||
) -> OpenAIResponseFormatParam:
|
||||
"""
|
||||
Convert an OpenAI Response text parameter into an OpenAI Chat Completion response format.
|
||||
"""
|
||||
|
@ -228,7 +238,9 @@ class OpenAIResponsesImpl:
|
|||
self.vector_io_api = vector_io_api
|
||||
|
||||
async def _prepend_previous_response(
|
||||
self, input: str | list[OpenAIResponseInput], previous_response_id: str | None = None
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
previous_response_id: str | None = None,
|
||||
):
|
||||
if previous_response_id:
|
||||
previous_response_with_input = await self.responses_store.get_response_object(previous_response_id)
|
||||
|
@ -446,6 +458,8 @@ class OpenAIResponsesImpl:
|
|||
|
||||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
# Track tool call items for streaming events
|
||||
tool_call_item_ids: dict[int, str] = {}
|
||||
|
||||
async for chunk in completion_result:
|
||||
chat_response_id = chunk.id
|
||||
|
@ -472,19 +486,63 @@ class OpenAIResponsesImpl:
|
|||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
if response_tool_call:
|
||||
# Don't attempt to concatenate arguments if we don't have any new argumentsAdd commentMore actions
|
||||
if tool_call.function.arguments:
|
||||
# Guard against an initial None argument before we concatenate
|
||||
response_tool_call.function.arguments = (
|
||||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
else:
|
||||
# Create new tool call entry if this is the first chunk for this index
|
||||
is_new_tool_call = response_tool_call is None
|
||||
if is_new_tool_call:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Create item ID for this tool call for streaming events
|
||||
tool_call_item_id = f"fc_{uuid.uuid4()}"
|
||||
tool_call_item_ids[tool_call.index] = tool_call_item_id
|
||||
|
||||
# Emit output_item.added event for the new function call
|
||||
sequence_number += 1
|
||||
function_call_item = OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments="", # Will be filled incrementally via delta events
|
||||
call_id=tool_call.id or "",
|
||||
name=tool_call.function.name if tool_call.function else "",
|
||||
id=tool_call_item_id,
|
||||
status="in_progress",
|
||||
)
|
||||
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
|
||||
response_id=response_id,
|
||||
item=function_call_item,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Stream function call arguments as they arrive
|
||||
if tool_call.function and tool_call.function.arguments:
|
||||
tool_call_item_id = tool_call_item_ids[tool_call.index]
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Accumulate arguments for final response (only for subsequent chunks)
|
||||
if not is_new_tool_call:
|
||||
response_tool_call.function.arguments = (
|
||||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
|
||||
# Emit function_call_arguments.done events for completed tool calls
|
||||
for tool_call_index in sorted(chat_response_tool_calls.keys()):
|
||||
tool_call_item_id = tool_call_item_ids[tool_call_index]
|
||||
final_arguments = chat_response_tool_calls[tool_call_index].function.arguments or ""
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(
|
||||
arguments=final_arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
|
@ -532,18 +590,56 @@ class OpenAIResponsesImpl:
|
|||
tool_call_log, tool_response_message = await self._execute_tool_call(tool_call, ctx)
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
|
||||
# Emit output_item.done event for completed non-function tool call
|
||||
# Find the item_id for this tool call
|
||||
matching_item_id = None
|
||||
for index, item_id in tool_call_item_ids.items():
|
||||
response_tool_call = chat_response_tool_calls.get(index)
|
||||
if response_tool_call and response_tool_call.id == tool_call.id:
|
||||
matching_item_id = item_id
|
||||
break
|
||||
|
||||
if matching_item_id:
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputItemDone(
|
||||
response_id=response_id,
|
||||
item=tool_call_log,
|
||||
output_index=len(output_messages) - 1,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
if tool_response_message:
|
||||
next_turn_messages.append(tool_response_message)
|
||||
|
||||
for tool_call in function_tool_calls:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageFunctionToolCall(
|
||||
# Find the item_id for this tool call from our tracking dictionary
|
||||
matching_item_id = None
|
||||
for index, item_id in tool_call_item_ids.items():
|
||||
response_tool_call = chat_response_tool_calls.get(index)
|
||||
if response_tool_call and response_tool_call.id == tool_call.id:
|
||||
matching_item_id = item_id
|
||||
break
|
||||
|
||||
# Use existing item_id or create new one if not found
|
||||
final_item_id = matching_item_id or f"fc_{uuid.uuid4()}"
|
||||
|
||||
function_call_item = OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments=tool_call.function.arguments or "",
|
||||
call_id=tool_call.id,
|
||||
name=tool_call.function.name or "",
|
||||
id=f"fc_{uuid.uuid4()}",
|
||||
id=final_item_id,
|
||||
status="completed",
|
||||
)
|
||||
output_messages.append(function_call_item)
|
||||
|
||||
# Emit output_item.done event for completed function call
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputItemDone(
|
||||
response_id=response_id,
|
||||
item=function_call_item,
|
||||
output_index=len(output_messages) - 1,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
if not function_tool_calls and not non_function_tool_calls:
|
||||
|
@ -779,7 +875,8 @@ class OpenAIResponsesImpl:
|
|||
)
|
||||
elif function.name == "knowledge_search":
|
||||
response_file_search_tool = next(
|
||||
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)), None
|
||||
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)),
|
||||
None,
|
||||
)
|
||||
if response_file_search_tool:
|
||||
# Use vector_stores.search API instead of knowledge_search tool
|
||||
|
@ -798,7 +895,9 @@ class OpenAIResponsesImpl:
|
|||
error_exc = e
|
||||
|
||||
if function.name in ctx.mcp_tool_to_server:
|
||||
from llama_stack.apis.agents.openai_responses import OpenAIResponseOutputMessageMCPCall
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
OpenAIResponseOutputMessageMCPCall,
|
||||
)
|
||||
|
||||
message = OpenAIResponseOutputMessageMCPCall(
|
||||
id=tool_call_id,
|
||||
|
@ -850,7 +949,10 @@ class OpenAIResponsesImpl:
|
|||
if isinstance(result.content, str):
|
||||
content = result.content
|
||||
elif isinstance(result.content, list):
|
||||
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
|
||||
content = []
|
||||
for item in result.content:
|
||||
|
|
|
@ -384,12 +384,18 @@ def test_response_non_streaming_mcp_tool(request, compat_client, text_model_id,
|
|||
assert list_tools.type == "mcp_list_tools"
|
||||
assert list_tools.server_label == "localmcp"
|
||||
assert len(list_tools.tools) == 2
|
||||
assert {t.name for t in list_tools.tools} == {"get_boiling_point", "greet_everyone"}
|
||||
assert {t.name for t in list_tools.tools} == {
|
||||
"get_boiling_point",
|
||||
"greet_everyone",
|
||||
}
|
||||
|
||||
call = response.output[1]
|
||||
assert call.type == "mcp_call"
|
||||
assert call.name == "get_boiling_point"
|
||||
assert json.loads(call.arguments) == {"liquid_name": "myawesomeliquid", "celsius": True}
|
||||
assert json.loads(call.arguments) == {
|
||||
"liquid_name": "myawesomeliquid",
|
||||
"celsius": True,
|
||||
}
|
||||
assert call.error is None
|
||||
assert "-100" in call.output
|
||||
|
||||
|
@ -581,6 +587,105 @@ def test_response_streaming_multi_turn_tool_execution(compat_client, text_model_
|
|||
f"Last chunk should be response.completed, got {chunks[-1].type}"
|
||||
)
|
||||
|
||||
# Verify tool call streaming events are present
|
||||
chunk_types = [chunk.type for chunk in chunks]
|
||||
|
||||
# Should have function call arguments delta events for tool calls
|
||||
delta_events = [chunk for chunk in chunks if chunk.type == "response.function_call_arguments.delta"]
|
||||
done_events = [chunk for chunk in chunks if chunk.type == "response.function_call_arguments.done"]
|
||||
|
||||
# Should have output item events for tool calls
|
||||
item_added_events = [chunk for chunk in chunks if chunk.type == "response.output_item.added"]
|
||||
item_done_events = [chunk for chunk in chunks if chunk.type == "response.output_item.done"]
|
||||
|
||||
# Verify we have substantial streaming activity (not just batch events)
|
||||
assert len(chunks) > 10, f"Expected rich streaming with many events, got only {len(chunks)} chunks"
|
||||
|
||||
# Since this test involves MCP tool calls, we should see streaming events
|
||||
assert len(delta_events) > 0, f"Expected function_call_arguments.delta events, got chunk types: {chunk_types}"
|
||||
assert len(done_events) > 0, f"Expected function_call_arguments.done events, got chunk types: {chunk_types}"
|
||||
|
||||
# Should have output item events for function calls
|
||||
assert len(item_added_events) > 0, f"Expected response.output_item.added events, got chunk types: {chunk_types}"
|
||||
assert len(item_done_events) > 0, f"Expected response.output_item.done events, got chunk types: {chunk_types}"
|
||||
|
||||
# Verify delta events have proper structure
|
||||
for delta_event in delta_events:
|
||||
assert hasattr(delta_event, "delta"), "Delta event should have 'delta' field"
|
||||
assert hasattr(delta_event, "item_id"), "Delta event should have 'item_id' field"
|
||||
assert hasattr(delta_event, "sequence_number"), "Delta event should have 'sequence_number' field"
|
||||
assert delta_event.delta, "Delta should not be empty"
|
||||
|
||||
# Verify done events have proper structure
|
||||
for done_event in done_events:
|
||||
assert hasattr(done_event, "arguments"), "Done event should have 'arguments' field"
|
||||
assert hasattr(done_event, "item_id"), "Done event should have 'item_id' field"
|
||||
assert done_event.arguments, "Final arguments should not be empty"
|
||||
|
||||
# Verify output item added events have proper structure
|
||||
for added_event in item_added_events:
|
||||
assert hasattr(added_event, "item"), "Added event should have 'item' field"
|
||||
assert hasattr(added_event, "output_index"), "Added event should have 'output_index' field"
|
||||
assert hasattr(added_event, "sequence_number"), "Added event should have 'sequence_number' field"
|
||||
assert hasattr(added_event, "response_id"), "Added event should have 'response_id' field"
|
||||
assert added_event.item.type in ["function_call", "mcp_call"], "Added item should be a tool call"
|
||||
assert added_event.item.status == "in_progress", "Added item should be in progress"
|
||||
assert added_event.response_id, "Response ID should not be empty"
|
||||
assert isinstance(added_event.output_index, int), "Output index should be integer"
|
||||
assert added_event.output_index >= 0, "Output index should be non-negative"
|
||||
|
||||
# Verify output item done events have proper structure
|
||||
for done_event in item_done_events:
|
||||
assert hasattr(done_event, "item"), "Done event should have 'item' field"
|
||||
assert hasattr(done_event, "output_index"), "Done event should have 'output_index' field"
|
||||
assert hasattr(done_event, "sequence_number"), "Done event should have 'sequence_number' field"
|
||||
assert hasattr(done_event, "response_id"), "Done event should have 'response_id' field"
|
||||
assert done_event.item.type in ["function_call", "mcp_call"], "Done item should be a tool call"
|
||||
# Note: MCP calls don't have a status field, only function calls do
|
||||
if done_event.item.type == "function_call":
|
||||
assert done_event.item.status == "completed", "Function call should be completed"
|
||||
assert done_event.response_id, "Response ID should not be empty"
|
||||
assert isinstance(done_event.output_index, int), "Output index should be integer"
|
||||
assert done_event.output_index >= 0, "Output index should be non-negative"
|
||||
|
||||
# Group function call argument events by item_id (these should have proper tracking)
|
||||
function_call_events_by_item_id = {}
|
||||
for chunk in chunks:
|
||||
if hasattr(chunk, "item_id") and chunk.type in [
|
||||
"response.function_call_arguments.delta",
|
||||
"response.function_call_arguments.done",
|
||||
]:
|
||||
item_id = chunk.item_id
|
||||
if item_id not in function_call_events_by_item_id:
|
||||
function_call_events_by_item_id[item_id] = []
|
||||
function_call_events_by_item_id[item_id].append(chunk)
|
||||
|
||||
for item_id, related_events in function_call_events_by_item_id.items():
|
||||
# Should have at least one delta and one done event for a complete function call
|
||||
delta_events = [e for e in related_events if e.type == "response.function_call_arguments.delta"]
|
||||
done_events = [e for e in related_events if e.type == "response.function_call_arguments.done"]
|
||||
|
||||
assert len(delta_events) > 0, f"Item {item_id} should have at least one delta event"
|
||||
assert len(done_events) == 1, f"Item {item_id} should have exactly one done event"
|
||||
|
||||
# Verify all events have the same item_id
|
||||
for event in related_events:
|
||||
assert event.item_id == item_id, f"Event should have consistent item_id {item_id}, got {event.item_id}"
|
||||
|
||||
# Basic pairing check: each output_item.added should be followed by some activity
|
||||
# (but we can't enforce strict 1:1 pairing due to the complexity of multi-turn scenarios)
|
||||
assert len(item_added_events) > 0, "Should have at least one output_item.added event"
|
||||
|
||||
# Verify response_id consistency across all events
|
||||
response_ids = set()
|
||||
for chunk in chunks:
|
||||
if hasattr(chunk, "response_id"):
|
||||
response_ids.add(chunk.response_id)
|
||||
elif hasattr(chunk, "response") and hasattr(chunk.response, "id"):
|
||||
response_ids.add(chunk.response.id)
|
||||
|
||||
assert len(response_ids) == 1, f"All events should reference the same response_id, found: {response_ids}"
|
||||
|
||||
# Get the final response from the last chunk
|
||||
final_chunk = chunks[-1]
|
||||
if hasattr(final_chunk, "response"):
|
||||
|
@ -722,7 +827,9 @@ def vector_store_with_filtered_files(compat_client, text_model_id, tmp_path_fact
|
|||
|
||||
# Attach file to vector store with attributes
|
||||
file_attach_response = compat_client.vector_stores.files.create(
|
||||
vector_store_id=vector_store.id, file_id=file_response.id, attributes=file_data["attributes"]
|
||||
vector_store_id=vector_store.id,
|
||||
file_id=file_response.id,
|
||||
attributes=file_data["attributes"],
|
||||
)
|
||||
|
||||
# Wait for attachment
|
||||
|
|
|
@ -272,7 +272,9 @@ async def test_create_openai_response_with_tool_call_type_none(openai_responses_
|
|||
|
||||
# Check that we got the content from our mocked tool execution result
|
||||
chunks = [chunk async for chunk in result]
|
||||
assert len(chunks) == 2 # Should have response.created and response.completed
|
||||
# Should have: response.created, output_item.added, function_call_arguments.delta,
|
||||
# function_call_arguments.done, output_item.done, response.completed
|
||||
assert len(chunks) == 6
|
||||
|
||||
# Verify inference API was called correctly (after iterating over result)
|
||||
first_call = mock_inference_api.openai_chat_completion.call_args_list[0]
|
||||
|
@ -284,11 +286,17 @@ async def test_create_openai_response_with_tool_call_type_none(openai_responses_
|
|||
assert chunks[0].type == "response.created"
|
||||
assert len(chunks[0].response.output) == 0
|
||||
|
||||
# Check streaming events
|
||||
assert chunks[1].type == "response.output_item.added"
|
||||
assert chunks[2].type == "response.function_call_arguments.delta"
|
||||
assert chunks[3].type == "response.function_call_arguments.done"
|
||||
assert chunks[4].type == "response.output_item.done"
|
||||
|
||||
# Check response.completed event (should have the tool call)
|
||||
assert chunks[1].type == "response.completed"
|
||||
assert len(chunks[1].response.output) == 1
|
||||
assert chunks[1].response.output[0].type == "function_call"
|
||||
assert chunks[1].response.output[0].name == "get_weather"
|
||||
assert chunks[5].type == "response.completed"
|
||||
assert len(chunks[5].response.output) == 1
|
||||
assert chunks[5].response.output[0].type == "function_call"
|
||||
assert chunks[5].response.output[0].name == "get_weather"
|
||||
|
||||
|
||||
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue