mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 19:04:19 +00:00
Initial commit
This commit is contained in:
commit
5d5acc8ed5
81 changed files with 4458 additions and 0 deletions
94
llama_toolchain/inference/api/config.py
Normal file
94
llama_toolchain/inference/api/config.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
from hydra.core.config_store import ConfigStore
|
||||
|
||||
from hydra_zen import builds
|
||||
from llama_models.llama3_1.api.datatypes import CheckpointQuantizationFormat
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from strong_typing.schema import json_schema_type
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from .datatypes import QuantizationConfig
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ImplType(Enum):
|
||||
inline = "inline"
|
||||
remote = "remote"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CheckpointType(Enum):
|
||||
pytorch = "pytorch"
|
||||
huggingface = "huggingface"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PytorchCheckpoint(BaseModel):
|
||||
checkpoint_type: Literal[CheckpointType.pytorch.value] = (
|
||||
CheckpointType.pytorch.value
|
||||
)
|
||||
checkpoint_dir: str
|
||||
tokenizer_path: str
|
||||
model_parallel_size: int
|
||||
quantization_format: CheckpointQuantizationFormat = (
|
||||
CheckpointQuantizationFormat.bf16
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class HuggingFaceCheckpoint(BaseModel):
|
||||
checkpoint_type: Literal[CheckpointType.huggingface.value] = (
|
||||
CheckpointType.huggingface.value
|
||||
)
|
||||
repo_id: str # or model_name ?
|
||||
model_parallel_size: int
|
||||
quantization_format: CheckpointQuantizationFormat = (
|
||||
CheckpointQuantizationFormat.bf16
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ModelCheckpointConfig(BaseModel):
|
||||
checkpoint: Annotated[
|
||||
Union[PytorchCheckpoint, HuggingFaceCheckpoint],
|
||||
Field(discriminator="checkpoint_type"),
|
||||
]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class InlineImplConfig(BaseModel):
|
||||
impl_type: Literal[ImplType.inline.value] = ImplType.inline.value
|
||||
checkpoint_config: ModelCheckpointConfig
|
||||
quantization: Optional[QuantizationConfig] = None
|
||||
torch_seed: Optional[int] = None
|
||||
max_seq_len: int
|
||||
max_batch_size: int = 1
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RemoteImplConfig(BaseModel):
|
||||
impl_type: Literal[ImplType.remote.value] = ImplType.remote.value
|
||||
url: str = Field(..., description="The URL of the remote module")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class InferenceConfig(BaseModel):
|
||||
impl_config: Annotated[
|
||||
Union[InlineImplConfig, RemoteImplConfig],
|
||||
Field(discriminator="impl_type"),
|
||||
]
|
||||
|
||||
|
||||
InferenceHydraConfig = builds(InferenceConfig)
|
||||
|
||||
cs = ConfigStore.instance()
|
||||
cs.store(name="inference_config", node=InferenceHydraConfig)
|
Loading…
Add table
Add a link
Reference in a new issue