mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-25 21:57:45 +00:00
Merge dfafa5bbae
into 3216765c26
This commit is contained in:
commit
5d50f7b0ad
16 changed files with 219 additions and 139 deletions
|
@ -22,7 +22,7 @@ jobs:
|
|||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
vector-io-provider: ["inline::faiss", "inline::sqlite-vec", "inline::milvus", "remote::chromadb", "remote::pgvector"]
|
||||
vector-io-provider: ["inline::faiss", "inline::sqlite-vec", "inline::milvus", "remote::chromadb", "remote::pgvector", "remote::qdrant"]
|
||||
python-version: ["3.12", "3.13"]
|
||||
fail-fast: false # we want to run all tests regardless of failure
|
||||
|
||||
|
@ -76,6 +76,29 @@ jobs:
|
|||
PGPASSWORD=llamastack psql -h localhost -U llamastack -d llamastack \
|
||||
-c "CREATE EXTENSION IF NOT EXISTS vector;"
|
||||
|
||||
- name: Setup Qdrant
|
||||
if: matrix.vector-io-provider == 'remote::qdrant'
|
||||
run: |
|
||||
docker run --rm -d --pull always \
|
||||
--name qdrant \
|
||||
-p 6333:6333 \
|
||||
qdrant/qdrant
|
||||
|
||||
- name: Wait for Qdrant to be ready
|
||||
if: matrix.vector-io-provider == 'remote::qdrant'
|
||||
run: |
|
||||
echo "Waiting for Qdrant to be ready..."
|
||||
for i in {1..30}; do
|
||||
if curl -s http://localhost:6333/collections | grep -q '"status":"ok"'; then
|
||||
echo "Qdrant is ready!"
|
||||
exit 0
|
||||
fi
|
||||
sleep 2
|
||||
done
|
||||
echo "Qdrant failed to start"
|
||||
docker logs qdrant
|
||||
exit 1
|
||||
|
||||
- name: Wait for ChromaDB to be ready
|
||||
if: matrix.vector-io-provider == 'remote::chromadb'
|
||||
run: |
|
||||
|
@ -111,6 +134,8 @@ jobs:
|
|||
PGVECTOR_DB: ${{ matrix.vector-io-provider == 'remote::pgvector' && 'llamastack' || '' }}
|
||||
PGVECTOR_USER: ${{ matrix.vector-io-provider == 'remote::pgvector' && 'llamastack' || '' }}
|
||||
PGVECTOR_PASSWORD: ${{ matrix.vector-io-provider == 'remote::pgvector' && 'llamastack' || '' }}
|
||||
ENABLE_QDRANT: ${{ matrix.vector-io-provider == 'remote::qdrant' && 'true' || '' }}
|
||||
QDRANT_URL: ${{ matrix.vector-io-provider == 'remote::qdrant' && 'http://localhost:6333' || '' }}
|
||||
run: |
|
||||
uv run pytest -sv --stack-config="inference=inline::sentence-transformers,vector_io=${{ matrix.vector-io-provider }}" \
|
||||
tests/integration/vector_io \
|
||||
|
@ -132,6 +157,11 @@ jobs:
|
|||
run: |
|
||||
docker logs chromadb > chromadb.log
|
||||
|
||||
- name: Write Qdrant logs to file
|
||||
if: ${{ always() && matrix.vector-io-provider == 'remote::qdrant' }}
|
||||
run: |
|
||||
docker logs qdrant > qdrant.log
|
||||
|
||||
- name: Upload all logs to artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
|
||||
|
|
|
@ -51,11 +51,15 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `path` | `<class 'str'>` | No | PydanticUndefined | |
|
||||
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
```yaml
|
||||
path: ${env.QDRANT_PATH:=~/.llama/~/.llama/dummy}/qdrant.db
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db
|
||||
|
||||
```
|
||||
|
||||
|
|
|
@ -20,11 +20,14 @@ Please refer to the inline provider documentation.
