Set mock_client_instance to async

This commit is contained in:
Akram Ben Aissi 2025-09-15 19:23:37 +02:00
parent 67728bfccf
commit 5cc605deb5

View file

@ -573,7 +573,7 @@ async def test_health_status_success(vllm_inference_adapter):
# Create mock client instance
mock_client_instance = MagicMock()
mock_client_instance.get.return_value = mock_response
mock_client_instance.get = AsyncMock(return_value=mock_response)
mock_client_class.return_value.__aenter__.return_value = mock_client_instance
# Call the health method
@ -623,7 +623,7 @@ async def test_health_status_no_static_api_key(vllm_inference_adapter):
# Create mock client instance
mock_client_instance = MagicMock()
mock_client_instance.get.return_value = mock_response
mock_client_instance.get = AsyncMock(return_value=mock_response)
mock_client_class.return_value.__aenter__.return_value = mock_client_instance
# Call the health method
@ -678,6 +678,50 @@ async def test_openai_chat_completion_is_async(vllm_inference_adapter):
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
async def test_should_refresh_models():
"""
Test the should_refresh_models method with different api_token configurations.
This test verifies that:
1. When api_token is None or empty, should_refresh_models returns False
2. When api_token is "fake" (default), should_refresh_models returns False
3. When api_token is a real token and refresh_models is True, should_refresh_models returns True
4. When api_token is a real token and refresh_models is False, should_refresh_models returns False
"""
# Test case 1: api_token is None, refresh_models is True
config1 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token=None, refresh_models=True)
adapter1 = VLLMInferenceAdapter(config1)
result1 = await adapter1.should_refresh_models()
assert result1 is False, "should_refresh_models should return False when api_token is None"
# Test case 2: api_token is empty string, refresh_models is True
config2 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="", refresh_models=True)
adapter2 = VLLMInferenceAdapter(config2)
result2 = await adapter2.should_refresh_models()
assert result2 is False, "should_refresh_models should return False when api_token is empty"
# Test case 3: api_token is "fake" (default), refresh_models is True
config3 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="fake", refresh_models=True)
adapter3 = VLLMInferenceAdapter(config3)
result3 = await adapter3.should_refresh_models()
assert result3 is False, "should_refresh_models should return False when api_token is 'fake'"
# Test case 4: api_token is real token, refresh_models is True
config4 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="real-token-123", refresh_models=True)
adapter4 = VLLMInferenceAdapter(config4)
result4 = await adapter4.should_refresh_models()
assert result4 is True, "should_refresh_models should return True when api_token is real and refresh_models is True"
# Test case 5: api_token is real token, refresh_models is False
config5 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="real-token-456", refresh_models=False)
adapter5 = VLLMInferenceAdapter(config5)
result5 = await adapter5.should_refresh_models()
assert result5 is False, (
"should_refresh_models should return False when api_token is real but refresh_models is False"
)
async def test_provider_data_var_context_propagation(vllm_inference_adapter):
"""
Test that PROVIDER_DATA_VAR context is properly propagated through the vLLM inference adapter.