mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 09:52:36 +00:00
Merge branch 'meta-llama:main' into main
This commit is contained in:
commit
5d65c017b0
757 changed files with 56400 additions and 75879 deletions
6
.coveragerc
Normal file
6
.coveragerc
Normal file
|
|
@ -0,0 +1,6 @@
|
|||
[run]
|
||||
omit =
|
||||
*/tests/*
|
||||
*/llama_stack/providers/*
|
||||
*/llama_stack/templates/*
|
||||
.venv/*
|
||||
2
.github/CODEOWNERS
vendored
2
.github/CODEOWNERS
vendored
|
|
@ -2,4 +2,4 @@
|
|||
|
||||
# These owners will be the default owners for everything in
|
||||
# the repo. Unless a later match takes precedence,
|
||||
* @ashwinb @yanxi0830 @hardikjshah @dltn @raghotham @dineshyv @vladimirivic @sixianyi0721 @ehhuang @terrytangyuan @SLR722 @leseb
|
||||
* @ashwinb @yanxi0830 @hardikjshah @raghotham @ehhuang @terrytangyuan @leseb @bbrowning @reluctantfuturist
|
||||
|
|
|
|||
10
.github/PULL_REQUEST_TEMPLATE.md
vendored
10
.github/PULL_REQUEST_TEMPLATE.md
vendored
|
|
@ -1,10 +1,8 @@
|
|||
# What does this PR do?
|
||||
[Provide a short summary of what this PR does and why. Link to relevant issues if applicable.]
|
||||
<!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. -->
|
||||
|
||||
[//]: # (If resolving an issue, uncomment and update the line below)
|
||||
[//]: # (Closes #[issue-number])
|
||||
<!-- If resolving an issue, uncomment and update the line below -->
|
||||
<!-- Closes #[issue-number] -->
|
||||
|
||||
## Test Plan
|
||||
[Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*]
|
||||
|
||||
[//]: # (## Documentation)
|
||||
<!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* -->
|
||||
|
|
|
|||
2
.github/TRIAGERS.md
vendored
2
.github/TRIAGERS.md
vendored
|
|
@ -1,2 +1,2 @@
|
|||
# This file documents Triage members in the Llama Stack community
|
||||
@franciscojavierarceo @leseb
|
||||
@bbrowning @booxter @franciscojavierarceo @leseb
|
||||
|
|
|
|||
9
.github/actions/setup-ollama/action.yml
vendored
Normal file
9
.github/actions/setup-ollama/action.yml
vendored
Normal file
|
|
@ -0,0 +1,9 @@
|
|||
name: Setup Ollama
|
||||
description: Start Ollama
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Start Ollama
|
||||
shell: bash
|
||||
run: |
|
||||
docker run -d --name ollama -p 11434:11434 docker.io/leseb/ollama-with-models
|
||||
27
.github/actions/setup-runner/action.yml
vendored
Normal file
27
.github/actions/setup-runner/action.yml
vendored
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
name: Setup runner
|
||||
description: Prepare a runner for the tests (install uv, python, project dependencies, etc.)
|
||||
inputs:
|
||||
python-version:
|
||||
description: The Python version to use
|
||||
required: false
|
||||
default: "3.10"
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@6b9c6063abd6010835644d4c2e1bef4cf5cd0fca # v6.0.1
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
activate-environment: true
|
||||
version: 0.7.6
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
uv sync --all-groups
|
||||
uv pip install ollama faiss-cpu
|
||||
# always test against the latest version of the client
|
||||
# TODO: this is not necessarily a good idea. we need to test against both published and latest
|
||||
# to find out backwards compatibility issues.
|
||||
uv pip install git+https://github.com/meta-llama/llama-stack-client-python.git@main
|
||||
uv pip install -e .
|
||||
26
.github/workflows/install-script-ci.yml
vendored
Normal file
26
.github/workflows/install-script-ci.yml
vendored
Normal file
|
|
@ -0,0 +1,26 @@
|
|||
name: Installer CI
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- 'install.sh'
|
||||
push:
|
||||
paths:
|
||||
- 'install.sh'
|
||||
schedule:
|
||||
- cron: '0 2 * * *' # every day at 02:00 UTC
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
|
||||
- name: Run ShellCheck on install.sh
|
||||
run: shellcheck install.sh
|
||||
smoke-test:
|
||||
needs: lint
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
|
||||
- name: Run installer end-to-end
|
||||
run: ./install.sh
|
||||
132
.github/workflows/integration-auth-tests.yml
vendored
Normal file
132
.github/workflows/integration-auth-tests.yml
vendored
Normal file
|
|
@ -0,0 +1,132 @@
|
|||
name: Integration Auth Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
paths:
|
||||
- 'distributions/**'
|
||||
- 'llama_stack/**'
|
||||
- 'tests/integration/**'
|
||||
- 'uv.lock'
|
||||
- 'pyproject.toml'
|
||||
- 'requirements.txt'
|
||||
- '.github/workflows/integration-auth-tests.yml' # This workflow
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
test-matrix:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
auth-provider: [oauth2_token]
|
||||
fail-fast: false # we want to run all tests regardless of failure
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
|
||||
- name: Build Llama Stack
|
||||
run: |
|
||||
llama stack build --template ollama --image-type venv
|
||||
|
||||
- name: Install minikube
|
||||
if: ${{ matrix.auth-provider == 'kubernetes' }}
|
||||
uses: medyagh/setup-minikube@cea33675329b799adccc9526aa5daccc26cd5052 # v0.0.19
|
||||
|
||||
- name: Start minikube
|
||||
if: ${{ matrix.auth-provider == 'oauth2_token' }}
|
||||
run: |
|
||||
minikube start
|
||||
kubectl get pods -A
|
||||
|
||||
- name: Configure Kube Auth
|
||||
if: ${{ matrix.auth-provider == 'oauth2_token' }}
|
||||
run: |
|
||||
kubectl create namespace llama-stack
|
||||
kubectl create serviceaccount llama-stack-auth -n llama-stack
|
||||
kubectl create rolebinding llama-stack-auth-rolebinding --clusterrole=admin --serviceaccount=llama-stack:llama-stack-auth -n llama-stack
|
||||
kubectl create token llama-stack-auth -n llama-stack > llama-stack-auth-token
|
||||
cat <<EOF | kubectl apply -f -
|
||||
apiVersion: rbac.authorization.k8s.io/v1
|
||||
kind: ClusterRole
|
||||
metadata:
|
||||
name: allow-anonymous-openid
|
||||
rules:
|
||||
- nonResourceURLs: ["/openid/v1/jwks"]
|
||||
verbs: ["get"]
|
||||
---
|
||||
apiVersion: rbac.authorization.k8s.io/v1
|
||||
kind: ClusterRoleBinding
|
||||
metadata:
|
||||
name: allow-anonymous-openid
|
||||
roleRef:
|
||||
apiGroup: rbac.authorization.k8s.io
|
||||
kind: ClusterRole
|
||||
name: allow-anonymous-openid
|
||||
subjects:
|
||||
- kind: User
|
||||
name: system:anonymous
|
||||
apiGroup: rbac.authorization.k8s.io
|
||||
EOF
|
||||
|
||||
- name: Set Kubernetes Config
|
||||
if: ${{ matrix.auth-provider == 'oauth2_token' }}
|
||||
run: |
|
||||
echo "KUBERNETES_API_SERVER_URL=$(kubectl get --raw /.well-known/openid-configuration| jq -r .jwks_uri)" >> $GITHUB_ENV
|
||||
echo "KUBERNETES_CA_CERT_PATH=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.certificate-authority}')" >> $GITHUB_ENV
|
||||
echo "KUBERNETES_ISSUER=$(kubectl get --raw /.well-known/openid-configuration| jq -r .issuer)" >> $GITHUB_ENV
|
||||
echo "KUBERNETES_AUDIENCE=$(kubectl create token llama-stack-auth -n llama-stack --duration=1h | cut -d. -f2 | base64 -d | jq -r '.aud[0]')" >> $GITHUB_ENV
|
||||
|
||||
- name: Set Kube Auth Config and run server
|
||||
env:
|
||||
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
|
||||
if: ${{ matrix.auth-provider == 'oauth2_token' }}
|
||||
run: |
|
||||
run_dir=$(mktemp -d)
|
||||
cat <<'EOF' > $run_dir/run.yaml
|
||||
version: '2'
|
||||
image_name: kube
|
||||
apis: []
|
||||
providers: {}
|
||||
server:
|
||||
port: 8321
|
||||
EOF
|
||||
yq eval '.server.auth = {"provider_type": "${{ matrix.auth-provider }}"}' -i $run_dir/run.yaml
|
||||
yq eval '.server.auth.config = {"tls_cafile": "${{ env.KUBERNETES_CA_CERT_PATH }}", "issuer": "${{ env.KUBERNETES_ISSUER }}", "audience": "${{ env.KUBERNETES_AUDIENCE }}"}' -i $run_dir/run.yaml
|
||||
yq eval '.server.auth.config.jwks = {"uri": "${{ env.KUBERNETES_API_SERVER_URL }}"}' -i $run_dir/run.yaml
|
||||
cat $run_dir/run.yaml
|
||||
|
||||
nohup uv run llama stack run $run_dir/run.yaml --image-type venv > server.log 2>&1 &
|
||||
|
||||
- name: Wait for Llama Stack server to be ready
|
||||
run: |
|
||||
echo "Waiting for Llama Stack server..."
|
||||
for i in {1..30}; do
|
||||
if curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://localhost:8321/v1/health | grep -q "OK"; then
|
||||
echo "Llama Stack server is up!"
|
||||
if grep -q "Enabling authentication with provider: ${{ matrix.auth-provider }}" server.log; then
|
||||
echo "Llama Stack server is configured to use ${{ matrix.auth-provider }} auth"
|
||||
exit 0
|
||||
else
|
||||
echo "Llama Stack server is not configured to use ${{ matrix.auth-provider }} auth"
|
||||
cat server.log
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
sleep 1
|
||||
done
|
||||
echo "Llama Stack server failed to start"
|
||||
cat server.log
|
||||
exit 1
|
||||
|
||||
- name: Test auth
|
||||
run: |
|
||||
curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://127.0.0.1:8321/v1/providers|jq
|
||||
64
.github/workflows/integration-tests.yml
vendored
64
.github/workflows/integration-tests.yml
vendored
|
|
@ -6,7 +6,6 @@ on:
|
|||
pull_request:
|
||||
branches: [ main ]
|
||||
paths:
|
||||
- 'distributions/**'
|
||||
- 'llama_stack/**'
|
||||
- 'tests/integration/**'
|
||||
- 'uv.lock'
|
||||
|
|
@ -25,47 +24,33 @@ jobs:
|
|||
matrix:
|
||||
# Listing tests manually since some of them currently fail
|
||||
# TODO: generate matrix list from tests/integration when fixed
|
||||
test-type: [agents, inference, datasets, inspect, scoring, post_training, providers]
|
||||
test-type: [agents, inference, datasets, inspect, scoring, post_training, providers, tool_runtime]
|
||||
client-type: [library, http]
|
||||
python-version: ["3.10", "3.11", "3.12"]
|
||||
fail-fast: false # we want to run all tests regardless of failure
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install and start Ollama
|
||||
run: |
|
||||
# the ollama installer also starts the ollama service
|
||||
curl -fsSL https://ollama.com/install.sh | sh
|
||||
- name: Setup ollama
|
||||
uses: ./.github/actions/setup-ollama
|
||||
|
||||
- name: Pull Ollama image
|
||||
- name: Build Llama Stack
|
||||
run: |
|
||||
# TODO: cache the model. OLLAMA_MODELS defaults to ~ollama/.ollama/models.
|
||||
ollama pull llama3.2:3b-instruct-fp16
|
||||
|
||||
- name: Set Up Environment and Install Dependencies
|
||||
run: |
|
||||
uv sync --extra dev --extra test
|
||||
uv pip install ollama faiss-cpu
|
||||
# always test against the latest version of the client
|
||||
# TODO: this is not necessarily a good idea. we need to test against both published and latest
|
||||
# to find out backwards compatibility issues.
|
||||
uv pip install git+https://github.com/meta-llama/llama-stack-client-python.git@main
|
||||
uv pip install -e .
|
||||
llama stack build --template ollama --image-type venv
|
||||
uv run llama stack build --template ollama --image-type venv
|
||||
|
||||
- name: Start Llama Stack server in background
|
||||
if: matrix.client-type == 'http'
|
||||
env:
|
||||
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
nohup uv run llama stack run ./llama_stack/templates/ollama/run.yaml --image-type venv > server.log 2>&1 &
|
||||
LLAMA_STACK_LOG_FILE=server.log nohup uv run llama stack run ./llama_stack/templates/ollama/run.yaml --image-type venv --env OLLAMA_URL="http://0.0.0.0:11434" &
|
||||
|
||||
- name: Wait for Llama Stack server to be ready
|
||||
if: matrix.client-type == 'http'
|
||||
|
|
@ -93,16 +78,43 @@ jobs:
|
|||
exit 1
|
||||
fi
|
||||
|
||||
- name: Check Storage and Memory Available Before Tests
|
||||
if: ${{ always() }}
|
||||
run: |
|
||||
free -h
|
||||
df -h
|
||||
|
||||
- name: Run Integration Tests
|
||||
env:
|
||||
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
|
||||
OLLAMA_URL: "http://0.0.0.0:11434"
|
||||
run: |
|
||||
if [ "${{ matrix.client-type }}" == "library" ]; then
|
||||
stack_config="ollama"
|
||||
else
|
||||
stack_config="http://localhost:8321"
|
||||
fi
|
||||
uv run pytest -v tests/integration/${{ matrix.test-type }} --stack-config=${stack_config} \
|
||||
uv run pytest -s -v tests/integration/${{ matrix.test-type }} --stack-config=${stack_config} \
|
||||
-k "not(builtin_tool or safety_with_image or code_interpreter or test_rag)" \
|
||||
--text-model="meta-llama/Llama-3.2-3B-Instruct" \
|
||||
--embedding-model=all-MiniLM-L6-v2
|
||||
|
||||
- name: Check Storage and Memory Available After Tests
|
||||
if: ${{ always() }}
|
||||
run: |
|
||||
free -h
|
||||
df -h
|
||||
|
||||
- name: Write ollama logs to file
|
||||
if: ${{ always() }}
|
||||
run: |
|
||||
sudo docker logs ollama > ollama.log
|
||||
|
||||
- name: Upload all logs to artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
|
||||
with:
|
||||
name: logs-${{ github.run_id }}-${{ github.run_attempt }}-${{ matrix.client-type }}-${{ matrix.test-type }}-${{ matrix.python-version }}
|
||||
path: |
|
||||
*.log
|
||||
retention-days: 1
|
||||
|
|
|
|||
5
.github/workflows/pre-commit.yml
vendored
5
.github/workflows/pre-commit.yml
vendored
|
|
@ -18,7 +18,7 @@ jobs:
|
|||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@8d9ed9ac5c53483de85588cdf95a591a75ab9f55 # v5.5.0
|
||||
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
|
||||
with:
|
||||
python-version: '3.11'
|
||||
cache: pip
|
||||
|
|
@ -27,6 +27,9 @@ jobs:
|
|||
.pre-commit-config.yaml
|
||||
|
||||
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
|
||||
env:
|
||||
SKIP: no-commit-to-branch
|
||||
RUFF_OUTPUT_FORMAT: github
|
||||
|
||||
- name: Verify if there are any diff files after pre-commit
|
||||
run: |
|
||||
|
|
|
|||
102
.github/workflows/providers-build.yml
vendored
102
.github/workflows/providers-build.yml
vendored
|
|
@ -10,6 +10,7 @@ on:
|
|||
- 'llama_stack/distribution/build.*'
|
||||
- 'llama_stack/distribution/*.sh'
|
||||
- '.github/workflows/providers-build.yml'
|
||||
- 'llama_stack/templates/**'
|
||||
pull_request:
|
||||
paths:
|
||||
- 'llama_stack/cli/stack/build.py'
|
||||
|
|
@ -17,6 +18,7 @@ on:
|
|||
- 'llama_stack/distribution/build.*'
|
||||
- 'llama_stack/distribution/*.sh'
|
||||
- '.github/workflows/providers-build.yml'
|
||||
- 'llama_stack/templates/**'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
|
|
@ -50,21 +52,8 @@ jobs:
|
|||
- name: Checkout repository
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@8d9ed9ac5c53483de85588cdf95a591a75ab9f55 # v5.5.0
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1
|
||||
with:
|
||||
python-version: "3.10"
|
||||
|
||||
- name: Install LlamaStack
|
||||
run: |
|
||||
uv venv
|
||||
source .venv/bin/activate
|
||||
uv pip install -e .
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
|
||||
- name: Print build dependencies
|
||||
run: |
|
||||
|
|
@ -79,7 +68,6 @@ jobs:
|
|||
- name: Print dependencies in the image
|
||||
if: matrix.image-type == 'venv'
|
||||
run: |
|
||||
source test/bin/activate
|
||||
uv pip list
|
||||
|
||||
build-single-provider:
|
||||
|
|
@ -88,22 +76,74 @@ jobs:
|
|||
- name: Checkout repository
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@8d9ed9ac5c53483de85588cdf95a591a75ab9f55 # v5.5.0
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1
|
||||
with:
|
||||
python-version: "3.10"
|
||||
|
||||
- name: Install LlamaStack
|
||||
run: |
|
||||
uv venv
|
||||
source .venv/bin/activate
|
||||
uv pip install -e .
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
|
||||
- name: Build a single provider
|
||||
run: |
|
||||
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --image-type venv --image-name test --providers inference=remote::ollama
|
||||
|
||||
build-custom-container-distribution:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
|
||||
- name: Build a single provider
|
||||
run: |
|
||||
yq -i '.image_type = "container"' llama_stack/templates/starter/build.yaml
|
||||
yq -i '.image_name = "test"' llama_stack/templates/starter/build.yaml
|
||||
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config llama_stack/templates/starter/build.yaml
|
||||
|
||||
- name: Inspect the container image entrypoint
|
||||
run: |
|
||||
IMAGE_ID=$(docker images --format "{{.Repository}}:{{.Tag}}" | head -n 1)
|
||||
entrypoint=$(docker inspect --format '{{ .Config.Entrypoint }}' $IMAGE_ID)
|
||||
echo "Entrypoint: $entrypoint"
|
||||
if [ "$entrypoint" != "[python -m llama_stack.distribution.server.server --config /app/run.yaml]" ]; then
|
||||
echo "Entrypoint is not correct"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
build-ubi9-container-distribution:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
|
||||
- name: Pin template to UBI9 base
|
||||
run: |
|
||||
yq -i '
|
||||
.image_type = "container" |
|
||||
.image_name = "ubi9-test" |
|
||||
.distribution_spec.container_image = "registry.access.redhat.com/ubi9:latest"
|
||||
' llama_stack/templates/starter/build.yaml
|
||||
|
||||
- name: Build dev container (UBI9)
|
||||
env:
|
||||
USE_COPY_NOT_MOUNT: "true"
|
||||
LLAMA_STACK_DIR: "."
|
||||
run: |
|
||||
uv run llama stack build --config llama_stack/templates/starter/build.yaml
|
||||
|
||||
- name: Inspect UBI9 image
|
||||
run: |
|
||||
IMAGE_ID=$(docker images --format "{{.Repository}}:{{.Tag}}" | head -n 1)
|
||||
entrypoint=$(docker inspect --format '{{ .Config.Entrypoint }}' $IMAGE_ID)
|
||||
echo "Entrypoint: $entrypoint"
|
||||
if [ "$entrypoint" != "[python -m llama_stack.distribution.server.server --config /app/run.yaml]" ]; then
|
||||
echo "Entrypoint is not correct"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Checking /etc/os-release in $IMAGE_ID"
|
||||
docker run --rm --entrypoint sh "$IMAGE_ID" -c \
|
||||
'source /etc/os-release && echo "$ID"' \
|
||||
| grep -qE '^(rhel|ubi)$' \
|
||||
|| { echo "Base image is not UBI 9!"; exit 1; }
|
||||
|
|
|
|||
75
.github/workflows/test-external-providers.yml
vendored
75
.github/workflows/test-external-providers.yml
vendored
|
|
@ -5,6 +5,13 @@ on:
|
|||
branches: [ main ]
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
paths:
|
||||
- 'llama_stack/**'
|
||||
- 'tests/integration/**'
|
||||
- 'uv.lock'
|
||||
- 'pyproject.toml'
|
||||
- 'requirements.txt'
|
||||
- '.github/workflows/test-external-providers.yml' # This workflow
|
||||
|
||||
jobs:
|
||||
test-external-providers:
|
||||
|
|
@ -16,29 +23,10 @@ jobs:
|
|||
# container and point 'uv pip install' to the correct path...
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
|
||||
- name: Install Ollama
|
||||
run: |
|
||||
curl -fsSL https://ollama.com/install.sh | sh
|
||||
|
||||
- name: Pull Ollama image
|
||||
run: |
|
||||
ollama pull llama3.2:3b-instruct-fp16
|
||||
|
||||
- name: Start Ollama in background
|
||||
run: |
|
||||
nohup ollama run llama3.2:3b-instruct-fp16 --keepalive=30m > ollama.log 2>&1 &
|
||||
|
||||
- name: Set Up Environment and Install Dependencies
|
||||
run: |
|
||||
uv sync --extra dev --extra test
|
||||
uv pip install -e .
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
|
||||
- name: Apply image type to config file
|
||||
run: |
|
||||
|
|
@ -52,57 +40,32 @@ jobs:
|
|||
|
||||
- name: Create provider configuration
|
||||
run: |
|
||||
mkdir -p /tmp/providers.d/remote/inference
|
||||
cp tests/external-provider/llama-stack-provider-ollama/custom_ollama.yaml /tmp/providers.d/remote/inference/custom_ollama.yaml
|
||||
mkdir -p /home/runner/.llama/providers.d/remote/inference
|
||||
cp tests/external-provider/llama-stack-provider-ollama/custom_ollama.yaml /home/runner/.llama/providers.d/remote/inference/custom_ollama.yaml
|
||||
|
||||
- name: Build distro from config file
|
||||
run: |
|
||||
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config tests/external-provider/llama-stack-provider-ollama/custom-distro.yaml
|
||||
|
||||
- name: Wait for Ollama to start
|
||||
run: |
|
||||
echo "Waiting for Ollama..."
|
||||
for i in {1..30}; do
|
||||
if curl -s http://localhost:11434 | grep -q "Ollama is running"; then
|
||||
echo "Ollama is running!"
|
||||
exit 0
|
||||
fi
|
||||
sleep 1
|
||||
done
|
||||
echo "Ollama failed to start"
|
||||
ollama ps
|
||||
ollama.log
|
||||
exit 1
|
||||
|
||||
- name: Start Llama Stack server in background
|
||||
if: ${{ matrix.image-type }} == 'venv'
|
||||
env:
|
||||
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
|
||||
run: |
|
||||
source ci-test/bin/activate
|
||||
uv run pip list
|
||||
nohup uv run --active llama stack run tests/external-provider/llama-stack-provider-ollama/run.yaml --image-type ${{ matrix.image-type }} > server.log 2>&1 &
|
||||
|
||||
- name: Wait for Llama Stack server to be ready
|
||||
run: |
|
||||
echo "Waiting for Llama Stack server..."
|
||||
for i in {1..30}; do
|
||||
if curl -s http://localhost:8321/v1/health | grep -q "OK"; then
|
||||
echo "Llama Stack server is up!"
|
||||
if grep -q "remote::custom_ollama from /tmp/providers.d/remote/inference/custom_ollama.yaml" server.log; then
|
||||
echo "Llama Stack server is using custom Ollama provider"
|
||||
exit 0
|
||||
else
|
||||
echo "Llama Stack server is not using custom Ollama provider"
|
||||
exit 1
|
||||
fi
|
||||
if ! grep -q "remote::custom_ollama from /home/runner/.llama/providers.d/remote/inference/custom_ollama.yaml" server.log; then
|
||||
echo "Waiting for Llama Stack server to load the provider..."
|
||||
sleep 1
|
||||
else
|
||||
echo "Provider loaded"
|
||||
exit 0
|
||||
fi
|
||||
sleep 1
|
||||
done
|
||||
echo "Llama Stack server failed to start"
|
||||
echo "Provider failed to load"
|
||||
cat server.log
|
||||
exit 1
|
||||
|
||||
- name: run inference tests
|
||||
run: |
|
||||
uv run pytest -v tests/integration/inference/test_text_inference.py --stack-config="http://localhost:8321" --text-model="meta-llama/Llama-3.2-3B-Instruct" --embedding-model=all-MiniLM-L6-v2
|
||||
|
|
|
|||
15
.github/workflows/unit-tests.yml
vendored
15
.github/workflows/unit-tests.yml
vendored
|
|
@ -6,7 +6,6 @@ on:
|
|||
pull_request:
|
||||
branches: [ main ]
|
||||
paths:
|
||||
- 'distributions/**'
|
||||
- 'llama_stack/**'
|
||||
- 'tests/unit/**'
|
||||
- 'uv.lock'
|
||||
|
|
@ -31,17 +30,11 @@ jobs:
|
|||
- "3.12"
|
||||
- "3.13"
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Set up Python ${{ matrix.python }}
|
||||
uses: actions/setup-python@8d9ed9ac5c53483de85588cdf95a591a75ab9f55 # v5.5.0
|
||||
with:
|
||||
python-version: ${{ matrix.python }}
|
||||
|
||||
- uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1
|
||||
with:
|
||||
python-version: ${{ matrix.python }}
|
||||
enable-cache: false
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
|
||||
- name: Run unit tests
|
||||
run: |
|
||||
|
|
|
|||
19
.github/workflows/update-readthedocs.yml
vendored
19
.github/workflows/update-readthedocs.yml
vendored
|
|
@ -14,6 +14,8 @@ on:
|
|||
- 'docs/**'
|
||||
- 'pyproject.toml'
|
||||
- '.github/workflows/update-readthedocs.yml'
|
||||
tags:
|
||||
- '*'
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
|
|
@ -35,16 +37,8 @@ jobs:
|
|||
- name: Checkout repository
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@8d9ed9ac5c53483de85588cdf95a591a75ab9f55 # v5.5.0
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Install the latest version of uv
|
||||
uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1
|
||||
|
||||
- name: Sync with uv
|
||||
run: uv sync --extra docs
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
|
||||
- name: Build HTML
|
||||
run: |
|
||||
|
|
@ -61,7 +55,10 @@ jobs:
|
|||
|
||||
response=$(curl -X POST \
|
||||
-H "Content-Type: application/json" \
|
||||
-d "{\"token\": \"$TOKEN\"}" \
|
||||
-d "{
|
||||
\"token\": \"$TOKEN\",
|
||||
\"version\": \"$GITHUB_REF_NAME\"
|
||||
}" \
|
||||
https://readthedocs.org/api/v2/webhook/llama-stack/289768/)
|
||||
|
||||
echo "Response: $response"
|
||||
|
|
|
|||
1
.gitignore
vendored
1
.gitignore
vendored
|
|
@ -6,6 +6,7 @@ dev_requirements.txt
|
|||
build
|
||||
.DS_Store
|
||||
llama_stack/configs/*
|
||||
.cursor/
|
||||
xcuserdata/
|
||||
*.hmap
|
||||
.DS_Store
|
||||
|
|
|
|||
|
|
@ -15,6 +15,18 @@ repos:
|
|||
args: ['--maxkb=1000']
|
||||
- id: end-of-file-fixer
|
||||
exclude: '^(.*\.svg)$'
|
||||
- id: no-commit-to-branch
|
||||
- id: check-yaml
|
||||
args: ["--unsafe"]
|
||||
- id: detect-private-key
|
||||
- id: requirements-txt-fixer
|
||||
- id: mixed-line-ending
|
||||
args: [--fix=lf] # Forces to replace line ending by LF (line feed)
|
||||
- id: check-executables-have-shebangs
|
||||
- id: check-json
|
||||
- id: check-shebang-scripts-are-executable
|
||||
- id: check-symlinks
|
||||
- id: check-toml
|
||||
|
||||
- repo: https://github.com/Lucas-C/pre-commit-hooks
|
||||
rev: v1.5.4
|
||||
|
|
@ -41,7 +53,7 @@ repos:
|
|||
- black==24.3.0
|
||||
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
rev: 0.6.3
|
||||
rev: 0.7.8
|
||||
hooks:
|
||||
- id: uv-lock
|
||||
- id: uv-export
|
||||
|
|
@ -49,6 +61,7 @@ repos:
|
|||
"--frozen",
|
||||
"--no-hashes",
|
||||
"--no-emit-project",
|
||||
"--no-default-groups",
|
||||
"--output-file=requirements.txt"
|
||||
]
|
||||
|
||||
|
|
@ -76,24 +89,29 @@ repos:
|
|||
- id: distro-codegen
|
||||
name: Distribution Template Codegen
|
||||
additional_dependencies:
|
||||
- uv==0.6.0
|
||||
entry: uv run --extra codegen ./scripts/distro_codegen.py
|
||||
- uv==0.7.8
|
||||
entry: uv run --group codegen ./scripts/distro_codegen.py
|
||||
language: python
|
||||
pass_filenames: false
|
||||
require_serial: true
|
||||
files: ^llama_stack/templates/.*$|^llama_stack/providers/.*/inference/.*/models\.py$
|
||||
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: openapi-codegen
|
||||
name: API Spec Codegen
|
||||
additional_dependencies:
|
||||
- uv==0.6.2
|
||||
entry: sh -c 'uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
|
||||
- uv==0.7.8
|
||||
entry: sh -c 'uv run ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
|
||||
language: python
|
||||
pass_filenames: false
|
||||
require_serial: true
|
||||
files: ^llama_stack/apis/|^docs/openapi_generator/
|
||||
- id: check-workflows-use-hashes
|
||||
name: Check GitHub Actions use SHA-pinned actions
|
||||
entry: ./scripts/check-workflows-use-hashes.sh
|
||||
language: system
|
||||
pass_filenames: false
|
||||
require_serial: true
|
||||
always_run: true
|
||||
files: ^\.github/workflows/.*\.ya?ml$
|
||||
|
||||
ci:
|
||||
autofix_commit_msg: 🎨 [pre-commit.ci] Auto format from pre-commit.com hooks
|
||||
|
|
|
|||
|
|
@ -5,28 +5,21 @@
|
|||
# Required
|
||||
version: 2
|
||||
|
||||
# Build documentation in the "docs/" directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/source/conf.py
|
||||
|
||||
# Set the OS, Python version and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.12"
|
||||
# You can also specify other tool versions:
|
||||
# nodejs: "19"
|
||||
# rust: "1.64"
|
||||
# golang: "1.19"
|
||||
|
||||
# Build documentation in the "docs/" directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/source/conf.py
|
||||
|
||||
# Optionally build your docs in additional formats such as PDF and ePub
|
||||
# formats:
|
||||
# - pdf
|
||||
# - epub
|
||||
|
||||
# Optional but recommended, declare the Python requirements required
|
||||
# to build your documentation
|
||||
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
|
||||
python:
|
||||
install:
|
||||
- requirements: docs/requirements.txt
|
||||
jobs:
|
||||
pre_create_environment:
|
||||
- asdf plugin add uv
|
||||
- asdf install uv latest
|
||||
- asdf global uv latest
|
||||
create_environment:
|
||||
- uv venv "${READTHEDOCS_VIRTUALENV_PATH}"
|
||||
install:
|
||||
- UV_PROJECT_ENVIRONMENT="${READTHEDOCS_VIRTUALENV_PATH}" uv sync --frozen --group docs
|
||||
|
|
|
|||
681
CHANGELOG.md
681
CHANGELOG.md
|
|
@ -1,5 +1,124 @@
|
|||
# Changelog
|
||||
|
||||
# v0.2.10.1
|
||||
Published on: 2025-06-06T20:11:02Z
|
||||
|
||||
## Highlights
|
||||
* ChromaDB provider fix
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.10
|
||||
Published on: 2025-06-05T23:21:45Z
|
||||
|
||||
## Highlights
|
||||
|
||||
* OpenAI-compatible embeddings API
|
||||
* OpenAI-compatible Files API
|
||||
* Postgres support in starter distro
|
||||
* Enable ingestion of precomputed embeddings
|
||||
* Full multi-turn support in Responses API
|
||||
* Fine-grained access control policy
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.9
|
||||
Published on: 2025-05-30T20:01:56Z
|
||||
|
||||
## Highlights
|
||||
* Added initial streaming support in Responses API
|
||||
* UI view for Responses
|
||||
* Postgres inference store support
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.8
|
||||
Published on: 2025-05-27T21:03:47Z
|
||||
|
||||
# Release v0.2.8
|
||||
|
||||
## Highlights
|
||||
|
||||
* Server-side MCP with auth firewalls now works in the Stack - both for Agents and Responses
|
||||
* Get chat completions APIs and UI to show chat completions
|
||||
* Enable keyword search for sqlite-vec
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.7
|
||||
Published on: 2025-05-16T20:38:10Z
|
||||
|
||||
## Highlights
|
||||
|
||||
This is a small update. But a couple highlights:
|
||||
|
||||
* feat: function tools in OpenAI Responses by @bbrowning in https://github.com/meta-llama/llama-stack/pull/2094, getting closer to ready. Streaming is the next missing piece.
|
||||
* feat: Adding support for customizing chunk context in RAG insertion and querying by @franciscojavierarceo in https://github.com/meta-llama/llama-stack/pull/2134
|
||||
* feat: scaffolding for Llama Stack UI by @ehhuang in https://github.com/meta-llama/llama-stack/pull/2149, more to come in the coming releases.
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.6
|
||||
Published on: 2025-05-12T18:06:52Z
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.5
|
||||
Published on: 2025-05-04T20:16:49Z
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.4
|
||||
Published on: 2025-04-29T17:26:01Z
|
||||
|
||||
## Highlights
|
||||
|
||||
* One-liner to install and run Llama Stack yay! by @reluctantfuturist in https://github.com/meta-llama/llama-stack/pull/1383
|
||||
* support for NVIDIA NeMo datastore by @raspawar in https://github.com/meta-llama/llama-stack/pull/1852
|
||||
* (yuge!) Kubernetes authentication by @leseb in https://github.com/meta-llama/llama-stack/pull/1778
|
||||
* (yuge!) OpenAI Responses API by @bbrowning in https://github.com/meta-llama/llama-stack/pull/1989
|
||||
* add api.llama provider, llama-guard-4 model by @ashwinb in https://github.com/meta-llama/llama-stack/pull/2058
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.3
|
||||
Published on: 2025-04-25T22:46:21Z
|
||||
|
||||
## Highlights
|
||||
|
||||
* OpenAI compatible inference endpoints and client-SDK support. `client.chat.completions.create()` now works.
|
||||
* significant improvements and functionality added to the nVIDIA distribution
|
||||
* many improvements to the test verification suite.
|
||||
* new inference providers: Ramalama, IBM WatsonX
|
||||
* many improvements to the Playground UI
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.2
|
||||
Published on: 2025-04-13T01:19:49Z
|
||||
|
||||
## Main changes
|
||||
|
||||
- Bring Your Own Provider (@leseb) - use out-of-tree provider code to execute the distribution server
|
||||
- OpenAI compatible inference API in progress (@bbrowning)
|
||||
- Provider verifications (@ehhuang)
|
||||
- Many updates and fixes to playground
|
||||
- Several llama4 related fixes
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.2.1
|
||||
Published on: 2025-04-05T23:13:00Z
|
||||
|
||||
|
|
@ -10,10 +129,10 @@ Published on: 2025-04-05T23:13:00Z
|
|||
# v0.2.0
|
||||
Published on: 2025-04-05T19:04:29Z
|
||||
|
||||
## Llama 4 Support
|
||||
|
||||
Checkout more at https://www.llama.com
|
||||
|
||||
## Llama 4 Support
|
||||
|
||||
Checkout more at https://www.llama.com
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
|
@ -21,58 +140,58 @@ Checkout more at https://www.llama.com
|
|||
# v0.1.9
|
||||
Published on: 2025-03-29T00:52:23Z
|
||||
|
||||
### Build and Test Agents
|
||||
* Agents: Entire document context with attachments
|
||||
* RAG: Documentation with sqlite-vec faiss comparison
|
||||
* Getting started: Fixes to getting started notebook.
|
||||
|
||||
### Agent Evals and Model Customization
|
||||
* (**New**) Post-training: Add nemo customizer
|
||||
|
||||
### Better Engineering
|
||||
* Moved sqlite-vec to non-blocking calls
|
||||
* Don't return a payload on file delete
|
||||
|
||||
|
||||
### Build and Test Agents
|
||||
* Agents: Entire document context with attachments
|
||||
* RAG: Documentation with sqlite-vec faiss comparison
|
||||
* Getting started: Fixes to getting started notebook.
|
||||
|
||||
### Agent Evals and Model Customization
|
||||
* (**New**) Post-training: Add nemo customizer
|
||||
|
||||
### Better Engineering
|
||||
* Moved sqlite-vec to non-blocking calls
|
||||
* Don't return a payload on file delete
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.1.8
|
||||
Published on: 2025-03-24T01:28:50Z
|
||||
|
||||
# v0.1.8 Release Notes
|
||||
|
||||
### Build and Test Agents
|
||||
* Safety: Integrated NVIDIA as a safety provider.
|
||||
* VectorDB: Added Qdrant as an inline provider.
|
||||
* Agents: Added support for multiple tool groups in agents.
|
||||
* Agents: Simplified imports for Agents in client package
|
||||
|
||||
|
||||
### Agent Evals and Model Customization
|
||||
* Introduced DocVQA and IfEval benchmarks.
|
||||
|
||||
### Deploying and Monitoring Agents
|
||||
* Introduced a Containerfile and image workflow for the Playground.
|
||||
* Implemented support for Bearer (API Key) authentication.
|
||||
* Added attribute-based access control for resources.
|
||||
* Fixes on docker deployments: use --pull always and standardized the default port to 8321
|
||||
* Deprecated: /v1/inspect/providers use /v1/providers/ instead
|
||||
|
||||
### Better Engineering
|
||||
* Consolidated scripts under the ./scripts directory.
|
||||
* Addressed mypy violations in various modules.
|
||||
* Added Dependabot scans for Python dependencies.
|
||||
* Implemented a scheduled workflow to update the changelog automatically.
|
||||
* Enforced concurrency to reduce CI loads.
|
||||
|
||||
|
||||
### New Contributors
|
||||
* @cmodi-meta made their first contribution in https://github.com/meta-llama/llama-stack/pull/1650
|
||||
* @jeffmaury made their first contribution in https://github.com/meta-llama/llama-stack/pull/1671
|
||||
* @derekhiggins made their first contribution in https://github.com/meta-llama/llama-stack/pull/1698
|
||||
* @Bobbins228 made their first contribution in https://github.com/meta-llama/llama-stack/pull/1745
|
||||
|
||||
# v0.1.8 Release Notes
|
||||
|
||||
### Build and Test Agents
|
||||
* Safety: Integrated NVIDIA as a safety provider.
|
||||
* VectorDB: Added Qdrant as an inline provider.
|
||||
* Agents: Added support for multiple tool groups in agents.
|
||||
* Agents: Simplified imports for Agents in client package
|
||||
|
||||
|
||||
### Agent Evals and Model Customization
|
||||
* Introduced DocVQA and IfEval benchmarks.
|
||||
|
||||
### Deploying and Monitoring Agents
|
||||
* Introduced a Containerfile and image workflow for the Playground.
|
||||
* Implemented support for Bearer (API Key) authentication.
|
||||
* Added attribute-based access control for resources.
|
||||
* Fixes on docker deployments: use --pull always and standardized the default port to 8321
|
||||
* Deprecated: /v1/inspect/providers use /v1/providers/ instead
|
||||
|
||||
### Better Engineering
|
||||
* Consolidated scripts under the ./scripts directory.