|
|||
| `prefix` | `str \| None` | No | | |
|
||||
| `timeout` | `int \| None` | No | | |
|
||||
| `host` | `str \| None` | No | | |
|
||||
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
```yaml
|
||||
api_key: ${env.QDRANT_API_KEY}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db
|
||||
|
||||
```
|
||||
|
||||
|
|
|
@ -4,14 +4,18 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
from .config import QdrantVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
async def get_provider_impl(config: QdrantVectorIOConfig, deps: dict[Api, Any]):
|
||||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
|
||||
|
||||
impl = QdrantVectorIOAdapter(config, deps[Api.inference])
|
||||
assert isinstance(config, QdrantVectorIOConfig), f"Unexpected config type: {type(config)}"
|
||||
files_api = deps.get(Api.files)
|
||||
impl = QdrantVectorIOAdapter(config, deps[Api.inference], files_api)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -9,15 +9,24 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QdrantVectorIOConfig(BaseModel):
|
||||
path: str
|
||||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="qdrant_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
@ -192,7 +192,9 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
|
||||
await asyncio.to_thread(_drop_tables)
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, batch_size: int = 500):
|
||||
async def add_chunks(
|
||||
self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None, batch_size: int = 500
|
||||
):
|
||||
"""
|
||||
Add new chunks along with their embeddings using batch inserts.
|
||||
For each chunk, we insert its JSON into the metadata table and then insert its
|
||||
|
|
|
@ -459,6 +459,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
|
|||
module="llama_stack.providers.inline.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description=r"""
|
||||
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
|
|
|
@ -12,6 +12,7 @@ from .config import QdrantVectorIOConfig
|
|||
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .qdrant import QdrantVectorIOAdapter
|
||||
|
||||
impl = QdrantVectorIOAdapter(config, deps[Api.inference])
|
||||
files_api = deps.get(Api.files)
|
||||
impl = QdrantVectorIOAdapter(config, deps[Api.inference], files_api)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -8,6 +8,10 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -23,9 +27,13 @@ class QdrantVectorIOConfig(BaseModel):
|
|||
prefix: str | None = None
|
||||
timeout: int | None = None
|
||||
host: str | None = None
|
||||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.QDRANT_API_KEY}",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="qdrant_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
@ -12,25 +12,18 @@ from numpy.typing import NDArray
|
|||
from qdrant_client import AsyncQdrantClient, models
|
||||
from qdrant_client.models import PointStruct
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreFileStatus,
|
||||
VectorStoreListFilesResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
|
@ -41,6 +34,10 @@ from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig
|
|||
log = logging.getLogger(__name__)
|
||||
CHUNK_ID_KEY = "_chunk_id"
|
||||
|
||||
# KV store prefixes for vector databases
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:qdrant:{VERSION}::"
|
||||
|
||||
|
||||
def convert_id(_id: str) -> str:
|
||||
"""
|
||||
|
@ -58,6 +55,11 @@ class QdrantIndex(EmbeddingIndex):
|
|||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
|
||||
async def initialize(self) -> None:
|
||||
# Qdrant collections are created on-demand in add_chunks
|
||||
# If the collection does not exist, it will be created in add_chunks.
|
||||
pass
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
|
@ -132,17 +134,51 @@ class QdrantIndex(EmbeddingIndex):
|
|||
await self.client.delete_collection(collection_name=self.collection_name)
|
||||
|
||||
|
||||
class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self, config: RemoteQdrantVectorIOConfig | InlineQdrantVectorIOConfig, inference_api: Api.inference
|
||||
self,
|
||||
config: RemoteQdrantVectorIOConfig | InlineQdrantVectorIOConfig,
|
||||
inference_api: Api.inference,
|
||||
files_api: Files | None,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.client: AsyncQdrantClient = None
|
||||
self.cache = {}
|
||||
self.inference_api = inference_api
|
||||
self.files_api = files_api
|
||||
self.vector_db_store = None
|
||||
self.kvstore: KVStore | None = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
|
||||
# Close existing client if it exists
|
||||
# Qdrant doesn't allow multiple clients to access the same storage path simultaneously
|
||||
# This prevents "Storage folder is already accessed by another instance" errors during re-initialization
|
||||
if self.client is not None:
|
||||
await self.client.close()
|
||||
self.client = None
|
||||
|
||||
# Create client config excluding kvstore (which is used for metadata storage, not Qdrant client connection)
|
||||
client_config = self.config.model_dump(exclude_none=True, exclude={"kvstore"})
|
||||
self.client = AsyncQdrantClient(**client_config)
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
||||
# Load existing vector DBs from kvstore
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)
|
||||
|
||||
for vector_db_data in stored_vector_dbs:
|
||||
vector_db = VectorDB.model_validate_json(vector_db_data)
|
||||
index = VectorDBWithIndex(
|
||||
vector_db,
|
||||
QdrantIndex(self.client, vector_db.identifier),
|
||||
self.inference_api,
|
||||
)
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
||||
# Load OpenAI vector stores as before
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
await self.client.close()
|
||||
|
@ -151,6 +187,12 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self,
|
||||
vector_db: VectorDB,
|
||||
) -> None:
|
||||
# Save to kvstore
|
||||
assert self.kvstore is not None
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}"
|
||||
await self.kvstore.set(key=key, value=vector_db.model_dump_json())
|
||||
|
||||
# Store in cache
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=QdrantIndex(self.client, vector_db.identifier),
|
||||
|
@ -164,10 +206,17 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
# Remove from kvstore
|
||||
assert self.kvstore is not None
|
||||
await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_db_id}")
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
if self.vector_db_store is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
@ -189,7 +238,6 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_chunks(
|
||||
|
@ -203,107 +251,3 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_list_files_in_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: VectorStoreFileStatus | None = None,
|
||||
) -> VectorStoreListFilesResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_retrieve_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_retrieve_vector_store_file_contents(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def openai_delete_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import mimetypes
|
||||
|
@ -259,8 +258,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
# Now that our vector store is created, attach any files that were provided
|
||||
file_ids = file_ids or []
|
||||
tasks = [self.openai_attach_file_to_vector_store(vector_db_id, file_id) for file_id in file_ids]
|
||||
await asyncio.gather(*tasks)
|
||||
# Process files sequentially to avoid concurrency issues with some vector store providers like qdrant.
|
||||
for file_id in file_ids:
|
||||
await self.openai_attach_file_to_vector_store(vector_db_id, file_id)
|
||||
|
||||
# Get the updated store info and return it
|
||||
store_info = self.openai_vector_stores[vector_db_id]
|
||||
|
|
|
@ -22,7 +22,14 @@ logger = logging.getLogger(__name__)
|
|||
def skip_if_provider_doesnt_support_openai_vector_stores(client_with_models):
|
||||
vector_io_providers = [p for p in client_with_models.providers.list() if p.api == "vector_io"]
|
||||
for p in vector_io_providers:
|
||||
if p.provider_type in ["inline::faiss", "inline::sqlite-vec", "inline::milvus", "inline::chromadb"]:
|
||||
if p.provider_type in [
|
||||
"inline::faiss",
|
||||
"inline::sqlite-vec",
|
||||
"inline::milvus",
|
||||
"inline::qdrant",
|
||||
"inline::chromadb",
|
||||
"remote::qdrant",
|
||||
]:
|
||||
return
|
||||
|
||||
pytest.skip("OpenAI vector stores are not supported by any provider")
|
||||
|
@ -35,7 +42,9 @@ def skip_if_provider_doesnt_support_openai_vector_store_files_api(client_with_mo
|
|||
"inline::faiss",
|
||||
"inline::sqlite-vec",
|
||||
"inline::milvus",
|
||||
"inline::qdrant",
|
||||
"remote::pgvector",
|
||||
"remote::qdrant",
|
||||
]:
|
||||
return
|
||||
|
||||
|
|
|
@ -125,6 +125,8 @@ def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding
|
|||
def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, embedding_model_id, embedding_dimension):
|
||||
vector_io_provider_params_dict = {
|
||||
"inline::milvus": {"score_threshold": -1.0},
|
||||
"remote::qdrant": {"score_threshold": -1.0},
|
||||
"inline::qdrant": {"score_threshold": -1.0},
|
||||
}
|
||||
vector_db_id = "test_precomputed_embeddings_db"
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
|
@ -168,6 +170,8 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
|
|||
):
|
||||
vector_io_provider_params_dict = {
|
||||
"inline::milvus": {"score_threshold": 0.0},
|
||||
"remote::qdrant": {"score_threshold": 0.0},
|
||||
"inline::qdrant": {"score_threshold": 0.0},
|
||||
}
|
||||
vector_db_id = "test_precomputed_embeddings_db"
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
|
|
|
@ -16,10 +16,12 @@ from llama_stack.providers.inline.vector_io.chroma.config import ChromaVectorIOC
|
|||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.faiss import FaissIndex, FaissVectorIOAdapter
|
||||
from llama_stack.providers.inline.vector_io.milvus.config import MilvusVectorIOConfig, SqliteKVStoreConfig
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec import SQLiteVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import SQLiteVecIndex, SQLiteVecVectorIOAdapter
|
||||
from llama_stack.providers.remote.vector_io.chroma.chroma import ChromaIndex, ChromaVectorIOAdapter
|
||||
from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusIndex, MilvusVectorIOAdapter
|
||||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
|
||||
|
||||
EMBEDDING_DIMENSION = 384
|
||||
COLLECTION_PREFIX = "test_collection"
|
||||
|
@ -94,7 +96,7 @@ def sample_embeddings_with_metadata(sample_chunks_with_metadata):
|
|||
return np.array([np.random.rand(EMBEDDING_DIMENSION).astype(np.float32) for _ in sample_chunks_with_metadata])
|
||||
|
||||
|
||||
@pytest.fixture(params=["milvus", "sqlite_vec", "faiss"])
|
||||
@pytest.fixture(params=["milvus", "sqlite_vec", "faiss", "chroma", "qdrant"])
|
||||
def vector_provider(request):
|
||||
return request.param
|
||||
|
||||
|
@ -133,7 +135,7 @@ async def sqlite_vec_vec_index(embedding_dimension, tmp_path_factory):
|
|||
await index.initialize()
|
||||
index.db_path = db_path
|
||||
yield index
|
||||
index.delete()
|
||||
await index.delete()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -276,14 +278,66 @@ async def chroma_vec_adapter(chroma_vec_db_path, mock_inference_api, embedding_d
|
|||
await adapter.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def qdrant_vec_db_path(tmp_path_factory):
|
||||
import uuid
|
||||
|
||||
db_path = str(tmp_path_factory.getbasetemp() / f"test_qdrant_{uuid.uuid4()}.db")
|
||||
return db_path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def qdrant_vec_adapter(qdrant_vec_db_path, mock_inference_api, embedding_dimension):
|
||||
import uuid
|
||||
|
||||
config = QdrantVectorIOConfig(
|
||||
path=qdrant_vec_db_path,
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
)
|
||||
adapter = QdrantVectorIOAdapter(
|
||||
config=config,
|
||||
inference_api=mock_inference_api,
|
||||
files_api=None,
|
||||
)
|
||||
collection_id = f"qdrant_test_collection_{uuid.uuid4()}"
|
||||
await adapter.initialize()
|
||||
await adapter.register_vector_db(
|
||||
VectorDB(
|
||||
identifier=collection_id,
|
||||
provider_id="test_provider",
|
||||
embedding_model="test_model",
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
)
|
||||
adapter.test_collection_id = collection_id
|
||||
yield adapter
|
||||
await adapter.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def qdrant_vec_index(qdrant_vec_db_path, embedding_dimension):
|
||||
import uuid
|
||||
|
||||
from qdrant_client import AsyncQdrantClient
|
||||
|
||||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantIndex
|
||||
|
||||
client = AsyncQdrantClient(path=qdrant_vec_db_path)
|
||||
collection_name = f"qdrant_test_collection_{uuid.uuid4()}"
|
||||
index = QdrantIndex(client, collection_name)
|
||||
yield index
|
||||
await index.delete()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vector_io_adapter(vector_provider, request):
|
||||
"""Returns the appropriate vector IO adapter based on the provider parameter."""
|
||||
vector_provider_dict = {
|
||||
"milvus": "milvus_vec_adapter",
|
||||
"faiss": "faiss_vec_adapter",
|
||||
"sqlite_vec": "sqlite_vec_adapter",
|
||||
"qdrant": "qdrant_vec_adapter",
|
||||
"chroma": "chroma_vec_adapter",
|
||||
"sqlite_vec": "sqlite_vec_adapter",
|
||||
}
|
||||
return request.getfixturevalue(vector_provider_dict[vector_provider])
|
||||
|
||||
|
|
|
@ -23,6 +23,7 @@ from llama_stack.providers.inline.vector_io.qdrant.config import (
|
|||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
|
||||
QdrantVectorIOAdapter,
|
||||
)
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
# This test is a unit test for the QdrantVectorIOAdapter class. This should only contain
|
||||
# tests which are specific to this class. More general (API-level) tests should be placed in
|
||||
|
@ -36,7 +37,9 @@ from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
|
|||
|
||||
@pytest.fixture
|
||||
def qdrant_config(tmp_path) -> InlineQdrantVectorIOConfig:
|
||||
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"))
|
||||
kvstore_config = SqliteKVStoreConfig(db_name=os.path.join(tmp_path, "test_kvstore.db"))
|
||||
|
||||
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"), kvstore=kvstore_config)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
|
@ -50,6 +53,10 @@ def mock_vector_db(vector_db_id) -> MagicMock:
|
|||
mock_vector_db.embedding_model = "embedding_model"
|
||||
mock_vector_db.identifier = vector_db_id
|
||||
mock_vector_db.embedding_dimension = 384
|
||||
# Mock model_dump_json to return a proper JSON string for kvstore persistence
|
||||
mock_vector_db.model_dump_json.return_value = (
|
||||
'{"identifier": "' + vector_db_id + '", "embedding_model": "embedding_model", "embedding_dimension": 384}'
|
||||
)
|
||||
return mock_vector_db
|
||||
|
||||
|
||||
|
@ -69,7 +76,7 @@ def mock_api_service(sample_embeddings):
|
|||
|
||||
@pytest.fixture
|
||||
async def qdrant_adapter(qdrant_config, mock_vector_db_store, mock_api_service, loop) -> QdrantVectorIOAdapter:
|
||||
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service)
|
||||
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service, files_api=None)
|
||||
adapter.vector_db_store = mock_vector_db_store
|
||||
await adapter.initialize()
|
||||
yield adapter
|
||||
|
|
|
@ -30,12 +30,12 @@ async def test_initialize_index(vector_index):
|
|||
|
||||
|
||||
async def test_add_chunks_query_vector(vector_index, sample_chunks, sample_embeddings):
|
||||
vector_index.delete()
|
||||
vector_index.initialize()
|
||||
await vector_index.delete()
|
||||
await vector_index.initialize()
|
||||
await vector_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
resp = await vector_index.query_vector(sample_embeddings[0], k=1, score_threshold=-1)
|
||||
assert resp.chunks[0].content == sample_chunks[0].content
|
||||
vector_index.delete()
|
||||
await vector_index.delete()
|
||||
|
||||
|
||||
async def test_chunk_id_conflict(vector_index, sample_chunks, embedding_dimension):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue