mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-18 17:28:40 +00:00
user inference api to generate embeddings in vector store
This commit is contained in:
parent
96accc1216
commit
5bbeb985ca
12 changed files with 134 additions and 96 deletions
|
|
@ -4,12 +4,15 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
|
||||
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
|
||||
async def get_adapter_impl(config: RemoteProviderConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .chroma import ChromaMemoryAdapter
|
||||
|
||||
impl = ChromaMemoryAdapter(config.url)
|
||||
impl = ChromaMemoryAdapter(config.url, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -20,6 +20,7 @@ from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
|||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
InferenceEmbeddingMixin,
|
||||
)
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
|
@ -71,8 +72,8 @@ class ChromaIndex(EmbeddingIndex):
|
|||
await self.client.delete_collection(self.collection.name)
|
||||
|
||||
|
||||
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, url: str) -> None:
|
||||
class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, url: str, inference_api: Api.inference) -> None:
|
||||
log.info(f"Initializing ChromaMemoryAdapter with url: {url}")
|
||||
url = url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
|
@ -82,6 +83,7 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
|
||||
self.host = parsed.hostname
|
||||
self.port = parsed.port
|
||||
self.inference_api = inference_api
|
||||
|
||||
self.client = None
|
||||
self.cache = {}
|
||||
|
|
@ -109,10 +111,9 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
name=memory_bank.identifier,
|
||||
metadata={"bank": memory_bank.model_dump_json()},
|
||||
)
|
||||
bank_index = BankWithIndex(
|
||||
bank=memory_bank, index=ChromaIndex(self.client, collection)
|
||||
self.cache[memory_bank.identifier] = self._create_bank_with_index(
|
||||
memory_bank, ChromaIndex(self.client, collection)
|
||||
)
|
||||
self.cache[memory_bank.identifier] = bank_index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
collections = await self.client.list_collections()
|
||||
|
|
@ -124,11 +125,10 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
log.exception(f"Failed to parse bank: {collection.metadata}")
|
||||
continue
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=ChromaIndex(self.client, collection),
|
||||
self.cache[bank.identifier] = self._create_bank_with_index(
|
||||
bank,
|
||||
ChromaIndex(self.client, collection),
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
|
|
@ -166,6 +166,6 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
collection = await self.client.get_collection(bank_id)
|
||||
if not collection:
|
||||
raise ValueError(f"Bank {bank_id} not found in Chroma")
|
||||
index = BankWithIndex(bank=bank, index=ChromaIndex(self.client, collection))
|
||||
index = self._create_bank_with_index(bank, ChromaIndex(self.client, collection))
|
||||
self.cache[bank_id] = index
|
||||
return index
|
||||
|
|
|
|||
|
|
@ -4,12 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import PGVectorConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: PGVectorConfig, _deps):
|
||||
async def get_adapter_impl(config: PGVectorConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .pgvector import PGVectorMemoryAdapter
|
||||
|
||||
impl = PGVectorMemoryAdapter(config)
|
||||
impl = PGVectorMemoryAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -16,11 +16,12 @@ from pydantic import BaseModel, parse_obj_as
|
|||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ALL_MINILM_L6_V2_DIMENSION,
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
InferenceEmbeddingMixin,
|
||||
)
|
||||
|
||||
from .config import PGVectorConfig
|
||||
|
|
@ -119,9 +120,12 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
self.cursor.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
|
||||
class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, config: PGVectorConfig) -> None:
|
||||
class PGVectorMemoryAdapter(
|
||||
InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate
|
||||
):
|
||||
def __init__(self, config: PGVectorConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.cursor = None
|
||||
self.conn = None
|
||||
self.cache = {}
|
||||
|
|
@ -160,27 +164,17 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_memory_bank(
|
||||
self,
|
||||
memory_bank: MemoryBank,
|
||||
) -> None:
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
upsert_models(
|
||||
self.cursor,
|
||||
[
|
||||
(memory_bank.identifier, memory_bank),
|
||||
],
|
||||
upsert_models(self.cursor, [(memory_bank.identifier, memory_bank)])
|
||||
index = PGVectorIndex(memory_bank, memory_bank.embedding_dimension, self.cursor)
|
||||
self.cache[memory_bank.identifier] = self._create_bank_with_index(
|
||||
memory_bank, index
|
||||
)
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=memory_bank,
|
||||
index=PGVectorIndex(memory_bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
||||
)
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
await self.cache[memory_bank_id].index.delete()
|
||||
del self.cache[memory_bank_id]
|
||||
|
|
@ -189,9 +183,9 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
banks = load_models(self.cursor, VectorMemoryBank)
|
||||
for bank in banks:
|
||||
if bank.identifier not in self.cache:
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=PGVectorIndex(bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
||||
index = self._create_bank_with_index(
|
||||
bank,
|
||||
PGVectorIndex(bank, bank.embedding_dimension, self.cursor),
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
return banks
|
||||
|
|
@ -214,14 +208,13 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
return await index.query_documents(query, params)
|
||||
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=PGVectorIndex(bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
return index
|
||||
index = PGVectorIndex(bank, bank.embedding_dimension, self.cursor)
|
||||
self.cache[bank_id] = self._create_bank_with_index(bank, index)
|
||||
return self.cache[bank_id]
|
||||
|
|
|
|||
|
|
@ -4,12 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import QdrantConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: QdrantConfig, _deps):
|
||||
async def get_adapter_impl(config: QdrantConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .qdrant import QdrantVectorMemoryAdapter
|
||||
|
||||
impl = QdrantVectorMemoryAdapter(config)
|
||||
impl = QdrantVectorMemoryAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -21,6 +21,7 @@ from llama_stack.providers.remote.memory.qdrant.config import QdrantConfig
|
|||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
InferenceEmbeddingMixin,
|
||||
)
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
|
@ -100,11 +101,14 @@ class QdrantIndex(EmbeddingIndex):
|
|||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
|
||||
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, config: QdrantConfig) -> None:
|
||||
class QdrantVectorMemoryAdapter(
|
||||
InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate
|
||||
):
|
||||
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
|
||||
self.cache = {}
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
|
@ -120,7 +124,7 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
memory_bank.memory_bank_type == MemoryBankType.vector
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
index = BankWithIndex(
|
||||
index = self._create_bank_with_index(
|
||||
bank=memory_bank,
|
||||
index=QdrantIndex(self.client, memory_bank.identifier),
|
||||
)
|
||||
|
|
@ -140,7 +144,7 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
index = BankWithIndex(
|
||||
index = self._create_bank_with_index(
|
||||
bank=bank,
|
||||
index=QdrantIndex(client=self.client, collection_name=bank_id),
|
||||
)
|
||||
|
|
|
|||
|
|
@ -4,12 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import WeaviateConfig, WeaviateRequestProviderData # noqa: F401
|
||||
|
||||
|
||||
async def get_adapter_impl(config: WeaviateConfig, _deps):
|
||||
async def get_adapter_impl(config: WeaviateConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .weaviate import WeaviateMemoryAdapter
|
||||
|
||||
impl = WeaviateMemoryAdapter(config)
|
||||
impl = WeaviateMemoryAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@ from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
|||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
InferenceEmbeddingMixin,
|
||||
)
|
||||
|
||||
from .config import WeaviateConfig, WeaviateRequestProviderData
|
||||
|
|
@ -82,10 +83,14 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class WeaviateMemoryAdapter(
|
||||
Memory, NeedsRequestProviderData, MemoryBanksProtocolPrivate
|
||||
InferenceEmbeddingMixin,
|
||||
Memory,
|
||||
NeedsRequestProviderData,
|
||||
MemoryBanksProtocolPrivate,
|
||||
):
|
||||
def __init__(self, config: WeaviateConfig) -> None:
|
||||
def __init__(self, config: WeaviateConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.client_cache = {}
|
||||
self.cache = {}
|
||||
|
||||
|
|
@ -135,11 +140,10 @@ class WeaviateMemoryAdapter(
|
|||
],
|
||||
)
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=memory_bank,
|
||||
index=WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
||||
self.cache[memory_bank.identifier] = self._create_bank_with_index(
|
||||
memory_bank,
|
||||
WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
||||
)
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
# TODO: right now the Llama Stack is the source of truth for these banks. That is
|
||||
|
|
@ -160,7 +164,7 @@ class WeaviateMemoryAdapter(
|
|||
if not client.collections.exists(bank.identifier):
|
||||
raise ValueError(f"Collection with name `{bank.identifier}` not found")
|
||||
|
||||
index = BankWithIndex(
|
||||
index = self._create_bank_with_index(
|
||||
bank=bank,
|
||||
index=WeaviateIndex(client=client, collection_name=bank_id),
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue