user inference api to generate embeddings in vector store

This commit is contained in:
Dinesh Yeduguru 2024-12-09 12:49:35 -08:00
parent 96accc1216
commit 5bbeb985ca
12 changed files with 134 additions and 96 deletions

View file

@ -19,6 +19,7 @@ from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
from .config import WeaviateConfig, WeaviateRequestProviderData
@ -82,10 +83,14 @@ class WeaviateIndex(EmbeddingIndex):
class WeaviateMemoryAdapter(
Memory, NeedsRequestProviderData, MemoryBanksProtocolPrivate
InferenceEmbeddingMixin,
Memory,
NeedsRequestProviderData,
MemoryBanksProtocolPrivate,
):
def __init__(self, config: WeaviateConfig) -> None:
def __init__(self, config: WeaviateConfig, inference_api: Api.inference) -> None:
self.config = config
self.inference_api = inference_api
self.client_cache = {}
self.cache = {}
@ -135,11 +140,10 @@ class WeaviateMemoryAdapter(
],
)
index = BankWithIndex(
bank=memory_bank,
index=WeaviateIndex(client=client, collection_name=memory_bank.identifier),
self.cache[memory_bank.identifier] = self._create_bank_with_index(
memory_bank,
WeaviateIndex(client=client, collection_name=memory_bank.identifier),
)
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBank]:
# TODO: right now the Llama Stack is the source of truth for these banks. That is
@ -160,7 +164,7 @@ class WeaviateMemoryAdapter(
if not client.collections.exists(bank.identifier):
raise ValueError(f"Collection with name `{bank.identifier}` not found")
index = BankWithIndex(
index = self._create_bank_with_index(
bank=bank,
index=WeaviateIndex(client=client, collection_name=bank_id),
)