|
||||
* Addressed mypy violations in various modules.
|
||||
* Added Dependabot scans for Python dependencies.
|
||||
* Implemented a scheduled workflow to update the changelog automatically.
|
||||
* Enforced concurrency to reduce CI loads.
|
||||
|
||||
|
||||
### New Contributors
|
||||
* @cmodi-meta made their first contribution in https://github.com/meta-llama/llama-stack/pull/1650
|
||||
* @jeffmaury made their first contribution in https://github.com/meta-llama/llama-stack/pull/1671
|
||||
* @derekhiggins made their first contribution in https://github.com/meta-llama/llama-stack/pull/1698
|
||||
* @Bobbins228 made their first contribution in https://github.com/meta-llama/llama-stack/pull/1745
|
||||
|
||||
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.1.7...v0.1.8
|
||||
|
||||
---
|
||||
|
|
@ -80,73 +199,73 @@ Published on: 2025-03-24T01:28:50Z
|
|||
# v0.1.7
|
||||
Published on: 2025-03-14T22:30:51Z
|
||||
|
||||
## 0.1.7 Release Notes
|
||||
|
||||
### Build and Test Agents
|
||||
* Inference: ImageType is now refactored to LlamaStackImageType
|
||||
* Inference: Added tests to measure TTFT
|
||||
* Inference: Bring back usage metrics
|
||||
* Agents: Added endpoint for get agent, list agents and list sessions
|
||||
* Agents: Automated conversion of type hints in client tool for lite llm format
|
||||
* Agents: Deprecated ToolResponseMessage in agent.resume API
|
||||
* Added Provider API for listing and inspecting provider info
|
||||
|
||||
### Agent Evals and Model Customization
|
||||
* Eval: Added new eval benchmarks Math 500 and BFCL v3
|
||||
* Deploy and Monitoring of Agents
|
||||
* Telemetry: Fix tracing to work across coroutines
|
||||
|
||||
### Better Engineering
|
||||
* Display code coverage for unit tests
|
||||
* Updated call sites (inference, tool calls, agents) to move to async non blocking calls
|
||||
* Unit tests also run on Python 3.11, 3.12, and 3.13
|
||||
* Added ollama inference to Integration tests CI
|
||||
* Improved documentation across examples, testing, CLI, updated providers table )
|
||||
|
||||
|
||||
|
||||
## 0.1.7 Release Notes
|
||||
|
||||
### Build and Test Agents
|
||||
* Inference: ImageType is now refactored to LlamaStackImageType
|
||||
* Inference: Added tests to measure TTFT
|
||||
* Inference: Bring back usage metrics
|
||||
* Agents: Added endpoint for get agent, list agents and list sessions
|
||||
* Agents: Automated conversion of type hints in client tool for lite llm format
|
||||
* Agents: Deprecated ToolResponseMessage in agent.resume API
|
||||
* Added Provider API for listing and inspecting provider info
|
||||
|
||||
### Agent Evals and Model Customization
|
||||
* Eval: Added new eval benchmarks Math 500 and BFCL v3
|
||||
* Deploy and Monitoring of Agents
|
||||
* Telemetry: Fix tracing to work across coroutines
|
||||
|
||||
### Better Engineering
|
||||
* Display code coverage for unit tests
|
||||
* Updated call sites (inference, tool calls, agents) to move to async non blocking calls
|
||||
* Unit tests also run on Python 3.11, 3.12, and 3.13
|
||||
* Added ollama inference to Integration tests CI
|
||||
* Improved documentation across examples, testing, CLI, updated providers table )
|
||||
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.1.6
|
||||
Published on: 2025-03-08T04:35:08Z
|
||||
|
||||
## 0.1.6 Release Notes
|
||||
|
||||
### Build and Test Agents
|
||||
* Inference: Fixed support for inline vllm provider
|
||||
* (**New**) Agent: Build & Monitor Agent Workflows with Llama Stack + Anthropic's Best Practice [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb)
|
||||
* (**New**) Agent: Revamped agent [documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent.html) with more details and examples
|
||||
* Agent: Unify tools and Python SDK Agents API
|
||||
* Agent: AsyncAgent Python SDK wrapper supporting async client tool calls
|
||||
* Agent: Support python functions without @client_tool decorator as client tools
|
||||
* Agent: deprecation for allow_resume_turn flag, and remove need to specify tool_prompt_format
|
||||
* VectorIO: MilvusDB support added
|
||||
|
||||
### Agent Evals and Model Customization
|
||||
* (**New**) Agent: Llama Stack RAG Lifecycle [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_RAG_Lifecycle.ipynb)
|
||||
* Eval: Documentation for eval, scoring, adding new benchmarks
|
||||
* Eval: Distribution template to run benchmarks on llama & non-llama models
|
||||
* Eval: Ability to register new custom LLM-as-judge scoring functions
|
||||
* (**New**) Looking for contributors for open benchmarks. See [documentation](https://llama-stack.readthedocs.io/en/latest/references/evals_reference/index.html#open-benchmark-contributing-guide) for details.
|
||||
|
||||
### Deploy and Monitoring of Agents
|
||||
* Better support for different log levels across all components for better monitoring
|
||||
|
||||
### Better Engineering
|
||||
* Enhance OpenAPI spec to include Error types across all APIs
|
||||
* Moved all tests to /tests and created unit tests to run on each PR
|
||||
* Removed all dependencies on llama-models repo
|
||||
|
||||
## 0.1.6 Release Notes
|
||||
|
||||
### Build and Test Agents
|
||||
* Inference: Fixed support for inline vllm provider
|
||||
* (**New**) Agent: Build & Monitor Agent Workflows with Llama Stack + Anthropic's Best Practice [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb)
|
||||
* (**New**) Agent: Revamped agent [documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent.html) with more details and examples
|
||||
* Agent: Unify tools and Python SDK Agents API
|
||||
* Agent: AsyncAgent Python SDK wrapper supporting async client tool calls
|
||||
* Agent: Support python functions without @client_tool decorator as client tools
|
||||
* Agent: deprecation for allow_resume_turn flag, and remove need to specify tool_prompt_format
|
||||
* VectorIO: MilvusDB support added
|
||||
|
||||
### Agent Evals and Model Customization
|
||||
* (**New**) Agent: Llama Stack RAG Lifecycle [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_RAG_Lifecycle.ipynb)
|
||||
* Eval: Documentation for eval, scoring, adding new benchmarks
|
||||
* Eval: Distribution template to run benchmarks on llama & non-llama models
|
||||
* Eval: Ability to register new custom LLM-as-judge scoring functions
|
||||
* (**New**) Looking for contributors for open benchmarks. See [documentation](https://llama-stack.readthedocs.io/en/latest/references/evals_reference/index.html#open-benchmark-contributing-guide) for details.
|
||||
|
||||
### Deploy and Monitoring of Agents
|
||||
* Better support for different log levels across all components for better monitoring
|
||||
|
||||
### Better Engineering
|
||||
* Enhance OpenAPI spec to include Error types across all APIs
|
||||
* Moved all tests to /tests and created unit tests to run on each PR
|
||||
* Removed all dependencies on llama-models repo
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.1.5.1
|
||||
Published on: 2025-02-28T22:37:44Z
|
||||
|
||||
## 0.1.5.1 Release Notes
|
||||
* Fixes for security risk in https://github.com/meta-llama/llama-stack/pull/1327 and https://github.com/meta-llama/llama-stack/pull/1328
|
||||
|
||||
## 0.1.5.1 Release Notes
|
||||
* Fixes for security risk in https://github.com/meta-llama/llama-stack/pull/1327 and https://github.com/meta-llama/llama-stack/pull/1328
|
||||
|
||||
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.1.5...v0.1.5.1
|
||||
|
||||
---
|
||||
|
|
@ -154,176 +273,176 @@ Published on: 2025-02-28T22:37:44Z
|
|||
# v0.1.5
|
||||
Published on: 2025-02-28T18:14:01Z
|
||||
|
||||
## 0.1.5 Release Notes
|
||||
### Build Agents
|
||||
* Inference: Support more non-llama models (openai, anthropic, gemini)
|
||||
* Inference: Can use the provider's model name in addition to the HF alias
|
||||
* Inference: Fixed issues with calling tools that weren't specified in the prompt
|
||||
* RAG: Improved system prompt for RAG and no more need for hard-coded rag-tool calling
|
||||
* Embeddings: Added support for Nemo retriever embedding models
|
||||
* Tools: Added support for MCP tools in Ollama Distribution
|
||||
* Distributions: Added new Groq distribution
|
||||
|
||||
### Customize Models
|
||||
* Save post-trained checkpoint in SafeTensor format to allow Ollama inference provider to use the post-trained model
|
||||
|
||||
### Monitor agents
|
||||
* More comprehensive logging of agent steps including client tools
|
||||
* Telemetry inputs/outputs are now structured and queryable
|
||||
* Ability to retrieve agents session, turn, step by ids
|
||||
|
||||
### Better Engineering
|
||||
* Moved executorch Swift code out of this repo into the llama-stack-client-swift repo, similar to kotlin
|
||||
* Move most logging to use logger instead of prints
|
||||
* Completed text /chat-completion and /completion tests
|
||||
|
||||
## 0.1.5 Release Notes
|
||||
### Build Agents
|
||||
* Inference: Support more non-llama models (openai, anthropic, gemini)
|
||||
* Inference: Can use the provider's model name in addition to the HF alias
|
||||
* Inference: Fixed issues with calling tools that weren't specified in the prompt
|
||||
* RAG: Improved system prompt for RAG and no more need for hard-coded rag-tool calling
|
||||
* Embeddings: Added support for Nemo retriever embedding models
|
||||
* Tools: Added support for MCP tools in Ollama Distribution
|
||||
* Distributions: Added new Groq distribution
|
||||
|
||||
### Customize Models
|
||||
* Save post-trained checkpoint in SafeTensor format to allow Ollama inference provider to use the post-trained model
|
||||
|
||||
### Monitor agents
|
||||
* More comprehensive logging of agent steps including client tools
|
||||
* Telemetry inputs/outputs are now structured and queryable
|
||||
* Ability to retrieve agents session, turn, step by ids
|
||||
|
||||
### Better Engineering
|
||||
* Moved executorch Swift code out of this repo into the llama-stack-client-swift repo, similar to kotlin
|
||||
* Move most logging to use logger instead of prints
|
||||
* Completed text /chat-completion and /completion tests
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.1.4
|
||||
Published on: 2025-02-25T00:02:43Z
|
||||
|
||||
## v0.1.4 Release Notes
|
||||
Here are the key changes coming as part of this release:
|
||||
|
||||
### Build and Test Agents
|
||||
* Inference: Added support for non-llama models
|
||||
* Inference: Added option to list all downloaded models and remove models
|
||||
* Agent: Introduce new api agents.resume_turn to include client side tool execution in the same turn
|
||||
* Agent: AgentConfig introduces new variable “tool_config” that allows for better tool configuration and system prompt overrides
|
||||
* Agent: Added logging for agent step start and completion times
|
||||
* Agent: Added support for logging for tool execution metadata
|
||||
* Embedding: Updated /inference/embeddings to support asymmetric models, truncation and variable sized outputs
|
||||
* Embedding: Updated embedding models for Ollama, Together, and Fireworks with available defaults
|
||||
* VectorIO: Improved performance of sqlite-vec using chunked writes
|
||||
### Agent Evals and Model Customization
|
||||
* Deprecated api /eval-tasks. Use /eval/benchmark instead
|
||||
* Added CPU training support for TorchTune
|
||||
### Deploy and Monitoring of Agents
|
||||
* Consistent view of client and server tool calls in telemetry
|
||||
### Better Engineering
|
||||
* Made tests more data-driven for consistent evaluation
|
||||
* Fixed documentation links and improved API reference generation
|
||||
* Various small fixes for build scripts and system reliability
|
||||
|
||||
|
||||
## v0.1.4 Release Notes
|
||||
Here are the key changes coming as part of this release:
|
||||
|
||||
### Build and Test Agents
|
||||
* Inference: Added support for non-llama models
|
||||
* Inference: Added option to list all downloaded models and remove models
|
||||
* Agent: Introduce new api agents.resume_turn to include client side tool execution in the same turn
|
||||
* Agent: AgentConfig introduces new variable “tool_config” that allows for better tool configuration and system prompt overrides
|
||||
* Agent: Added logging for agent step start and completion times
|
||||
* Agent: Added support for logging for tool execution metadata
|
||||
* Embedding: Updated /inference/embeddings to support asymmetric models, truncation and variable sized outputs
|
||||
* Embedding: Updated embedding models for Ollama, Together, and Fireworks with available defaults
|
||||
* VectorIO: Improved performance of sqlite-vec using chunked writes
|
||||
### Agent Evals and Model Customization
|
||||
* Deprecated api /eval-tasks. Use /eval/benchmark instead
|
||||
* Added CPU training support for TorchTune
|
||||
### Deploy and Monitoring of Agents
|
||||
* Consistent view of client and server tool calls in telemetry
|
||||
### Better Engineering
|
||||
* Made tests more data-driven for consistent evaluation
|
||||
* Fixed documentation links and improved API reference generation
|
||||
* Various small fixes for build scripts and system reliability
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.1.3
|
||||
Published on: 2025-02-14T20:24:32Z
|
||||
|
||||
## v0.1.3 Release
|
||||
|
||||
Here are some key changes that are coming as part of this release.
|
||||
|
||||
### Build and Test Agents
|
||||
Streamlined the initial development experience
|
||||
- Added support for llama stack run --image-type venv
|
||||
- Enhanced vector store options with new sqlite-vec provider and improved Qdrant integration
|
||||
- vLLM improvements for tool calling and logprobs
|
||||
- Better handling of sporadic code_interpreter tool calls
|
||||
|
||||
### Agent Evals
|
||||
Better benchmarking and Agent performance assessment
|
||||
- Renamed eval API /eval-task to /benchmarks
|
||||
- Improved documentation and notebooks for RAG and evals
|
||||
|
||||
### Deploy and Monitoring of Agents
|
||||
Improved production readiness
|
||||
- Added usage metrics collection for chat completions
|
||||
- CLI improvements for provider information
|
||||
- Improved error handling and system reliability
|
||||
- Better model endpoint handling and accessibility
|
||||
- Improved signal handling on distro server
|
||||
|
||||
### Better Engineering
|
||||
Infrastructure and code quality improvements
|
||||
- Faster text-based chat completion tests
|
||||
- Improved testing for non-streaming agent apis
|
||||
- Standardized import formatting with ruff linter
|
||||
- Added conventional commits standard
|
||||
- Fixed documentation parsing issues
|
||||
|
||||
## v0.1.3 Release
|
||||
|
||||
Here are some key changes that are coming as part of this release.
|
||||
|
||||
### Build and Test Agents
|
||||
Streamlined the initial development experience
|
||||
- Added support for llama stack run --image-type venv
|
||||
- Enhanced vector store options with new sqlite-vec provider and improved Qdrant integration
|
||||
- vLLM improvements for tool calling and logprobs
|
||||
- Better handling of sporadic code_interpreter tool calls
|
||||
|
||||
### Agent Evals
|
||||
Better benchmarking and Agent performance assessment
|
||||
- Renamed eval API /eval-task to /benchmarks
|
||||
- Improved documentation and notebooks for RAG and evals
|
||||
|
||||
### Deploy and Monitoring of Agents
|
||||
Improved production readiness
|
||||
- Added usage metrics collection for chat completions
|
||||
- CLI improvements for provider information
|
||||
- Improved error handling and system reliability
|
||||
- Better model endpoint handling and accessibility
|
||||
- Improved signal handling on distro server
|
||||
|
||||
### Better Engineering
|
||||
Infrastructure and code quality improvements
|
||||
- Faster text-based chat completion tests
|
||||
- Improved testing for non-streaming agent apis
|
||||
- Standardized import formatting with ruff linter
|
||||
- Added conventional commits standard
|
||||
- Fixed documentation parsing issues
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.1.2
|
||||
Published on: 2025-02-07T22:06:49Z
|
||||
|
||||
# TL;DR
|
||||
- Several stabilizations to development flows after the switch to `uv`
|
||||
- Migrated CI workflows to new OSS repo - [llama-stack-ops](https://github.com/meta-llama/llama-stack-ops)
|
||||
- Added automated rebuilds for ReadTheDocs
|
||||
- Llama Stack server supports HTTPS
|
||||
- Added system prompt overrides support
|
||||
- Several bug fixes and improvements to documentation (check out Kubernetes deployment guide by @terrytangyuan )
|
||||
|
||||
# TL;DR
|
||||
- Several stabilizations to development flows after the switch to `uv`
|
||||
- Migrated CI workflows to new OSS repo - [llama-stack-ops](https://github.com/meta-llama/llama-stack-ops)
|
||||
- Added automated rebuilds for ReadTheDocs
|
||||
- Llama Stack server supports HTTPS
|
||||
- Added system prompt overrides support
|
||||
- Several bug fixes and improvements to documentation (check out Kubernetes deployment guide by @terrytangyuan )
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.1.1
|
||||
Published on: 2025-02-02T02:29:24Z
|
||||
|
||||
A bunch of small / big improvements everywhere including support for Windows, switching to `uv` and many provider improvements.
|
||||
|
||||
A bunch of small / big improvements everywhere including support for Windows, switching to `uv` and many provider improvements.
|
||||
|
||||
|
||||
---
|
||||
|
||||
# v0.1.0
|
||||
Published on: 2025-01-24T17:47:47Z
|
||||
|
||||
We are excited to announce a stable API release of Llama Stack, which enables developers to build RAG applications and Agents using tools and safety shields, monitor and those agents with telemetry, and evaluate the agent with scoring functions.
|
||||
|
||||
## Context
|
||||
GenAI application developers need more than just an LLM - they need to integrate tools, connect with their data sources, establish guardrails, and ground the LLM responses effectively. Currently, developers must piece together various tools and APIs, complicating the development lifecycle and increasing costs. The result is that developers are spending more time on these integrations rather than focusing on the application logic itself. The bespoke coupling of components also makes it challenging to adopt state-of-the-art solutions in the rapidly evolving GenAI space. This is particularly difficult for open models like Llama, as best practices are not widely established in the open.
|
||||
|
||||
Llama Stack was created to provide developers with a comprehensive and coherent interface that simplifies AI application development and codifies best practices across the Llama ecosystem. Since our launch in September 2024, we have seen a huge uptick in interest in Llama Stack APIs by both AI developers and from partners building AI services with Llama models. Partners like Nvidia, Fireworks, and Ollama have collaborated with us to develop implementations across various APIs, including inference, memory, and safety.
|
||||
|
||||
With Llama Stack, you can easily build a RAG agent which can also search the web, do complex math, and custom tool calling. You can use telemetry to inspect those traces, and convert telemetry into evals datasets. And with Llama Stack’s plugin architecture and prepackage distributions, you choose to run your agent anywhere - in the cloud with our partners, deploy your own environment using virtualenv, conda, or Docker, operate locally with Ollama, or even run on mobile devices with our SDKs. Llama Stack offers unprecedented flexibility while also simplifying the developer experience.
|
||||
|
||||
## Release
|
||||
After iterating on the APIs for the last 3 months, today we’re launching a stable release (V1) of the Llama Stack APIs and the corresponding llama-stack server and client packages(v0.1.0). We now have automated tests for providers. These tests make sure that all provider implementations are verified. Developers can now easily and reliably select distributions or providers based on their specific requirements.
|
||||
|
||||
There are example standalone apps in llama-stack-apps.
|
||||
|
||||
|
||||
## Key Features of this release
|
||||
|
||||
- **Unified API Layer**
|
||||
- Inference: Run LLM models
|
||||
- RAG: Store and retrieve knowledge for RAG
|
||||
- Agents: Build multi-step agentic workflows
|
||||
- Tools: Register tools that can be called by the agent
|
||||
- Safety: Apply content filtering and safety policies
|
||||
- Evaluation: Test model and agent quality
|
||||
- Telemetry: Collect and analyze usage data and complex agentic traces
|
||||
- Post Training ( Coming Soon ): Fine tune models for specific use cases
|
||||
|
||||
- **Rich Provider Ecosystem**
|
||||
- Local Development: Meta's Reference, Ollama
|
||||
- Cloud: Fireworks, Together, Nvidia, AWS Bedrock, Groq, Cerebras
|
||||
- On-premises: Nvidia NIM, vLLM, TGI, Dell-TGI
|
||||
- On-device: iOS and Android support
|
||||
|
||||
- **Built for Production**
|
||||
- Pre-packaged distributions for common deployment scenarios
|
||||
- Backwards compatibility across model versions
|
||||
- Comprehensive evaluation capabilities
|
||||
- Full observability and monitoring
|
||||
|
||||
- **Multiple developer interfaces**
|
||||
- CLI: Command line interface
|
||||
- Python SDK
|
||||
- Swift iOS SDK
|
||||
- Kotlin Android SDK
|
||||
|
||||
- **Sample llama stack applications**
|
||||
- Python
|
||||
- iOS
|
||||
- Android
|
||||
|
||||
|
||||
We are excited to announce a stable API release of Llama Stack, which enables developers to build RAG applications and Agents using tools and safety shields, monitor and those agents with telemetry, and evaluate the agent with scoring functions.
|
||||
|
||||
## Context
|
||||
GenAI application developers need more than just an LLM - they need to integrate tools, connect with their data sources, establish guardrails, and ground the LLM responses effectively. Currently, developers must piece together various tools and APIs, complicating the development lifecycle and increasing costs. The result is that developers are spending more time on these integrations rather than focusing on the application logic itself. The bespoke coupling of components also makes it challenging to adopt state-of-the-art solutions in the rapidly evolving GenAI space. This is particularly difficult for open models like Llama, as best practices are not widely established in the open.
|
||||
|
||||
Llama Stack was created to provide developers with a comprehensive and coherent interface that simplifies AI application development and codifies best practices across the Llama ecosystem. Since our launch in September 2024, we have seen a huge uptick in interest in Llama Stack APIs by both AI developers and from partners building AI services with Llama models. Partners like Nvidia, Fireworks, and Ollama have collaborated with us to develop implementations across various APIs, including inference, memory, and safety.
|
||||
|
||||
With Llama Stack, you can easily build a RAG agent which can also search the web, do complex math, and custom tool calling. You can use telemetry to inspect those traces, and convert telemetry into evals datasets. And with Llama Stack’s plugin architecture and prepackage distributions, you choose to run your agent anywhere - in the cloud with our partners, deploy your own environment using virtualenv, conda, or Docker, operate locally with Ollama, or even run on mobile devices with our SDKs. Llama Stack offers unprecedented flexibility while also simplifying the developer experience.
|
||||
|
||||
## Release
|
||||
After iterating on the APIs for the last 3 months, today we’re launching a stable release (V1) of the Llama Stack APIs and the corresponding llama-stack server and client packages(v0.1.0). We now have automated tests for providers. These tests make sure that all provider implementations are verified. Developers can now easily and reliably select distributions or providers based on their specific requirements.
|
||||
|
||||
There are example standalone apps in llama-stack-apps.
|
||||
|
||||
|
||||
## Key Features of this release
|
||||
|
||||
- **Unified API Layer**
|
||||
- Inference: Run LLM models
|
||||
- RAG: Store and retrieve knowledge for RAG
|
||||
- Agents: Build multi-step agentic workflows
|
||||
- Tools: Register tools that can be called by the agent
|
||||
- Safety: Apply content filtering and safety policies
|
||||
- Evaluation: Test model and agent quality
|
||||
- Telemetry: Collect and analyze usage data and complex agentic traces
|
||||
- Post Training ( Coming Soon ): Fine tune models for specific use cases
|
||||
|
||||
- **Rich Provider Ecosystem**
|
||||
- Local Development: Meta's Reference, Ollama
|
||||
- Cloud: Fireworks, Together, Nvidia, AWS Bedrock, Groq, Cerebras
|
||||
- On-premises: Nvidia NIM, vLLM, TGI, Dell-TGI
|
||||
- On-device: iOS and Android support
|
||||
|
||||
- **Built for Production**
|
||||
- Pre-packaged distributions for common deployment scenarios
|
||||
- Backwards compatibility across model versions
|
||||
- Comprehensive evaluation capabilities
|
||||
- Full observability and monitoring
|
||||
|
||||
- **Multiple developer interfaces**
|
||||
- CLI: Command line interface
|
||||
- Python SDK
|
||||
- Swift iOS SDK
|
||||
- Kotlin Android SDK
|
||||
|
||||
- **Sample llama stack applications**
|
||||
- Python
|
||||
- iOS
|
||||
- Android
|
||||
|
||||
|
||||
|
||||
---
|
||||
|
||||
|
|
@ -337,8 +456,8 @@ Published on: 2025-01-22T22:24:01Z
|
|||
# v0.0.63
|
||||
Published on: 2024-12-18T07:17:43Z
|
||||
|
||||
A small but important bug-fix release to update the URL datatype for the client-SDKs. The issue affected multimodal agentic turns especially.
|
||||
|
||||
A small but important bug-fix release to update the URL datatype for the client-SDKs. The issue affected multimodal agentic turns especially.
|
||||
|
||||
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.0.62...v0.0.63
|
||||
|
||||
---
|
||||
|
|
@ -374,39 +493,39 @@ Published on: 2024-11-22T00:36:09Z
|
|||
# v0.0.53
|
||||
Published on: 2024-11-20T22:18:00Z
|
||||
|
||||
🚀 Initial Release Notes for Llama Stack!
|
||||
|
||||
### Added
|
||||
- Resource-oriented design for models, shields, memory banks, datasets and eval tasks
|
||||
- Persistence for registered objects with distribution
|
||||
- Ability to persist memory banks created for FAISS
|
||||
- PostgreSQL KVStore implementation
|
||||
- Environment variable placeholder support in run.yaml files
|
||||
- Comprehensive Zero-to-Hero notebooks and quickstart guides
|
||||
- Support for quantized models in Ollama
|
||||
- Vision models support for Together, Fireworks, Meta-Reference, and Ollama, and vLLM
|
||||
- Bedrock distribution with safety shields support
|
||||
- Evals API with task registration and scoring functions
|
||||
- MMLU and SimpleQA benchmark scoring functions
|
||||
- Huggingface dataset provider integration for benchmarks
|
||||
- Support for custom dataset registration from local paths
|
||||
- Benchmark evaluation CLI tools with visualization tables
|
||||
- RAG evaluation scoring functions and metrics
|
||||
- Local persistence for datasets and eval tasks
|
||||
|
||||
### Changed
|
||||
- Split safety into distinct providers (llama-guard, prompt-guard, code-scanner)
|
||||
- Changed provider naming convention (`impls` → `inline`, `adapters` → `remote`)
|
||||
- Updated API signatures for dataset and eval task registration
|
||||
- Restructured folder organization for providers
|
||||
- Enhanced Docker build configuration
|
||||
- Added version prefixing for REST API routes
|
||||
- Enhanced evaluation task registration workflow
|
||||
- Improved benchmark evaluation output formatting
|
||||
- Restructured evals folder organization for better modularity
|
||||
|
||||
### Removed
|
||||
- `llama stack configure` command
|
||||
|
||||
🚀 Initial Release Notes for Llama Stack!
|
||||
|
||||
### Added
|
||||
- Resource-oriented design for models, shields, memory banks, datasets and eval tasks
|
||||
- Persistence for registered objects with distribution
|
||||
- Ability to persist memory banks created for FAISS
|
||||
- PostgreSQL KVStore implementation
|
||||
- Environment variable placeholder support in run.yaml files
|
||||
- Comprehensive Zero-to-Hero notebooks and quickstart guides
|
||||
- Support for quantized models in Ollama
|
||||
- Vision models support for Together, Fireworks, Meta-Reference, and Ollama, and vLLM
|
||||
- Bedrock distribution with safety shields support
|
||||
- Evals API with task registration and scoring functions
|
||||
- MMLU and SimpleQA benchmark scoring functions
|
||||
- Huggingface dataset provider integration for benchmarks
|
||||
- Support for custom dataset registration from local paths
|
||||
- Benchmark evaluation CLI tools with visualization tables
|
||||
- RAG evaluation scoring functions and metrics
|
||||
- Local persistence for datasets and eval tasks
|
||||
|
||||
### Changed
|
||||
- Split safety into distinct providers (llama-guard, prompt-guard, code-scanner)
|
||||
- Changed provider naming convention (`impls` → `inline`, `adapters` → `remote`)
|
||||
- Updated API signatures for dataset and eval task registration
|
||||
- Restructured folder organization for providers
|
||||
- Enhanced Docker build configuration
|
||||
- Added version prefixing for REST API routes
|
||||
- Enhanced evaluation task registration workflow
|
||||
- Improved benchmark evaluation output formatting
|
||||
- Restructured evals folder organization for better modularity
|
||||
|
||||
### Removed
|
||||
- `llama stack configure` command
|
||||
|
||||
|
||||
---
|
||||
|
|
|
|||
|
|
@ -72,7 +72,7 @@ source .venv/bin/activate
|
|||
```
|
||||
|
||||
> [!NOTE]
|
||||
> You can pin a specific version of Python to use for `uv` by adding a `.python-version` file in the root project directory.
|
||||
> You can use a specific version of Python with `uv` by adding the `--python <version>` flag (e.g. `--python 3.11`)
|
||||
> Otherwise, `uv` will automatically select a Python version according to the `requires-python` section of the `pyproject.toml`.
|
||||
> For more info, see the [uv docs around Python versions](https://docs.astral.sh/uv/concepts/python-versions/).
|
||||
|
||||
|
|
@ -110,25 +110,9 @@ uv run pre-commit run --all-files
|
|||
> [!CAUTION]
|
||||
> Before pushing your changes, make sure that the pre-commit hooks have passed successfully.
|
||||
|
||||
## Running unit tests
|
||||
## Running tests
|
||||
|
||||
You can run the unit tests by running:
|
||||
|
||||
```bash
|
||||
source .venv/bin/activate
|
||||
./scripts/unit-tests.sh
|
||||
```
|
||||
|
||||
If you'd like to run for a non-default version of Python (currently 3.10), pass `PYTHON_VERSION` variable as follows:
|
||||
|
||||
```
|
||||
source .venv/bin/activate
|
||||
PYTHON_VERSION=3.13 ./scripts/unit-tests.sh
|
||||
```
|
||||
|
||||
## Running integration tests
|
||||
|
||||
You can run integration tests following the instructions [here](tests/integration/README.md).
|
||||
You can find the Llama Stack testing documentation here [here](tests/README.md).
|
||||
|
||||
## Adding a new dependency to the project
|
||||
|
||||
|
|
@ -141,11 +125,20 @@ uv sync
|
|||
|
||||
## Coding Style
|
||||
|
||||
* Comments should provide meaningful insights into the code. Avoid filler comments that simply describe the next step, as they create unnecessary clutter, same goes for docstrings.
|
||||
* Prefer comments to clarify surprising behavior and/or relationships between parts of the code rather than explain what the next line of code does.
|
||||
* Catching exceptions, prefer using a specific exception type rather than a broad catch-all like `Exception`.
|
||||
* Comments should provide meaningful insights into the code. Avoid filler comments that simply
|
||||
describe the next step, as they create unnecessary clutter, same goes for docstrings.
|
||||
* Prefer comments to clarify surprising behavior and/or relationships between parts of the code
|
||||
rather than explain what the next line of code does.
|
||||
* Catching exceptions, prefer using a specific exception type rather than a broad catch-all like
|
||||
`Exception`.
|
||||
* Error messages should be prefixed with "Failed to ..."
|
||||
* 4 spaces for indentation rather than tabs
|
||||
* 4 spaces for indentation rather than tab
|
||||
* When using `# noqa` to suppress a style or linter warning, include a comment explaining the
|
||||
justification for bypassing the check.
|
||||
* When using `# type: ignore` to suppress a mypy warning, include a comment explaining the
|
||||
justification for bypassing the check.
|
||||
* Don't use unicode characters in the codebase. ASCII-only is preferred for compatibility or
|
||||
readability reasons.
|
||||
|
||||
## Common Tasks
|
||||
|
||||
|
|
@ -174,14 +167,11 @@ If you have made changes to a provider's configuration in any form (introducing
|
|||
If you are making changes to the documentation at [https://llama-stack.readthedocs.io/en/latest/](https://llama-stack.readthedocs.io/en/latest/), you can use the following command to build the documentation and preview your changes. You will need [Sphinx](https://www.sphinx-doc.org/en/master/) and the readthedocs theme.
|
||||
|
||||
```bash
|
||||
cd docs
|
||||
uv sync --extra docs
|
||||
|
||||
# This rebuilds the documentation pages.
|
||||
uv run make html
|
||||
uv run --group docs make -C docs/ html
|
||||
|
||||
# This will start a local server (usually at http://127.0.0.1:8000) that automatically rebuilds and refreshes when you make changes to the documentation.
|
||||
uv run sphinx-autobuild source build/html --write-all
|
||||
uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all
|
||||
```
|
||||
|
||||
### Update API Documentation
|
||||
|
|
@ -189,7 +179,7 @@ uv run sphinx-autobuild source build/html --write-all
|
|||
If you modify or add new API endpoints, update the API documentation accordingly. You can do this by running the following command:
|
||||
|
||||
```bash
|
||||
uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh
|
||||
uv run ./docs/openapi_generator/run_openapi_generator.sh
|
||||
```
|
||||
|
||||
The generated API documentation will be available in `docs/_static/`. Make sure to review the changes before committing.
|
||||
|
|
|
|||
|
|
@ -1,5 +1,4 @@
|
|||
include pyproject.toml
|
||||
include llama_stack/templates/dependencies.json
|
||||
include llama_stack/models/llama/llama3/tokenizer.model
|
||||
include llama_stack/models/llama/llama4/tokenizer.model
|
||||
include llama_stack/distribution/*.sh
|
||||
|
|
|
|||
52
README.md
52
README.md
|
|
@ -7,7 +7,7 @@
|
|||
[](https://github.com/meta-llama/llama-stack/actions/workflows/unit-tests.yml?query=branch%3Amain)
|
||||
[](https://github.com/meta-llama/llama-stack/actions/workflows/integration-tests.yml?query=branch%3Amain)
|
||||
|
||||
[**Quick Start**](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) | [**Documentation**](https://llama-stack.readthedocs.io/en/latest/index.html) | [**Colab Notebook**](./docs/getting_started.ipynb)
|
||||
[**Quick Start**](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) | [**Documentation**](https://llama-stack.readthedocs.io/en/latest/index.html) | [**Colab Notebook**](./docs/getting_started.ipynb) | [**Discord**](https://discord.gg/llama-stack)
|
||||
|
||||
### ✨🎉 Llama 4 Support 🎉✨
|
||||
We released [Version 0.2.0](https://github.com/meta-llama/llama-stack/releases/tag/v0.2.0) with support for the Llama 4 herd of models released by Meta.
|
||||
|
|
@ -70,6 +70,13 @@ As more providers start supporting Llama 4, you can use them in Llama Stack as w
|
|||
|
||||
</details>
|
||||
|
||||
### 🚀 One-Line Installer 🚀
|
||||
|
||||
To try Llama Stack locally, run:
|
||||
|
||||
```bash
|
||||
curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/install.sh | sh
|
||||
```
|
||||
|
||||
### Overview
|
||||
|
||||
|
|
@ -100,25 +107,29 @@ By reducing friction and complexity, Llama Stack empowers developers to focus on
|
|||
### API Providers
|
||||
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
|
||||
|
||||
| **API Provider Builder** | **Environments** | **Agents** | **Inference** | **Memory** | **Safety** | **Telemetry** |
|
||||
|:------------------------:|:----------------------:|:----------:|:-------------:|:----------:|:----------:|:-------------:|
|
||||
| Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SambaNova | Hosted | | ✅ | | | |
|
||||
| Cerebras | Hosted | | ✅ | | | |
|
||||
| Fireworks | Hosted | ✅ | ✅ | ✅ | | |
|
||||
| AWS Bedrock | Hosted | | ✅ | | ✅ | |
|
||||
| Together | Hosted | ✅ | ✅ | | ✅ | |
|
||||
| Groq | Hosted | | ✅ | | | |
|
||||
| Ollama | Single Node | | ✅ | | | |
|
||||
| TGI | Hosted and Single Node | | ✅ | | | |
|
||||
| NVIDIA NIM | Hosted and Single Node | | ✅ | | | |
|
||||
| Chroma | Single Node | | | ✅ | | |
|
||||
| PG Vector | Single Node | | | ✅ | | |
|
||||
| PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | | | |
|
||||
| vLLM | Hosted and Single Node | | ✅ | | | |
|
||||
| OpenAI | Hosted | | ✅ | | | |
|
||||
| Anthropic | Hosted | | ✅ | | | |
|
||||
| Gemini | Hosted | | ✅ | | | |
|
||||
| **API Provider Builder** | **Environments** | **Agents** | **Inference** | **Memory** | **Safety** | **Telemetry** | **Post Training** |
|
||||
|:------------------------:|:----------------------:|:----------:|:-------------:|:----------:|:----------:|:-------------:|:-----------------:|
|
||||
| Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ | |
|
||||
| SambaNova | Hosted | | ✅ | | ✅ | | |
|
||||
| Cerebras | Hosted | | ✅ | | | | |
|
||||
| Fireworks | Hosted | ✅ | ✅ | ✅ | | | |
|
||||
| AWS Bedrock | Hosted | | ✅ | | ✅ | | |
|
||||
| Together | Hosted | ✅ | ✅ | | ✅ | | |
|
||||
| Groq | Hosted | | ✅ | | | | |
|
||||
| Ollama | Single Node | | ✅ | | | | |
|
||||
| TGI | Hosted and Single Node | | ✅ | | | | |
|
||||
| NVIDIA NIM | Hosted and Single Node | | ✅ | | | | |
|
||||
| Chroma | Single Node | | | ✅ | | | |
|
||||
| PG Vector | Single Node | | | ✅ | | | |
|
||||
| PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | | | | |
|
||||
| vLLM | Hosted and Single Node | | ✅ | | | | |
|
||||
| OpenAI | Hosted | | ✅ | | | | |
|
||||
| Anthropic | Hosted | | ✅ | | | | |
|
||||
| Gemini | Hosted | | ✅ | | | | |
|
||||
| watsonx | Hosted | | ✅ | | | | |
|
||||
| HuggingFace | Single Node | | | | | | ✅ |
|
||||
| TorchTune | Single Node | | | | | | ✅ |
|
||||
| NVIDIA NEMO | Hosted | | | | | | ✅ |
|
||||
|
||||
|
||||
### Distributions
|
||||
|
|
@ -128,7 +139,6 @@ A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider
|
|||
| **Distribution** | **Llama Stack Docker** | Start This Distribution |
|
||||
|:---------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------:|
|
||||
| Meta Reference | [llamastack/distribution-meta-reference-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/meta-reference-gpu.html) |
|
||||
| Meta Reference Quantized | [llamastack/distribution-meta-reference-quantized-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-quantized-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/meta-reference-quantized-gpu.html) |
|
||||
| SambaNova | [llamastack/distribution-sambanova](https://hub.docker.com/repository/docker/llamastack/distribution-sambanova/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/sambanova.html) |
|
||||
| Cerebras | [llamastack/distribution-cerebras](https://hub.docker.com/repository/docker/llamastack/distribution-cerebras/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/cerebras.html) |
|
||||
| Ollama | [llamastack/distribution-ollama](https://hub.docker.com/repository/docker/llamastack/distribution-ollama/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/ollama.html) |
|
||||
|
|
|
|||
6
docs/_static/css/my_theme.css
vendored
6
docs/_static/css/my_theme.css
vendored
|
|
@ -27,3 +27,9 @@ pre {
|
|||
white-space: pre-wrap !important;
|
||||
word-break: break-all;
|
||||
}
|
||||
|
||||
[data-theme="dark"] .mermaid {
|
||||
background-color: #f4f4f6 !important;
|
||||
border-radius: 6px;
|
||||
padding: 0.5em;
|
||||
}
|
||||
|
|
|
|||
6117
docs/_static/llama-stack-spec.html
vendored
6117
docs/_static/llama-stack-spec.html
vendored
File diff suppressed because it is too large
Load diff
4528
docs/_static/llama-stack-spec.yaml
vendored
4528
docs/_static/llama-stack-spec.yaml
vendored
File diff suppressed because it is too large
Load diff
|
|
@ -1050,8 +1050,6 @@
|
|||
"text/html": [
|
||||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">ToolGroup</span><span style=\"font-weight: bold\">(</span>\n",
|
||||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">identifier</span>=<span style=\"color: #008000; text-decoration-color: #008000\">'builtin::code_interpreter'</span>,\n",
|
||||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">provider_id</span>=<span style=\"color: #008000; text-decoration-color: #008000\">'code-interpreter'</span>,\n",
|
||||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">provider_resource_id</span>=<span style=\"color: #008000; text-decoration-color: #008000\">'builtin::code_interpreter'</span>,\n",
|
||||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">type</span>=<span style=\"color: #008000; text-decoration-color: #008000\">'tool_group'</span>,\n",
|
||||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">args</span>=<span style=\"color: #800080; text-decoration-color: #800080; font-style: italic\">None</span>,\n",
|
||||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">mcp_endpoint</span>=<span style=\"color: #800080; text-decoration-color: #800080; font-style: italic\">None</span>\n",
|
||||
|
|
@ -1061,7 +1059,6 @@
|
|||
"text/plain": [
|
||||
"\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n",
|
||||
"\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n",
|
||||
"\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'code-interpreter'\u001b[0m,\n",
|
||||
"\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n",
|
||||
"\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n",
|
||||
"\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n",
|
||||
|
|
|
|||
907
docs/getting_started_llama_api.ipynb
Normal file
907
docs/getting_started_llama_api.ipynb
Normal file
File diff suppressed because one or more lines are too long
|
|
@ -1,35 +1,35 @@
|
|||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=.
|
||||
set BUILDDIR=_build
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.https://www.sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
|
||||
:end
|
||||
popd
|
||||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=.
|
||||
set BUILDDIR=_build
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.https://www.sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
|
||||
:end
|
||||
popd
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load diff
|
|
@ -840,7 +840,6 @@
|
|||
" \"memory_optimizations.rst\",\n",
|
||||
" \"chat.rst\",\n",
|
||||
" \"llama3.rst\",\n",
|
||||
" \"datasets.rst\",\n",
|
||||
" \"qat_finetune.rst\",\n",
|
||||
" \"lora_finetune.rst\",\n",
|
||||
"]\n",
|
||||
|
|
@ -1586,7 +1585,6 @@
|
|||
" \"memory_optimizations.rst\",\n",
|
||||
" \"chat.rst\",\n",
|
||||
" \"llama3.rst\",\n",
|
||||
" \"datasets.rst\",\n",
|
||||
" \"qat_finetune.rst\",\n",
|
||||
" \"lora_finetune.rst\",\n",
|
||||
"]\n",
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ def main(output_dir: str):
|
|||
if return_type_errors:
|
||||
print("\nAPI Method Return Type Validation Errors:\n")
|
||||
for error in return_type_errors:
|
||||
print(error)
|
||||
print(error, file=sys.stderr)
|
||||
sys.exit(1)
|
||||
now = str(datetime.now())
|
||||
print(
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import hashlib
|
||||
import ipaddress
|
||||
import types
|
||||
import typing
|
||||
from dataclasses import make_dataclass
|
||||
from typing import Any, Dict, Set, Union
|
||||
|
|
@ -29,6 +30,9 @@ from llama_stack.strong_typing.schema import (
|
|||
Schema,
|
||||
SchemaOptions,
|
||||
)
|
||||
from typing import get_origin, get_args
|
||||
from typing import Annotated
|
||||
from fastapi import UploadFile
|
||||
from llama_stack.strong_typing.serialization import json_dump_string, object_to_json
|
||||
|
||||
from .operations import (
|
||||
|
|
@ -179,7 +183,7 @@ class ContentBuilder:
|
|||
"Creates the content subtree for a request or response."
|
||||
|
||||
def is_iterator_type(t):
|
||||
return "StreamChunk" in str(t)
|
||||
return "StreamChunk" in str(t) or "OpenAIResponseObjectStream" in str(t)
|
||||
|
||||
def get_media_type(t):
|
||||
if is_generic_list(t):
|
||||
|
|
@ -189,7 +193,7 @@ class ContentBuilder:
|
|||
else:
|
||||
return "application/json"
|
||||
|
||||
if typing.get_origin(payload_type) is typing.Union:
|
||||
if typing.get_origin(payload_type) in (typing.Union, types.UnionType):
|
||||
media_types = []
|
||||
item_types = []
|
||||
for x in typing.get_args(payload_type):
|
||||
|
|
@ -617,6 +621,45 @@ class Generator:
|
|||
},
|
||||
required=True,
|
||||
)
|
||||
# data passed in request body as multipart/form-data
|
||||
elif op.multipart_params:
|
||||
builder = ContentBuilder(self.schema_builder)
|
||||
|
||||
# Create schema properties for multipart form fields
|
||||
properties = {}
|
||||
required_fields = []
|
||||
|
||||
for name, param_type in op.multipart_params:
|
||||
if get_origin(param_type) is Annotated:
|
||||
base_type = get_args(param_type)[0]
|
||||
else:
|
||||
base_type = param_type
|
||||
if base_type is UploadFile:
|
||||
# File upload
|
||||
properties[name] = {
|
||||
"type": "string",
|
||||
"format": "binary"
|
||||
}
|
||||
else:
|
||||
# Form field
|
||||
properties[name] = self.schema_builder.classdef_to_ref(base_type)
|
||||
|
||||
required_fields.append(name)
|
||||
|
||||
multipart_schema = {
|
||||
"type": "object",
|
||||
"properties": properties,
|
||||
"required": required_fields
|
||||
}
|
||||
|
||||
requestBody = RequestBody(
|
||||
content={
|
||||
"multipart/form-data": {
|
||||
"schema": multipart_schema
|
||||
}
|
||||
},
|
||||
required=True,
|
||||
)
|
||||
# data passed in payload as JSON and mapped to request parameters
|
||||
elif op.request_params:
|
||||
builder = ContentBuilder(self.schema_builder)
|
||||
|
|
@ -758,7 +801,7 @@ class Generator:
|
|||
)
|
||||
|
||||
return Operation(
|
||||
tags=[op.defining_class.__name__],
|
||||
tags=[getattr(op.defining_class, "API_NAMESPACE", op.defining_class.__name__)],
|
||||
summary=None,
|
||||
# summary=doc_string.short_description,
|
||||
description=description,
|
||||
|
|
@ -804,6 +847,8 @@ class Generator:
|
|||
operation_tags: List[Tag] = []
|
||||
for cls in endpoint_classes:
|
||||
doc_string = parse_type(cls)
|
||||
if hasattr(cls, "API_NAMESPACE") and cls.API_NAMESPACE != cls.__name__:
|
||||
continue
|
||||
operation_tags.append(
|
||||
Tag(
|
||||
name=cls.__name__,
|
||||
|
|
|
|||
|
|
@ -17,6 +17,12 @@ from termcolor import colored
|
|||
|
||||
from llama_stack.strong_typing.inspection import get_signature
|
||||
|
||||
from typing import get_origin, get_args
|
||||
|
||||
from fastapi import UploadFile
|
||||
from fastapi.params import File, Form
|
||||
from typing import Annotated
|
||||
|
||||
|
||||
def split_prefix(
|
||||
s: str, sep: str, prefix: Union[str, Iterable[str]]
|
||||
|
|
@ -82,6 +88,7 @@ class EndpointOperation:
|
|||
:param path_params: Parameters of the operation signature that are passed in the path component of the URL string.
|
||||
:param query_params: Parameters of the operation signature that are passed in the query string as `key=value` pairs.
|
||||
:param request_params: The parameter that corresponds to the data transmitted in the request body.
|
||||
:param multipart_params: Parameters that indicate multipart/form-data request body.
|
||||
:param event_type: The Python type of the data that is transmitted out-of-band (e.g. via websockets) while the operation is in progress.
|
||||
:param response_type: The Python type of the data that is transmitted in the response body.
|
||||
:param http_method: The HTTP method used to invoke the endpoint such as POST, GET or PUT.
|
||||
|
|
@ -98,6 +105,7 @@ class EndpointOperation:
|
|||
path_params: List[OperationParameter]
|
||||
query_params: List[OperationParameter]
|
||||
request_params: Optional[OperationParameter]
|
||||
multipart_params: List[OperationParameter]
|
||||
event_type: Optional[type]
|
||||
response_type: type
|
||||
http_method: HTTPMethod
|
||||
|
|
@ -252,6 +260,7 @@ def get_endpoint_operations(
|
|||
path_params = []
|
||||
query_params = []
|
||||
request_params = []
|
||||
multipart_params = []
|
||||
|
||||
for param_name, parameter in signature.parameters.items():
|
||||
param_type = _get_annotation_type(parameter.annotation, func_ref)
|
||||
|
|
@ -266,6 +275,8 @@ def get_endpoint_operations(
|
|||
f"parameter '{param_name}' in function '{func_name}' has no type annotation"
|
||||
)
|
||||
|
||||
is_multipart = _is_multipart_param(param_type)
|
||||
|
||||
if prefix in ["get", "delete"]:
|
||||
if route_params is not None and param_name in route_params:
|
||||
path_params.append((param_name, param_type))
|
||||
|
|
@ -274,6 +285,8 @@ def get_endpoint_operations(
|
|||
else:
|
||||
if route_params is not None and param_name in route_params:
|
||||
path_params.append((param_name, param_type))
|
||||
elif is_multipart:
|
||||
multipart_params.append((param_name, param_type))
|
||||
else:
|
||||
request_params.append((param_name, param_type))
|
||||
|
||||
|
|
@ -333,6 +346,7 @@ def get_endpoint_operations(
|
|||
path_params=path_params,
|
||||
query_params=query_params,
|
||||
request_params=request_params,
|
||||
multipart_params=multipart_params,
|
||||
event_type=event_type,
|
||||
response_type=response_type,
|
||||
http_method=http_method,
|
||||
|
|
@ -377,3 +391,34 @@ def get_endpoint_events(endpoint: type) -> Dict[str, type]:
|
|||
results[param_type.__name__] = param_type
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def _is_multipart_param(param_type: type) -> bool:
|
||||
"""
|
||||
Check if a parameter type indicates multipart form data.
|
||||
|
||||
Returns True if the type is:
|
||||
- UploadFile
|
||||
- Annotated[UploadFile, File()]
|
||||
- Annotated[str, Form()]
|
||||
- Annotated[Any, File()]
|
||||
- Annotated[Any, Form()]
|
||||
"""
|
||||
if param_type is UploadFile:
|
||||
return True
|
||||
|
||||
# Check for Annotated types
|
||||
origin = get_origin(param_type)
|
||||
if origin is None:
|
||||
return False
|
||||
|
||||
if origin is Annotated:
|
||||
args = get_args(param_type)
|
||||
if len(args) < 2:
|
||||
return False
|
||||
|
||||
# Check the annotations for File() or Form()
|
||||
for annotation in args[1:]:
|
||||
if isinstance(annotation, (File, Form)):
|
||||
return True
|
||||
return False
|
||||
|
|
|
|||
|
|
@ -153,6 +153,12 @@ def _validate_api_delete_method_returns_none(method) -> str | None:
|
|||
return "has no return type annotation"
|
||||
|
||||
return_type = hints['return']
|
||||
|
||||
# Allow OpenAI endpoints to return response objects since they follow OpenAI specification
|
||||
method_name = getattr(method, '__name__', '')
|
||||
if method_name.startswith('openai_'):
|
||||
return None
|
||||
|
||||
if return_type is not None and return_type is not type(None):
|
||||
return "does not return None where None is mandatory"
|
||||
|
||||
|
|
@ -174,14 +180,64 @@ def _validate_list_parameters_contain_data(method) -> str | None:
|
|||
return "does not have a mandatory data attribute containing the list of objects"
|
||||
|
||||
|
||||
def _validate_has_ellipsis(method) -> str | None:
|
||||
source = inspect.getsource(method)
|
||||
if "..." not in source and not "NotImplementedError" in source:
|
||||
return "does not contain ellipsis (...) in its implementation"
|
||||
|
||||
def _validate_has_return_in_docstring(method) -> str | None:
|
||||
source = inspect.getsource(method)
|
||||
return_type = method.__annotations__.get('return')
|
||||
if return_type is not None and return_type != type(None) and ":returns:" not in source:
|
||||
return "does not have a ':returns:' in its docstring"
|
||||
|
||||
def _validate_has_params_in_docstring(method) -> str | None:
|
||||
source = inspect.getsource(method)
|
||||
sig = inspect.signature(method)
|
||||
# Only check if the method has more than one parameter
|
||||
if len(sig.parameters) > 1 and ":param" not in source:
|
||||
return "does not have a ':param' in its docstring"
|
||||
|
||||
def _validate_has_no_return_none_in_docstring(method) -> str | None:
|
||||
source = inspect.getsource(method)
|
||||
return_type = method.__annotations__.get('return')
|
||||
if return_type is None and ":returns: None" in source:
|
||||
return "has a ':returns: None' in its docstring which is redundant for None-returning functions"
|
||||
|
||||
def _validate_docstring_lines_end_with_dot(method) -> str | None:
|
||||
docstring = inspect.getdoc(method)
|
||||
if docstring is None:
|
||||
return None
|
||||
|
||||
lines = docstring.split('\n')
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if line and not any(line.endswith(char) for char in '.:{}[]()",'):
|
||||
return f"docstring line '{line}' does not end with a valid character: . : {{ }} [ ] ( ) , \""
|
||||
|
||||
_VALIDATORS = {
|
||||
"GET": [
|
||||
_validate_api_method_return_type,
|
||||
_validate_list_parameters_contain_data,
|
||||
_validate_api_method_doesnt_return_list,
|
||||
_validate_has_ellipsis,
|
||||
_validate_has_return_in_docstring,
|
||||
_validate_has_params_in_docstring,
|
||||
_validate_docstring_lines_end_with_dot,
|
||||
],
|
||||
"DELETE": [
|
||||
_validate_api_delete_method_returns_none,
|
||||
_validate_has_ellipsis,
|
||||
_validate_has_return_in_docstring,
|
||||
_validate_has_params_in_docstring,
|
||||
_validate_has_no_return_none_in_docstring
|
||||
],
|
||||
"POST": [
|
||||
_validate_has_ellipsis,
|
||||
_validate_has_return_in_docstring,
|
||||
_validate_has_params_in_docstring,
|
||||
_validate_has_no_return_none_in_docstring,
|
||||
_validate_docstring_lines_end_with_dot,
|
||||
],
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -3,10 +3,10 @@
|
|||
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our [ReadTheDocs page](https://llama-stack.readthedocs.io/en/latest/index.html).
|
||||
|
||||
## Render locally
|
||||
|
||||
From the llama-stack root directory, run the following command to render the docs locally:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
cd docs
|
||||
python -m sphinx_autobuild source _build
|
||||
uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all
|
||||
```
|
||||
You can open up the docs in your browser at http://localhost:8000
|
||||
|
||||
|
|
|
|||
|
|
@ -1,16 +0,0 @@
|
|||
sphinx==8.1.3
|
||||
myst-parser
|
||||
linkify
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
|
||||
sphinx-rtd-theme>=1.0.0
|
||||
sphinx_autobuild
|
||||
sphinx-copybutton
|
||||
sphinx-design
|
||||
sphinx-pdj-theme
|
||||
sphinx_rtd_dark_mode
|
||||
sphinx-tabs
|
||||
sphinxcontrib-openapi
|
||||
sphinxcontrib-redoc
|
||||
sphinxcontrib-mermaid
|
||||
sphinxcontrib-video
|
||||
tomli
|
||||
|
|
@ -51,11 +51,37 @@ chunks = [
|
|||
"mime_type": "text/plain",
|
||||
"metadata": {
|
||||
"document_id": "doc1",
|
||||
"author": "Jane Doe",
|
||||
},
|
||||
},
|
||||
]
|
||||
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks)
|
||||
```
|
||||
|
||||
#### Using Precomputed Embeddings
|
||||
If you decide to precompute embeddings for your documents, you can insert them directly into the vector database by
|
||||
including the embedding vectors in the chunk data. This is useful if you have a separate embedding service or if you
|
||||
want to customize the ingestion process.
|
||||
```python
|
||||
chunks_with_embeddings = [
|
||||
{
|
||||
"content": "First chunk of text",
|
||||
"mime_type": "text/plain",
|
||||
"embedding": [0.1, 0.2, 0.3, ...], # Your precomputed embedding vector
|
||||
"metadata": {"document_id": "doc1", "section": "introduction"},
|
||||
},
|
||||
{
|
||||
"content": "Second chunk of text",
|
||||
"mime_type": "text/plain",
|
||||
"embedding": [0.2, 0.3, 0.4, ...], # Your precomputed embedding vector
|
||||
"metadata": {"document_id": "doc1", "section": "methodology"},
|
||||
},
|
||||
]
|
||||
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks_with_embeddings)
|
||||
```
|
||||
When providing precomputed embeddings, ensure the embedding dimension matches the embedding_dimension specified when
|
||||
registering the vector database.
|
||||
|
||||
### Retrieval
|
||||
You can query the vector database to retrieve documents based on their embeddings.
|
||||
```python
|
||||
|
|
@ -98,6 +124,17 @@ results = client.tool_runtime.rag_tool.query(
|
|||
)
|
||||
```
|
||||
|
||||
You can configure how the RAG tool adds metadata to the context if you find it useful for your application. Simply add:
|
||||
```python
|
||||
# Query documents
|
||||
results = client.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[vector_db_id],
|
||||
content="What do you know about...",
|
||||
query_config={
|
||||
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
|
||||
},
|
||||
)
|
||||
```
|
||||
### Building RAG-Enhanced Agents
|
||||
|
||||
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
|
||||
|
|
@ -115,6 +152,12 @@ agent = Agent(
|
|||
"name": "builtin::rag/knowledge_search",
|
||||
"args": {
|
||||
"vector_db_ids": [vector_db_id],
|
||||
# Defaults
|
||||
"query_config": {
|
||||
"chunk_size_in_tokens": 512,
|
||||
"chunk_overlap_in_tokens": 0,
|
||||
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
|
||||
},
|
||||
},
|
||||
}
|
||||
],
|
||||
|
|
|
|||
|
|
@ -9,29 +9,24 @@ When instantiating an agent, you can provide it a list of tool groups that it ha
|
|||
|
||||
Refer to the [Building AI Applications](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb) notebook for more examples on how to use tools.
|
||||
|
||||
## Types of Tool Group providers
|
||||
## Server-side vs. client-side tool execution
|
||||
|
||||
There are three types of providers for tool groups that are supported by Llama Stack.
|
||||
Llama Stack allows you to use both server-side and client-side tools. With server-side tools, `agent.create_turn` can perform execution of the tool calls emitted by the model
|
||||
transparently giving the user the final answer desired. If client-side tools are provided, the tool call is sent back to the user for execution
|
||||
and optional continuation using the `agent.resume_turn` method.
|
||||
|
||||
1. Built-in providers
|
||||
2. Model Context Protocol (MCP) providers
|
||||
3. Client provided tools
|
||||
|
||||
### Built-in providers
|
||||
### Server-side tools
|
||||
|
||||
Built-in providers come packaged with Llama Stack. These providers provide common functionalities like web search, code interpretation, and computational capabilities.
|
||||
Llama Stack provides built-in providers for some common tools. These include web search, math, and RAG capabilities.
|
||||
|
||||
#### Web Search providers
|
||||
There are three web search providers that are supported by Llama Stack.
|
||||
#### Web Search
|
||||
|
||||
1. Brave Search
|
||||
2. Bing Search
|
||||
3. Tavily Search
|
||||
You have three providers to execute the web search tool calls generated by a model: Brave Search, Bing Search, and Tavily Search.
|
||||
|
||||
Example client SDK call to register a "websearch" toolgroup that is provided by brave-search.
|
||||
To indicate that the web search tool calls should be executed by brave-search, you can point the "builtin::websearch" toolgroup to the "brave-search" provider.
|
||||
|
||||
```python
|
||||
# Register Brave Search tool group
|
||||
client.toolgroups.register(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="brave-search",
|
||||
|
|
@ -39,38 +34,17 @@ client.toolgroups.register(
|
|||
)
|
||||
```
|
||||
|
||||
The tool requires an API key which can be provided either in the configuration or through the request header `X-LlamaStack-Provider-Data`. The format of the header is `{"<provider_name>_api_key": <your api key>}`.
|
||||
|
||||
> **NOTE:** When using Tavily Search and Bing Search, the inference output will still display "Brave Search." This is because Llama models have been trained with Brave Search as a built-in tool. Tavily and bing is just being used in lieu of Brave search.
|
||||
|
||||
#### Code Interpreter
|
||||
|
||||
The Code Interpreter allows execution of Python code within a controlled environment.
|
||||
|
||||
```python
|
||||
# Register Code Interpreter tool group
|
||||
client.toolgroups.register(
|
||||
toolgroup_id="builtin::code_interpreter", provider_id="code_interpreter"
|
||||
)
|
||||
The tool requires an API key which can be provided either in the configuration or through the request header `X-LlamaStack-Provider-Data`. The format of the header is:
|
||||
```
|
||||
{"<provider_name>_api_key": <your api key>}
|
||||
```
|
||||
|
||||
Features:
|
||||
- Secure execution environment using `bwrap` sandboxing
|
||||
- Matplotlib support for generating plots
|
||||
- Disabled dangerous system operations
|
||||
- Configurable execution timeouts
|
||||
|
||||
> ⚠️ Important: The code interpreter tool can operate in a controlled environment locally or on Podman containers. To ensure proper functionality in containerized environments:
|
||||
> - The container requires privileged access (e.g., --privileged).
|
||||
> - Users without sufficient permissions may encounter permission errors. (`bwrap: Can't mount devpts on /newroot/dev/pts: Permission denied`)
|
||||
> - 🔒 Security Warning: Privileged mode grants elevated access and bypasses security restrictions. Use only in local, isolated, or controlled environments.
|
||||
|
||||
#### WolframAlpha
|
||||
#### Math
|
||||
|
||||
The WolframAlpha tool provides access to computational knowledge through the WolframAlpha API.
|
||||
|
||||
```python
|
||||
# Register WolframAlpha tool group
|
||||
client.toolgroups.register(
|
||||
toolgroup_id="builtin::wolfram_alpha", provider_id="wolfram-alpha"
|
||||
)
|
||||
|
|
@ -102,13 +76,51 @@ Features:
|
|||
- Context retrieval with token limits
|
||||
|
||||
|
||||
> **Note:** By default, llama stack run.yaml defines toolgroups for web search, code interpreter and rag, that are provided by tavily-search, code-interpreter and rag providers.
|
||||
> **Note:** By default, llama stack run.yaml defines toolgroups for web search, wolfram alpha and rag, that are provided by tavily-search, wolfram-alpha and rag providers.
|
||||
|
||||
## Model Context Protocol (MCP) Tools
|
||||
## Model Context Protocol (MCP)
|
||||
|
||||
MCP tools are special tools that can interact with llama stack over model context protocol. These tools are dynamically discovered from an MCP endpoint and can be used to extend the agent's capabilities.
|
||||
[MCP](https://github.com/modelcontextprotocol) is an upcoming, popular standard for tool discovery and execution. It is a protocol that allows tools to be dynamically discovered
|
||||
from an MCP endpoint and can be used to extend the agent's capabilities.
|
||||
|
||||
Refer to [https://github.com/modelcontextprotocol/servers](https://github.com/modelcontextprotocol/servers) for available MCP servers.
|
||||
|
||||
### Using Remote MCP Servers
|
||||
|
||||
You can find some popular remote MCP servers [here](https://github.com/jaw9c/awesome-remote-mcp-servers). You can register them as toolgroups in the same way as local providers.
|
||||
|
||||
```python
|
||||
client.toolgroups.register(
|
||||
toolgroup_id="mcp::deepwiki",
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=URL(uri="https://mcp.deepwiki.com/sse"),
|
||||
)
|
||||
```
|
||||
|
||||
Note that most of the more useful MCP servers need you to authenticate with them. Many of them use OAuth2.0 for authentication. You can provide authorization headers to send to the MCP server
|
||||
using the "Provider Data" abstraction provided by Llama Stack. When making an agent call,
|
||||
|
||||
```python
|
||||
agent = Agent(
|
||||
...,
|
||||
tools=["mcp::deepwiki"],
|
||||
extra_headers={
|
||||
"X-LlamaStack-Provider-Data": json.dumps(
|
||||
{
|
||||
"mcp_headers": {
|
||||
"http://mcp.deepwiki.com/sse": {
|
||||
"Authorization": "Bearer <your_access_token>",
|
||||
},
|
||||
},
|
||||
}
|
||||
),
|
||||
},
|
||||
)
|
||||
agent.create_turn(...)
|
||||
```
|
||||
|
||||
### Running your own MCP server
|
||||
|
||||
Here's an example of how to run a simple MCP server that exposes a File System as a set of tools to the Llama Stack agent.
|
||||
|
||||
```shell
|
||||
# start your MCP server
|
||||
|
|
@ -127,13 +139,9 @@ client.toolgroups.register(
|
|||
)
|
||||
```
|
||||
|
||||
MCP tools require:
|
||||
- A valid MCP endpoint URL
|
||||
- The endpoint must implement the Model Context Protocol
|
||||
- Tools are discovered dynamically from the endpoint
|
||||
|
||||
|
||||
## Adding Custom Tools
|
||||
## Adding Custom (Client-side) Tools
|
||||
|
||||
When you want to use tools other than the built-in tools, you just need to implement a python function with a docstring. The content of the docstring will be used to describe the tool and the parameters and passed
|
||||
along to the generative model.
|
||||
|
|
@ -186,34 +194,6 @@ all_tools = client.tools.list_tools()
|
|||
group_tools = client.tools.list_tools(toolgroup_id="search_tools")
|
||||
```
|
||||
|
||||
## Simple Example: Using an Agent with the Code-Interpreter Tool
|
||||
|
||||
```python
|
||||
from llama_stack_client import Agent
|
||||
|
||||
# Instantiate the AI agent with the given configuration
|
||||
agent = Agent(
|
||||
client,
|
||||
name="code-interpreter",
|
||||
description="A code interpreter agent for executing Python code snippets",
|
||||
instructions="""
|
||||
You are a highly reliable, concise, and precise assistant.
|
||||
Always show the generated code, never generate your own code, and never anticipate results.
|
||||
""",
|
||||
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||
tools=["builtin::code_interpreter"],
|
||||
max_infer_iters=5,
|
||||
)
|
||||
|
||||
# Start a session
|
||||
session_id = agent.create_session("tool_session")
|
||||
|
||||
# Send a query to the AI agent for code execution
|
||||
response = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "Run this code: print(3 ** 4 - 5 * 2)"}],
|
||||
session_id=session_id,
|
||||
)
|
||||
```
|
||||
## Simple Example 2: Using an Agent with the Web Search Tool
|
||||
1. Start by registering a Tavily API key at [Tavily](https://tavily.com/).
|
||||
2. [Optional] Provide the API key directly to the Llama Stack server
|
||||
|
|
|
|||
12
docs/source/concepts/api_providers.md
Normal file
12
docs/source/concepts/api_providers.md
Normal file
|
|
@ -0,0 +1,12 @@
|
|||
## API Providers
|
||||
|
||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.),
|
||||
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
||||
|
||||
Providers come in two flavors:
|
||||
- **Remote**: the provider runs as a separate service external to the Llama Stack codebase. Llama Stack contains a small amount of adapter code.
|
||||
- **Inline**: the provider is fully specified and implemented within the Llama Stack codebase. It may be a simple wrapper around an existing library, or a full fledged implementation within Llama Stack.
|
||||
|
||||
Most importantly, Llama Stack always strives to provide at least one fully inline provider for each API so you can iterate on a fully featured environment locally.
|
||||
18
docs/source/concepts/apis.md
Normal file
18
docs/source/concepts/apis.md
Normal file
|
|
@ -0,0 +1,18 @@
|
|||
## APIs
|
||||
|
||||
A Llama Stack API is described as a collection of REST endpoints. We currently support the following APIs:
|
||||
|
||||
- **Inference**: run inference with a LLM
|
||||
- **Safety**: apply safety policies to the output at a Systems (not only model) level
|
||||
- **Agents**: run multi-step agentic workflows with LLMs with tool usage, memory (RAG), etc.
|
||||
- **DatasetIO**: interface with datasets and data loaders
|
||||
- **Scoring**: evaluate outputs of the system
|
||||
- **Eval**: generate outputs (via Inference or Agents) and perform scoring
|
||||
- **VectorIO**: perform operations on vector stores, such as adding documents, searching, and deleting documents
|
||||
- **Telemetry**: collect telemetry data from the system
|
||||
|
||||
We are working on adding a few more APIs to complete the application lifecycle. These will include:
|
||||
- **Batch Inference**: run inference on a dataset of inputs
|
||||
- **Batch Agents**: run agents on a dataset of inputs
|
||||
- **Post Training**: fine-tune a Llama model
|
||||
- **Synthetic Data Generation**: generate synthetic data for model development
|
||||
9
docs/source/concepts/distributions.md
Normal file
9
docs/source/concepts/distributions.md
Normal file
|
|
@ -0,0 +1,9 @@
|
|||
## Distributions
|
||||
|
||||
While there is a lot of flexibility to mix-and-match providers, often users will work with a specific set of providers (hardware support, contractual obligations, etc.) We therefore need to provide a _convenient shorthand_ for such collections. We call this shorthand a **Llama Stack Distribution** or a **Distro**. One can think of it as specific pre-packaged versions of the Llama Stack. Here are some examples:
|
||||
|
||||
**Remotely Hosted Distro**: These are the simplest to consume from a user perspective. You can simply obtain the API key for these providers, point to a URL and have _all_ Llama Stack APIs working out of the box. Currently, [Fireworks](https://fireworks.ai/) and [Together](https://together.xyz/) provide such easy-to-consume Llama Stack distributions.
|
||||
|
||||
**Locally Hosted Distro**: You may want to run Llama Stack on your own hardware. Typically though, you still need to use Inference via an external service. You can use providers like HuggingFace TGI, Fireworks, Together, etc. for this purpose. Or you may have access to GPUs and can run a [vLLM](https://github.com/vllm-project/vllm) or [NVIDIA NIM](https://build.nvidia.com/nim?filters=nimType%3Anim_type_run_anywhere&q=llama) instance. If you "just" have a regular desktop machine, you can use [Ollama](https://ollama.com/) for inference. To provide convenient quick access to these options, we provide a number of such pre-configured locally-hosted Distros.
|
||||
|
||||
**On-device Distro**: To run Llama Stack directly on an edge device (mobile phone or a tablet), we provide Distros for [iOS](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/ios_sdk.html) and [Android](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/android_sdk.html)
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
# Evaluation Concepts
|
||||
## Evaluation Concepts
|
||||
|
||||
The Llama Stack Evaluation flow allows you to run evaluations on your GenAI application datasets or pre-registered benchmarks.
|
||||
|
||||
|
|
@ -10,11 +10,7 @@ We introduce a set of APIs in Llama Stack for supporting running evaluations of
|
|||
This guide goes over the sets of APIs and developer experience flow of using Llama Stack to run evaluations for different use cases. Checkout our Colab notebook on working examples with evaluations [here](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing).
|
||||
|
||||
|
||||
## Evaluation Concepts
|
||||
|
||||
The Evaluation APIs are associated with a set of Resources as shown in the following diagram. Please visit the Resources section in our [Core Concepts](../concepts/index.md) guide for better high-level understanding.
|
||||
|
||||

|
||||
The Evaluation APIs are associated with a set of Resources. Please visit the Resources section in our [Core Concepts](../concepts/index.md) guide for better high-level understanding.
|
||||
|
||||
- **DatasetIO**: defines interface with datasets and data loaders.
|
||||
- Associated with `Dataset` resource.
|
||||
|
|
@ -24,9 +20,9 @@ The Evaluation APIs are associated with a set of Resources as shown in the follo
|
|||
- Associated with `Benchmark` resource.
|
||||
|
||||
|
||||
## Open-benchmark Eval
|
||||
### Open-benchmark Eval
|
||||
|
||||
### List of open-benchmarks Llama Stack support
|
||||
#### List of open-benchmarks Llama Stack support
|
||||
|
||||
Llama stack pre-registers several popular open-benchmarks to easily evaluate model perfomance via CLI.
|
||||
|
||||
|
|
@ -39,7 +35,7 @@ The list of open-benchmarks we currently support:
|
|||
|
||||
You can follow this [contributing guide](https://llama-stack.readthedocs.io/en/latest/references/evals_reference/index.html#open-benchmark-contributing-guide) to add more open-benchmarks to Llama Stack
|
||||
|
||||
### Run evaluation on open-benchmarks via CLI
|
||||
#### Run evaluation on open-benchmarks via CLI
|
||||
|
||||
We have built-in functionality to run the supported open-benckmarks using llama-stack-client CLI
|
||||
|
||||
|
|
@ -74,7 +70,7 @@ evaluation results over there.
|
|||
|
||||
|
||||
|
||||
## What's Next?
|
||||
#### What's Next?
|
||||
|
||||
- Check out our Colab notebook on working examples with running benchmark evaluations [here](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb#scrollTo=mxLCsP4MvFqP).
|
||||
- Check out our [Building Applications - Evaluation](../building_applications/evals.md) guide for more details on how to use the Evaluation APIs to evaluate your applications.
|
||||
|
|
|
|||
|
|
@ -1,74 +1,23 @@
|
|||
# Core Concepts
|
||||
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
:hidden:
|
||||
|
||||
evaluation_concepts
|
||||
```
|
||||
|
||||
Given Llama Stack's service-oriented philosophy, a few concepts and workflows arise which may not feel completely natural in the LLM landscape, especially if you are coming with a background in other frameworks.
|
||||
|
||||
|
||||
## APIs
|
||||
|
||||
A Llama Stack API is described as a collection of REST endpoints. We currently support the following APIs:
|
||||
|
||||
- **Inference**: run inference with a LLM
|
||||
- **Safety**: apply safety policies to the output at a Systems (not only model) level
|
||||
- **Agents**: run multi-step agentic workflows with LLMs with tool usage, memory (RAG), etc.
|
||||
- **DatasetIO**: interface with datasets and data loaders
|
||||
- **Scoring**: evaluate outputs of the system
|
||||
- **Eval**: generate outputs (via Inference or Agents) and perform scoring
|
||||
- **VectorIO**: perform operations on vector stores, such as adding documents, searching, and deleting documents
|
||||
- **Telemetry**: collect telemetry data from the system
|
||||
|
||||
We are working on adding a few more APIs to complete the application lifecycle. These will include:
|
||||
- **Batch Inference**: run inference on a dataset of inputs
|
||||
- **Batch Agents**: run agents on a dataset of inputs
|
||||
- **Post Training**: fine-tune a Llama model
|
||||
- **Synthetic Data Generation**: generate synthetic data for model development
|
||||
|
||||
## API Providers
|
||||
|
||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.),
|
||||
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
||||
|
||||
Providers come in two flavors:
|
||||
- **Remote**: the provider runs as a separate service external to the Llama Stack codebase. Llama Stack contains a small amount of adapter code.
|
||||
- **Inline**: the provider is fully specified and implemented within the Llama Stack codebase. It may be a simple wrapper around an existing library, or a full fledged implementation within Llama Stack.
|
||||
|
||||
Most importantly, Llama Stack always strives to provide at least one fully inline provider for each API so you can iterate on a fully featured environment locally.
|
||||
## Resources
|
||||
|
||||
Some of these APIs are associated with a set of **Resources**. Here is the mapping of APIs to resources:
|
||||
|
||||
- **Inference**, **Eval** and **Post Training** are associated with `Model` resources.
|
||||
- **Safety** is associated with `Shield` resources.
|
||||
- **Tool Runtime** is associated with `ToolGroup` resources.
|
||||
- **DatasetIO** is associated with `Dataset` resources.
|
||||
- **VectorIO** is associated with `VectorDB` resources.
|
||||
- **Scoring** is associated with `ScoringFunction` resources.
|
||||
- **Eval** is associated with `Model` and `Benchmark` resources.
|
||||
|
||||
Furthermore, we allow these resources to be **federated** across multiple providers. For example, you may have some Llama models served by Fireworks while others are served by AWS Bedrock. Regardless, they will all work seamlessly with the same uniform Inference API provided by Llama Stack.
|
||||
|
||||
```{admonition} Registering Resources
|
||||
:class: tip
|
||||
|
||||
Given this architecture, it is necessary for the Stack to know which provider to use for a given resource. This means you need to explicitly _register_ resources (including models) before you can use them with the associated APIs.
|
||||
```{include} apis.md
|
||||
:start-after: ## APIs
|
||||
```
|
||||
|
||||
## Distributions
|
||||
```{include} api_providers.md
|
||||
:start-after: ## API Providers
|
||||
```
|
||||
|
||||
While there is a lot of flexibility to mix-and-match providers, often users will work with a specific set of providers (hardware support, contractual obligations, etc.) We therefore need to provide a _convenient shorthand_ for such collections. We call this shorthand a **Llama Stack Distribution** or a **Distro**. One can think of it as specific pre-packaged versions of the Llama Stack. Here are some examples:
|
||||
```{include} resources.md
|
||||
:start-after: ## Resources
|
||||
```
|
||||
|
||||
**Remotely Hosted Distro**: These are the simplest to consume from a user perspective. You can simply obtain the API key for these providers, point to a URL and have _all_ Llama Stack APIs working out of the box. Currently, [Fireworks](https://fireworks.ai/) and [Together](https://together.xyz/) provide such easy-to-consume Llama Stack distributions.
|
||||
```{include} distributions.md
|
||||
:start-after: ## Distributions
|
||||
```
|
||||
|
||||
**Locally Hosted Distro**: You may want to run Llama Stack on your own hardware. Typically though, you still need to use Inference via an external service. You can use providers like HuggingFace TGI, Fireworks, Together, etc. for this purpose. Or you may have access to GPUs and can run a [vLLM](https://github.com/vllm-project/vllm) or [NVIDIA NIM](https://build.nvidia.com/nim?filters=nimType%3Anim_type_run_anywhere&q=llama) instance. If you "just" have a regular desktop machine, you can use [Ollama](https://ollama.com/) for inference. To provide convenient quick access to these options, we provide a number of such pre-configured locally-hosted Distros.
|
||||
|
||||
|
||||
**On-device Distro**: To run Llama Stack directly on an edge device (mobile phone or a tablet), we provide Distros for [iOS](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/ios_sdk.html) and [Android](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/android_sdk.html)
|
||||
```{include} evaluation_concepts.md
|
||||
:start-after: ## Evaluation Concepts
|
||||
```
|
||||
|
|
|
|||
19
docs/source/concepts/resources.md
Normal file
19
docs/source/concepts/resources.md
Normal file
|
|
@ -0,0 +1,19 @@
|
|||
## Resources
|
||||
|
||||
Some of these APIs are associated with a set of **Resources**. Here is the mapping of APIs to resources:
|
||||
|
||||
- **Inference**, **Eval** and **Post Training** are associated with `Model` resources.
|
||||
- **Safety** is associated with `Shield` resources.
|
||||
- **Tool Runtime** is associated with `ToolGroup` resources.
|
||||
- **DatasetIO** is associated with `Dataset` resources.
|
||||
- **VectorIO** is associated with `VectorDB` resources.
|
||||
- **Scoring** is associated with `ScoringFunction` resources.
|
||||
- **Eval** is associated with `Model` and `Benchmark` resources.
|
||||
|
||||
Furthermore, we allow these resources to be **federated** across multiple providers. For example, you may have some Llama models served by Fireworks while others are served by AWS Bedrock. Regardless, they will all work seamlessly with the same uniform Inference API provided by Llama Stack.
|
||||
|
||||
```{admonition} Registering Resources
|
||||
:class: tip
|
||||
|
||||
Given this architecture, it is necessary for the Stack to know which provider to use for a given resource. This means you need to explicitly _register_ resources (including models) before you can use them with the associated APIs.
|
||||
```
|
||||
|
|
@ -22,7 +22,11 @@ from docutils import nodes
|
|||
# Read version from pyproject.toml
|
||||
with Path(__file__).parent.parent.parent.joinpath("pyproject.toml").open("rb") as f:
|
||||
pypi_url = "https://pypi.org/pypi/llama-stack/json"
|
||||
version_tag = json.loads(requests.get(pypi_url).text)["info"]["version"]
|
||||
headers = {
|
||||
'User-Agent': 'pip/23.0.1 (python 3.11)', # Mimic pip's user agent
|
||||
'Accept': 'application/json'
|
||||
}
|
||||
version_tag = json.loads(requests.get(pypi_url, headers=headers).text)["info"]["version"]
|
||||
print(f"{version_tag=}")
|
||||
|
||||
# generate the full link including text and url here
|
||||
|
|
@ -53,14 +57,6 @@ myst_enable_extensions = ["colon_fence"]
|
|||
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
html_use_relative_paths = True
|
||||
|
||||
# html_theme = "sphinx_pdj_theme"
|
||||
# html_theme_path = [sphinx_pdj_theme.get_html_theme_path()]
|
||||
|
||||
# html_theme = "pytorch_sphinx_theme"
|
||||
# html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
|
||||
|
||||
|
||||
templates_path = ["_templates"]
|
||||
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
|
||||
|
|
@ -110,6 +106,8 @@ html_theme_options = {
|
|||
"canonical_url": "https://github.com/meta-llama/llama-stack",
|
||||
"collapse_navigation": False,
|
||||
# "style_nav_header_background": "#c3c9d4",
|
||||
'display_version': True,
|
||||
'version_selector': True,
|
||||
}
|
||||
|
||||
default_dark_mode = False
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ This guide will walk you through the process of adding a new API provider to Lla
|
|||
- Begin by reviewing the [core concepts](../concepts/index.md) of Llama Stack and choose the API your provider belongs to (Inference, Safety, VectorIO, etc.)
|
||||
- Determine the provider type ({repopath}`Remote::llama_stack/providers/remote` or {repopath}`Inline::llama_stack/providers/inline`). Remote providers make requests to external services, while inline providers execute implementation locally.
|
||||
- Add your provider to the appropriate {repopath}`Registry::llama_stack/providers/registry/`. Specify pip dependencies necessary.
|
||||
- Update any distribution {repopath}`Templates::llama_stack/templates/` build.yaml and run.yaml files if they should include your provider by default. Run {repopath}`./scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
|
||||
- Update any distribution {repopath}`Templates::llama_stack/templates/` `build.yaml` and `run.yaml` files if they should include your provider by default. Run {repopath}`./scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
|
||||
|
||||
|
||||
Here are some example PRs to help you get started:
|
||||
|
|
@ -33,6 +33,7 @@ Note that each provider's `sample_run_config()` method (in the configuration cla
|
|||
|
||||
Unit tests are located in {repopath}`tests/unit`. Provider-specific unit tests are located in {repopath}`tests/unit/providers`. These tests are all run automatically as part of the CI process.
|
||||
|
||||
Consult {repopath}`tests/unit/README.md` for more details on how to run the tests manually.
|
||||
|
||||
### 3. Additional end-to-end testing
|
||||
|
||||
|
|
|
|||
|
|
@ -109,8 +109,6 @@ llama stack build --list-templates
|
|||
+------------------------------+-----------------------------------------------------------------------------+
|
||||
| nvidia | Use NVIDIA NIM for running LLM inference |
|
||||
+------------------------------+-----------------------------------------------------------------------------+
|
||||
| meta-reference-quantized-gpu | Use Meta Reference with fp8, int4 quantization for running LLM inference |
|
||||
+------------------------------+-----------------------------------------------------------------------------+
|
||||
| cerebras | Use Cerebras for running LLM inference |
|
||||
+------------------------------+-----------------------------------------------------------------------------+
|
||||
| ollama | Use (an external) Ollama server for running LLM inference |
|
||||
|
|
@ -180,7 +178,7 @@ image_name: ollama
|
|||
image_type: conda
|
||||
|
||||
# If some providers are external, you can specify the path to the implementation
|
||||
external_providers_dir: /etc/llama-stack/providers.d
|
||||
external_providers_dir: ~/.llama/providers.d
|
||||
```
|
||||
|
||||
```
|
||||
|
|
@ -208,7 +206,7 @@ distribution_spec:
|
|||
image_type: container
|
||||
image_name: ci-test
|
||||
# Path to external provider implementations
|
||||
external_providers_dir: /etc/llama-stack/providers.d
|
||||
external_providers_dir: ~/.llama/providers.d
|
||||
```
|
||||
|
||||
Here's an example for a custom Ollama provider:
|
||||
|
|
@ -262,7 +260,41 @@ Containerfile created successfully in /tmp/tmp.viA3a3Rdsg/ContainerfileFROM pyth
|
|||
You can now edit ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml and run `llama stack run ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml`
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find the built container image and test it with `llama stack run <path/to/run.yaml>`.
|
||||
Now set some environment variables for the inference model ID and Llama Stack Port and create a local directory to mount into the container's file system.
|
||||
```
|
||||
export INFERENCE_MODEL="llama3.2:3b"
|
||||
export LLAMA_STACK_PORT=8321
|
||||
mkdir -p ~/.llama
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find the built container image and test it with the below Docker command:
|
||||
|
||||
```
|
||||
docker run -d \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
localhost/distribution-ollama:dev \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env OLLAMA_URL=http://host.docker.internal:11434
|
||||
```
|
||||
|
||||
Here are the docker flags and their uses:
|
||||
|
||||
* `-d`: Runs the container in the detached mode as a background process
|
||||
|
||||
* `-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT`: Maps the container port to the host port for accessing the server
|
||||
|
||||
* `-v ~/.llama:/root/.llama`: Mounts the local .llama directory to persist configurations and data
|
||||
|
||||
* `localhost/distribution-ollama:dev`: The name and tag of the container image to run
|
||||
|
||||
* `--port $LLAMA_STACK_PORT`: Port number for the server to listen on
|
||||
|
||||
* `--env INFERENCE_MODEL=$INFERENCE_MODEL`: Sets the model to use for inference
|
||||
|
||||
* `--env OLLAMA_URL=http://host.docker.internal:11434`: Configures the URL for the Ollama service
|
||||
|
||||
:::
|
||||
|
||||
::::
|
||||
|
|
@ -273,7 +305,7 @@ Now, let's start the Llama Stack Distribution Server. You will need the YAML con
|
|||
|
||||
```
|
||||
llama stack run -h
|
||||
usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME] [--disable-ipv6] [--env KEY=VALUE] [--tls-keyfile TLS_KEYFILE] [--tls-certfile TLS_CERTFILE]
|
||||
usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME] [--env KEY=VALUE] [--tls-keyfile TLS_KEYFILE] [--tls-certfile TLS_CERTFILE]
|
||||
[--image-type {conda,container,venv}]
|
||||
config
|
||||
|
||||
|
|
@ -287,7 +319,6 @@ options:
|
|||
--port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. (default: 8321)
|
||||
--image-name IMAGE_NAME
|
||||
Name of the image to run. Defaults to the current environment (default: None)
|
||||
--disable-ipv6 Disable IPv6 support (default: False)
|
||||
--env KEY=VALUE Environment variables to pass to the server in KEY=VALUE format. Can be specified multiple times. (default: [])
|
||||
--tls-keyfile TLS_KEYFILE
|
||||
Path to TLS key file for HTTPS (default: None)
|
||||
|
|
@ -341,6 +372,48 @@ INFO: Application startup complete.
|
|||
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
|
||||
INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK
|
||||
```
|
||||
### Listing Distributions
|
||||
Using the list command, you can view all existing Llama Stack distributions, including stacks built from templates, from scratch, or using custom configuration files.
|
||||
|
||||
```
|
||||
llama stack list -h
|
||||
usage: llama stack list [-h]
|
||||
|
||||
list the build stacks
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
```
|
||||
|
||||
Example Usage
|
||||
|
||||
```
|
||||
llama stack list
|
||||
```
|
||||
|
||||
### Removing a Distribution
|
||||
Use the remove command to delete a distribution you've previously built.
|
||||
|
||||
```
|
||||
llama stack rm -h
|
||||
usage: llama stack rm [-h] [--all] [name]
|
||||
|
||||
Remove the build stack
|
||||
|
||||
positional arguments:
|
||||
name Name of the stack to delete (default: None)
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--all, -a Delete all stacks (use with caution) (default: False)
|
||||
```
|
||||
|
||||
Example
|
||||
```
|
||||
llama stack rm llamastack-test
|
||||
```
|
||||
|
||||
To keep your environment organized and avoid clutter, consider using `llama stack list` to review old or unused distributions and `llama stack rm <name>` to delete them when they’re no longer needed.
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
|
|
|
|||
|
|
@ -53,6 +53,13 @@ models:
|
|||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
server:
|
||||
port: 8321
|
||||
auth:
|
||||
provider_type: "kubernetes"
|
||||
config:
|
||||
api_server_url: "https://kubernetes.default.svc"
|
||||
ca_cert_path: "/path/to/ca.crt"
|
||||
```
|
||||
|
||||
Let's break this down into the different sections. The first section specifies the set of APIs that the stack server will serve:
|
||||
|
|
@ -102,6 +109,227 @@ A Model is an instance of a "Resource" (see [Concepts](../concepts/index)) and i
|
|||
|
||||
What's with the `provider_model_id` field? This is an identifier for the model inside the provider's model catalog. Contrast it with `model_id` which is the identifier for the same model for Llama Stack's purposes. For example, you may want to name "llama3.2:vision-11b" as "image_captioning_model" when you use it in your Stack interactions. When omitted, the server will set `provider_model_id` to be the same as `model_id`.
|
||||
|
||||
## Server Configuration
|
||||
|
||||
The `server` section configures the HTTP server that serves the Llama Stack APIs:
|
||||
|
||||
```yaml
|
||||
server:
|
||||
port: 8321 # Port to listen on (default: 8321)
|
||||
tls_certfile: "/path/to/cert.pem" # Optional: Path to TLS certificate for HTTPS
|
||||
tls_keyfile: "/path/to/key.pem" # Optional: Path to TLS key for HTTPS
|
||||
```
|
||||
|
||||
### Authentication Configuration
|
||||
|
||||
The `auth` section configures authentication for the server. When configured, all API requests must include a valid Bearer token in the Authorization header:
|
||||
|
||||
```
|
||||
Authorization: Bearer <token>
|
||||
```
|
||||
|
||||
The server supports multiple authentication providers:
|
||||
|
||||
#### OAuth 2.0/OpenID Connect Provider with Kubernetes
|
||||
|
||||
The Kubernetes cluster must be configured to use a service account for authentication.
|
||||
|
||||
```bash
|
||||
kubectl create namespace llama-stack
|
||||
kubectl create serviceaccount llama-stack-auth -n llama-stack
|
||||
kubectl create rolebinding llama-stack-auth-rolebinding --clusterrole=admin --serviceaccount=llama-stack:llama-stack-auth -n llama-stack
|
||||
kubectl create token llama-stack-auth -n llama-stack > llama-stack-auth-token
|
||||
```
|
||||
|
||||
Make sure the `kube-apiserver` runs with `--anonymous-auth=true` to allow unauthenticated requests
|
||||
and that the correct RoleBinding is created to allow the service account to access the necessary
|
||||
resources. If that is not the case, you can create a RoleBinding for the service account to access
|
||||
the necessary resources:
|
||||
|
||||
```yaml
|
||||
# allow-anonymous-openid.yaml
|
||||
apiVersion: rbac.authorization.k8s.io/v1
|
||||
kind: ClusterRole
|
||||
metadata:
|
||||
name: allow-anonymous-openid
|
||||
rules:
|
||||
- nonResourceURLs: ["/openid/v1/jwks"]
|
||||
verbs: ["get"]
|
||||
---
|
||||
apiVersion: rbac.authorization.k8s.io/v1
|
||||
kind: ClusterRoleBinding
|
||||
metadata:
|
||||
name: allow-anonymous-openid
|
||||
roleRef:
|
||||
apiGroup: rbac.authorization.k8s.io
|
||||
kind: ClusterRole
|
||||
name: allow-anonymous-openid
|
||||
subjects:
|
||||
- kind: User
|
||||
name: system:anonymous
|
||||
apiGroup: rbac.authorization.k8s.io
|
||||
```
|
||||
|
||||
And then apply the configuration:
|
||||
```bash
|
||||
kubectl apply -f allow-anonymous-openid.yaml
|
||||
```
|
||||
|
||||
Validates tokens against the Kubernetes API server through the OIDC provider:
|
||||
```yaml
|
||||
server:
|
||||
auth:
|
||||
provider_type: "oauth2_token"
|
||||
config:
|
||||
jwks:
|
||||
uri: "https://kubernetes.default.svc"
|
||||
key_recheck_period: 3600
|
||||
tls_cafile: "/path/to/ca.crt"
|
||||
issuer: "https://kubernetes.default.svc"
|
||||
audience: "https://kubernetes.default.svc"
|
||||
```
|
||||
|
||||
To find your cluster's audience, run:
|
||||
```bash
|
||||
kubectl create token default --duration=1h | cut -d. -f2 | base64 -d | jq .aud
|
||||
```
|
||||
|
||||
For the issuer, you can use the OIDC provider's URL:
|
||||
```bash
|
||||
kubectl get --raw /.well-known/openid-configuration| jq .issuer
|
||||
```
|
||||
|
||||
For the tls_cafile, you can use the CA certificate of the OIDC provider:
|
||||
```bash
|
||||
kubectl config view --minify -o jsonpath='{.clusters[0].cluster.certificate-authority}'
|
||||
```
|
||||
|
||||
The provider extracts user information from the JWT token:
|
||||
- Username from the `sub` claim becomes a role
|
||||
- Kubernetes groups become teams
|
||||
|
||||
You can easily validate a request by running:
|
||||
|
||||
```bash
|
||||
curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://127.0.0.1:8321/v1/providers
|
||||
```
|
||||
|
||||
#### Custom Provider
|
||||
Validates tokens against a custom authentication endpoint:
|
||||
```yaml
|
||||
server:
|
||||
auth:
|
||||
provider_type: "custom"
|
||||
config:
|
||||
endpoint: "https://auth.example.com/validate" # URL of the auth endpoint
|
||||
```
|
||||
|
||||
The custom endpoint receives a POST request with:
|
||||
```json
|
||||
{
|
||||
"api_key": "<token>",
|
||||
"request": {
|
||||
"path": "/api/v1/endpoint",
|
||||
"headers": {
|
||||
"content-type": "application/json",
|
||||
"user-agent": "curl/7.64.1"
|
||||
},
|
||||
"params": {
|
||||
"key": ["value"]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
And must respond with:
|
||||
```json
|
||||
{
|
||||
"access_attributes": {
|
||||
"roles": ["admin", "user"],
|
||||
"teams": ["ml-team", "nlp-team"],
|
||||
"projects": ["llama-3", "project-x"],
|
||||
"namespaces": ["research"]
|
||||
},
|
||||
"message": "Authentication successful"
|
||||
}
|
||||
```
|
||||
|
||||
If no access attributes are returned, the token is used as a namespace.
|
||||
|
||||
### Quota Configuration
|
||||
|
||||
The `quota` section allows you to enable server-side request throttling for both
|
||||
authenticated and anonymous clients. This is useful for preventing abuse, enforcing
|
||||
fairness across tenants, and controlling infrastructure costs without requiring
|
||||
client-side rate limiting or external proxies.
|
||||
|
||||
Quotas are disabled by default. When enabled, each client is tracked using either:
|
||||
|
||||
* Their authenticated `client_id` (derived from the Bearer token), or
|
||||
* Their IP address (fallback for anonymous requests)
|
||||
|
||||
Quota state is stored in a SQLite-backed key-value store, and rate limits are applied
|
||||
within a configurable time window (currently only `day` is supported).
|
||||
|
||||
#### Example
|
||||
|
||||
```yaml
|
||||
server:
|
||||
quota:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ./quotas.db
|
||||
anonymous_max_requests: 100
|
||||
authenticated_max_requests: 1000
|
||||
period: day
|
||||
```
|
||||
|
||||
#### Configuration Options
|
||||
|
||||
| Field | Description |
|
||||
| ---------------------------- | -------------------------------------------------------------------------- |
|
||||
| `kvstore` | Required. Backend storage config for tracking request counts. |
|
||||
| `kvstore.type` | Must be `"sqlite"` for now. Other backends may be supported in the future. |
|
||||
| `kvstore.db_path` | File path to the SQLite database. |
|
||||
| `anonymous_max_requests` | Max requests per period for unauthenticated clients. |
|
||||
| `authenticated_max_requests` | Max requests per period for authenticated clients. |
|
||||
| `period` | Time window for quota enforcement. Only `"day"` is supported. |
|
||||
|
||||
> Note: if `authenticated_max_requests` is set but no authentication provider is
|
||||
configured, the server will fall back to applying `anonymous_max_requests` to all
|
||||
clients.
|
||||
|
||||
#### Example with Authentication Enabled
|
||||
|
||||
```yaml
|
||||
server:
|
||||
port: 8321
|
||||
auth:
|
||||
provider_type: custom
|
||||
config:
|
||||
endpoint: https://auth.example.com/validate
|
||||
quota:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ./quotas.db
|
||||
anonymous_max_requests: 100
|
||||
authenticated_max_requests: 1000
|
||||
period: day
|
||||
```
|
||||
|
||||
If a client exceeds their limit, the server responds with:
|
||||
|
||||
```http
|
||||
HTTP/1.1 429 Too Many Requests
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"error": {
|
||||
"message": "Quota exceeded"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Extending to handle Safety
|
||||
|
||||
Configuring Safety can be a little involved so it is instructive to go through an example.
|
||||
|
|
|
|||
32
docs/source/distributions/k8s/apply.sh
Executable file
32
docs/source/distributions/k8s/apply.sh
Executable file
|
|
@ -0,0 +1,32 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
export POSTGRES_USER=${POSTGRES_USER:-llamastack}
|
||||
export POSTGRES_DB=${POSTGRES_DB:-llamastack}
|
||||
export POSTGRES_PASSWORD=${POSTGRES_PASSWORD:-llamastack}
|
||||
|
||||
export INFERENCE_MODEL=${INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
export SAFETY_MODEL=${SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
|
||||
|
||||
set -euo pipefail
|
||||
set -x
|
||||
|
||||
envsubst < ./vllm-k8s.yaml.template | kubectl apply -f -
|
||||
envsubst < ./vllm-safety-k8s.yaml.template | kubectl apply -f -
|
||||
envsubst < ./postgres-k8s.yaml.template | kubectl apply -f -
|
||||
envsubst < ./chroma-k8s.yaml.template | kubectl apply -f -
|
||||
|
||||
kubectl create configmap llama-stack-config --from-file=stack_run_config.yaml \
|
||||
--dry-run=client -o yaml > stack-configmap.yaml
|
||||
|
||||
kubectl apply -f stack-configmap.yaml
|
||||
|
||||
envsubst < ./stack-k8s.yaml.template | kubectl apply -f -
|
||||
envsubst < ./ingress-k8s.yaml.template | kubectl apply -f -
|
||||
|
||||
envsubst < ./ui-k8s.yaml.template | kubectl apply -f -
|
||||
66
docs/source/distributions/k8s/chroma-k8s.yaml.template
Normal file
66
docs/source/distributions/k8s/chroma-k8s.yaml.template
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: chromadb-pvc
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
resources:
|
||||
requests:
|
||||
storage: 20Gi
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chromadb
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app: chromadb
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: chromadb
|
||||
spec:
|
||||
containers:
|
||||
- name: chromadb
|
||||
image: chromadb/chroma:latest
|
||||
ports:
|
||||
- containerPort: 6000
|
||||
env:
|
||||
- name: CHROMA_HOST
|
||||
value: "0.0.0.0"
|
||||
- name: CHROMA_PORT
|
||||
value: "6000"
|
||||
- name: PERSIST_DIRECTORY
|
||||
value: "/chroma/chroma"
|
||||
- name: CHROMA_DB_IMPL
|
||||
value: "duckdb+parquet"
|
||||
resources:
|
||||
requests:
|
||||
memory: "512Mi"
|
||||
cpu: "250m"
|
||||
limits:
|
||||
memory: "2Gi"
|
||||
cpu: "1000m"
|
||||
volumeMounts:
|
||||
- name: chromadb-storage
|
||||
mountPath: /chroma/chroma
|
||||
volumes:
|
||||
- name: chromadb-storage
|
||||
persistentVolumeClaim:
|
||||
claimName: chromadb-pvc
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chromadb
|
||||
spec:
|
||||
selector:
|
||||
app: chromadb
|
||||
ports:
|
||||
- protocol: TCP
|
||||
port: 6000
|
||||
targetPort: 6000
|
||||
type: ClusterIP
|
||||
17
docs/source/distributions/k8s/ingress-k8s.yaml.template
Normal file
17
docs/source/distributions/k8s/ingress-k8s.yaml.template
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: llama-stack-service
|
||||
spec:
|
||||
type: LoadBalancer
|
||||
selector:
|
||||
app.kubernetes.io/name: llama-stack
|
||||
ports:
|
||||
- name: llama-stack-api
|
||||
port: 8321
|
||||
targetPort: 8321
|
||||
protocol: TCP
|
||||
- name: llama-stack-ui
|
||||
port: 8322
|
||||
targetPort: 8322
|
||||
protocol: TCP
|
||||
66
docs/source/distributions/k8s/postgres-k8s.yaml.template
Normal file
66
docs/source/distributions/k8s/postgres-k8s.yaml.template
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: postgres-pvc
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
resources:
|
||||
requests:
|
||||
storage: 10Gi
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: postgres
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: postgres
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: postgres
|
||||
spec:
|
||||
containers:
|
||||
- name: postgres
|
||||
image: postgres:15
|
||||
env:
|
||||
- name: POSTGRES_DB
|
||||
value: "${POSTGRES_DB}"
|
||||
- name: POSTGRES_USER
|
||||
value: "${POSTGRES_USER}"
|
||||
- name: POSTGRES_PASSWORD
|
||||
value: "${POSTGRES_PASSWORD}"
|
||||
- name: PGDATA
|
||||
value: "/var/lib/postgresql/data/pgdata"
|
||||
ports:
|
||||
- containerPort: 5432
|
||||
resources:
|
||||
requests:
|
||||
memory: "512Mi"
|
||||
cpu: "250m"
|
||||
limits:
|
||||
memory: "1Gi"
|
||||
cpu: "500m"
|
||||
volumeMounts:
|
||||
- name: postgres-storage
|
||||
mountPath: /var/lib/postgresql/data
|
||||
volumes:
|
||||
- name: postgres-storage
|
||||
persistentVolumeClaim:
|
||||
claimName: postgres-pvc
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: postgres-server
|
||||
spec:
|
||||
selector:
|
||||
app.kubernetes.io/name: postgres
|
||||
ports:
|
||||
- protocol: TCP
|
||||
port: 5432
|
||||
targetPort: 5432
|
||||
type: ClusterIP
|
||||
128
docs/source/distributions/k8s/stack-configmap.yaml
Normal file
128
docs/source/distributions/k8s/stack-configmap.yaml
Normal file
|
|
@ -0,0 +1,128 @@
|
|||
apiVersion: v1
|
||||
data:
|
||||
stack_run_config.yaml: |
|
||||
version: '2'
|
||||
image_name: kubernetes-demo
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- safety
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: vllm-inference
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:http://localhost:8000/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:true}
|
||||
- provider_id: vllm-safety
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_SAFETY_URL:http://localhost:8000/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:true}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
vector_io:
|
||||
- provider_id: ${env.ENABLE_CHROMADB+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:}
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: postgres
|
||||
host: ${env.POSTGRES_HOST:localhost}
|
||||
port: ${env.POSTGRES_PORT:5432}
|
||||
db: ${env.POSTGRES_DB:llamastack}
|
||||
user: ${env.POSTGRES_USER:llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:llamastack}
|
||||
responses_store:
|
||||
type: postgres
|
||||
host: ${env.POSTGRES_HOST:localhost}
|
||||
port: ${env.POSTGRES_PORT:5432}
|
||||
db: ${env.POSTGRES_DB:llamastack}
|
||||
user: ${env.POSTGRES_USER:llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:llamastack}
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: ${env.OTEL_SERVICE_NAME:}
|
||||
sinks: ${env.TELEMETRY_SINKS:console}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: postgres
|
||||
host: ${env.POSTGRES_HOST:localhost}
|
||||
port: ${env.POSTGRES_PORT:5432}
|
||||
db: ${env.POSTGRES_DB:llamastack}
|
||||
user: ${env.POSTGRES_USER:llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:llamastack}
|
||||
table_name: llamastack_kvstore
|
||||
inference_store:
|
||||
type: postgres
|
||||
host: ${env.POSTGRES_HOST:localhost}
|
||||
port: ${env.POSTGRES_PORT:5432}
|
||||
db: ${env.POSTGRES_DB:llamastack}
|
||||
user: ${env.POSTGRES_USER:llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:llamastack}
|
||||
models:
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: vllm-inference
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL:meta-llama/Llama-Guard-3-1B}
|
||||
provider_id: vllm-safety
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL:meta-llama/Llama-Guard-3-1B}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
creationTimestamp: null
|
||||
name: llama-stack-config
|
||||
69
docs/source/distributions/k8s/stack-k8s.yaml.template
Normal file
69
docs/source/distributions/k8s/stack-k8s.yaml.template
Normal file
|
|
@ -0,0 +1,69 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: llama-pvc
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
resources:
|
||||
requests:
|
||||
storage: 1Gi
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: llama-stack-server
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: llama-stack
|
||||
app.kubernetes.io/component: server
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: llama-stack
|
||||
app.kubernetes.io/component: server
|
||||
spec:
|
||||
containers:
|
||||
- name: llama-stack
|
||||
image: llamastack/distribution-remote-vllm:latest
|
||||
imagePullPolicy: Always # since we have specified latest instead of a version
|
||||
env:
|
||||
- name: ENABLE_CHROMADB
|
||||
value: "true"
|
||||
- name: CHROMADB_URL
|
||||
value: http://chromadb.default.svc.cluster.local:6000
|
||||
- name: VLLM_URL
|
||||
value: http://vllm-server.default.svc.cluster.local:8000/v1
|
||||
- name: VLLM_MAX_TOKENS
|
||||
value: "3072"
|
||||
- name: VLLM_SAFETY_URL
|
||||
value: http://vllm-server-safety.default.svc.cluster.local:8001/v1
|
||||
- name: POSTGRES_HOST
|
||||
value: postgres-server.default.svc.cluster.local
|
||||
- name: POSTGRES_PORT
|
||||
value: "5432"
|
||||
- name: VLLM_TLS_VERIFY
|
||||
value: "false"
|
||||
- name: INFERENCE_MODEL
|
||||
value: "${INFERENCE_MODEL}"
|
||||
- name: SAFETY_MODEL
|
||||
value: "${SAFETY_MODEL}"
|
||||
- name: TAVILY_SEARCH_API_KEY
|
||||
value: "${TAVILY_SEARCH_API_KEY}"
|
||||
command: ["python", "-m", "llama_stack.distribution.server.server", "--config", "/etc/config/stack_run_config.yaml", "--port", "8321"]
|
||||
ports:
|
||||
- containerPort: 8321
|
||||
volumeMounts:
|
||||
- name: llama-storage
|
||||
mountPath: /root/.llama
|
||||
- name: llama-config
|
||||
mountPath: /etc/config
|
||||
volumes:
|
||||
- name: llama-storage
|
||||
persistentVolumeClaim:
|
||||
claimName: llama-pvc
|
||||
- name: llama-config
|
||||
configMap:
|
||||
name: llama-stack-config
|
||||
121
docs/source/distributions/k8s/stack_run_config.yaml
Normal file
121
docs/source/distributions/k8s/stack_run_config.yaml
Normal file
|
|
@ -0,0 +1,121 @@
|
|||
version: '2'
|
||||
image_name: kubernetes-demo
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- safety
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: vllm-inference
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:http://localhost:8000/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:true}
|
||||
- provider_id: vllm-safety
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_SAFETY_URL:http://localhost:8000/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:true}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
vector_io:
|
||||
- provider_id: ${env.ENABLE_CHROMADB+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:}
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: postgres
|
||||
host: ${env.POSTGRES_HOST:localhost}
|
||||
port: ${env.POSTGRES_PORT:5432}
|
||||
db: ${env.POSTGRES_DB:llamastack}
|
||||
user: ${env.POSTGRES_USER:llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:llamastack}
|
||||
responses_store:
|
||||
type: postgres
|
||||
host: ${env.POSTGRES_HOST:localhost}
|
||||
port: ${env.POSTGRES_PORT:5432}
|
||||
db: ${env.POSTGRES_DB:llamastack}
|
||||
user: ${env.POSTGRES_USER:llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:llamastack}
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: ${env.OTEL_SERVICE_NAME:}
|
||||
sinks: ${env.TELEMETRY_SINKS:console}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: postgres
|
||||
host: ${env.POSTGRES_HOST:localhost}
|
||||
port: ${env.POSTGRES_PORT:5432}
|
||||
db: ${env.POSTGRES_DB:llamastack}
|
||||
user: ${env.POSTGRES_USER:llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:llamastack}
|
||||
table_name: llamastack_kvstore
|
||||
inference_store:
|
||||
type: postgres
|
||||
host: ${env.POSTGRES_HOST:localhost}
|
||||
port: ${env.POSTGRES_PORT:5432}
|
||||
db: ${env.POSTGRES_DB:llamastack}
|
||||
user: ${env.POSTGRES_USER:llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:llamastack}
|
||||
models:
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: vllm-inference
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL:meta-llama/Llama-Guard-3-1B}
|
||||
provider_id: vllm-safety
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL:meta-llama/Llama-Guard-3-1B}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
62
docs/source/distributions/k8s/ui-k8s.yaml.template
Normal file
62
docs/source/distributions/k8s/ui-k8s.yaml.template
Normal file
|
|
@ -0,0 +1,62 @@
|
|||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: llama-stack-ui
|
||||
labels:
|
||||
app.kubernetes.io/name: llama-stack
|
||||
app.kubernetes.io/component: ui
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: llama-stack
|
||||
app.kubernetes.io/component: ui
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: llama-stack
|
||||
app.kubernetes.io/component: ui
|
||||
spec:
|
||||
containers:
|
||||
- name: llama-stack-ui
|
||||
image: node:18-alpine
|
||||
command: ["/bin/sh"]
|
||||
env:
|
||||
- name: LLAMA_STACK_BACKEND_URL
|
||||
value: "http://llama-stack-service:8321"
|
||||
- name: LLAMA_STACK_UI_PORT
|
||||
value: "8322"
|
||||
args:
|
||||
- -c
|
||||
- |
|
||||
# Install git (not included in alpine by default)
|
||||
apk add --no-cache git
|
||||
|
||||
# Clone the repository
|
||||
echo "Cloning repository..."
|
||||
git clone https://github.com/meta-llama/llama-stack.git /app
|
||||
|
||||
# Navigate to the UI directory
|
||||
echo "Navigating to UI directory..."
|
||||
cd /app/llama_stack/ui
|
||||
|
||||
# Check if package.json exists
|
||||
if [ ! -f "package.json" ]; then
|
||||
echo "ERROR: package.json not found in $(pwd)"
|
||||
ls -la
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Install dependencies with verbose output
|
||||
echo "Installing dependencies..."
|
||||
npm install --verbose
|
||||
|
||||
# Verify next is installed
|
||||
echo "Checking if next is installed..."
|
||||
npx next --version || echo "Next.js not found, checking node_modules..."
|
||||
ls -la node_modules/.bin/ | grep next || echo "No next binary found"
|
||||
|
||||
npm run dev
|
||||
ports:
|
||||
- containerPort: 8322
|
||||
workingDir: /app
|
||||
71
docs/source/distributions/k8s/vllm-k8s.yaml.template
Normal file
71
docs/source/distributions/k8s/vllm-k8s.yaml.template
Normal file
|
|
@ -0,0 +1,71 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: vllm-models
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
volumeMode: Filesystem
|
||||
resources:
|
||||
requests:
|
||||
storage: 50Gi
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: vllm-server
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: vllm
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: vllm
|
||||
workload-type: inference
|
||||
spec:
|
||||
affinity:
|
||||
podAntiAffinity:
|
||||
requiredDuringSchedulingIgnoredDuringExecution:
|
||||
- labelSelector:
|
||||
matchExpressions:
|
||||
- key: workload-type
|
||||
operator: In
|
||||
values:
|
||||
- inference
|
||||
topologyKey: kubernetes.io/hostname # Ensures no two inference pods on same node
|
||||
containers:
|
||||
- name: vllm
|
||||
image: vllm/vllm-openai:latest
|
||||
command: ["/bin/sh", "-c"]
|
||||
args:
|
||||
- "vllm serve ${INFERENCE_MODEL} --dtype float16 --enforce-eager --max-model-len 4096 --gpu-memory-utilization 0.6"
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
ports:
|
||||
- containerPort: 8000
|
||||
volumeMounts:
|
||||
- name: llama-storage
|
||||
mountPath: /root/.cache/huggingface
|
||||
volumes:
|
||||
- name: llama-storage
|
||||
persistentVolumeClaim:
|
||||
claimName: vllm-models
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: vllm-server
|
||||
spec:
|
||||
selector:
|
||||
app.kubernetes.io/name: vllm
|
||||
ports:
|
||||
- protocol: TCP
|
||||
port: 8000
|
||||
targetPort: 8000
|
||||
type: ClusterIP
|
||||
73
docs/source/distributions/k8s/vllm-safety-k8s.yaml.template
Normal file
73
docs/source/distributions/k8s/vllm-safety-k8s.yaml.template
Normal file
|
|
@ -0,0 +1,73 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: vllm-models-safety
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
volumeMode: Filesystem
|
||||
storageClassName: gp2
|
||||
resources:
|
||||
requests:
|
||||
storage: 30Gi
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: vllm-server-safety
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: vllm-safety
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: vllm-safety
|
||||
workload-type: inference
|
||||
spec:
|
||||
affinity:
|
||||
podAntiAffinity:
|
||||
requiredDuringSchedulingIgnoredDuringExecution:
|
||||
- labelSelector:
|
||||
matchExpressions:
|
||||
- key: workload-type
|
||||
operator: In
|
||||
values:
|
||||
- inference
|
||||
topologyKey: kubernetes.io/hostname # Ensures no two inference pods on same node
|
||||
containers:
|
||||
- name: vllm-safety
|
||||
image: vllm/vllm-openai:latest
|
||||
command: ["/bin/sh", "-c"]
|
||||
args: [
|
||||
"vllm serve ${SAFETY_MODEL} --dtype float16 --enforce-eager --max-model-len 4096 --port 8001 --gpu-memory-utilization 0.3"
|
||||
]
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
ports:
|
||||
- containerPort: 8001
|
||||
volumeMounts:
|
||||
- name: llama-storage
|
||||
mountPath: /root/.cache/huggingface
|
||||
volumes:
|
||||
- name: llama-storage
|
||||
persistentVolumeClaim:
|
||||
claimName: vllm-models-safety
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: vllm-server-safety
|
||||
spec:
|
||||
selector:
|
||||
app.kubernetes.io/name: vllm-safety
|
||||
ports:
|
||||
- protocol: TCP
|
||||
port: 8001
|
||||
targetPort: 8001
|
||||
type: ClusterIP
|
||||
|
|
@ -172,7 +172,7 @@ spec:
|
|||
- name: llama-stack
|
||||
image: localhost/llama-stack-run-k8s:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
command: ["python", "-m", "llama_stack.distribution.server.server", "--yaml-config", "/app/config.yaml"]
|
||||
command: ["python", "-m", "llama_stack.distribution.server.server", "--config", "/app/config.yaml"]
|
||||
ports:
|
||||
- containerPort: 5000
|
||||
volumeMounts:
|
||||
|
|
|
|||
88
docs/source/distributions/remote_hosted_distro/watsonx.md
Normal file
88
docs/source/distributions/remote_hosted_distro/watsonx.md
Normal file
|
|
@ -0,0 +1,88 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# watsonx Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-watsonx` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::watsonx`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss` |
|
||||
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `WATSONX_API_KEY`: watsonx API Key (default: ``)
|
||||
- `WATSONX_PROJECT_ID`: watsonx Project ID (default: ``)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/llama-3-3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `meta-llama/llama-2-13b-chat (aliases: meta-llama/Llama-2-13b)`
|
||||
- `meta-llama/llama-3-1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
||||
- `meta-llama/llama-3-1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `meta-llama/llama-3-2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `meta-llama/llama-3-2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
|
||||
- `meta-llama/llama-3-2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `meta-llama/llama-3-2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `meta-llama/llama-guard-3-11b-vision (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a watsonx API Key. You can get one by referring [watsonx.ai](https://www.ibm.com/docs/en/masv-and-l/maximo-manage/continuous-delivery?topic=setup-create-watsonx-api-key).
|
||||
|
||||
|
||||
## Running Llama Stack with watsonx
|
||||
|
||||
You can do this via Conda (build code), venv or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-watsonx \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env WATSONX_API_KEY=$WATSONX_API_KEY \
|
||||
--env WATSONX_PROJECT_ID=$WATSONX_PROJECT_ID \
|
||||
--env WATSONX_BASE_URL=$WATSONX_BASE_URL
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template watsonx --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env WATSONX_API_KEY=$WATSONX_API_KEY \
|
||||
--env WATSONX_PROJECT_ID=$WATSONX_PROJECT_ID
|
||||
```
|
||||
|
|
@ -19,7 +19,7 @@ The `llamastack/distribution-bedrock` distribution consists of the following pro
|
|||
| safety | `remote::bedrock` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ The `llamastack/distribution-cerebras` distribution consists of the following pr
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -52,7 +52,7 @@ docker run \
|
|||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-cerebras \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
|
||||
```
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@ The `llamastack/distribution-dell` distribution consists of the following provid
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -155,7 +155,7 @@ docker run \
|
|||
-v $HOME/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-dell \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
|
|
|
|||
|
|
@ -18,11 +18,12 @@ The `llamastack/distribution-fireworks` distribution consists of the following p
|
|||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| files | `inline::localfs` |
|
||||
| inference | `remote::fireworks`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ The `llamastack/distribution-groq` distribution consists of the following provid
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss` |
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -81,6 +81,7 @@ LLAMA_STACK_PORT=8321
|
|||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
--gpu all \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
|
|
@ -94,6 +95,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
--gpu all \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
|
|
|
|||
|
|
@ -1,123 +0,0 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# Meta Reference Quantized Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-meta-reference-quantized-gpu` distribution consists of the following provider configurations:
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `inline::meta-reference-quantized` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
The only difference vs. the `meta-reference-gpu` distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc.
|
||||
|
||||
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the Meta Reference server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `INFERENCE_CHECKPOINT_DIR`: Directory containing the Meta Reference model checkpoint (default: `null`)
|
||||
|
||||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ llama model list --downloaded
|
||||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Model ┃ Size ┃ Modified Time ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
|
||||
└─────────────────────────────────────────┴──────────┴─────────────────────┘
|
||||
```
|
||||
|
||||
## Running the Distribution
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-meta-reference-quantized-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-meta-reference-quantized-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-quantized-gpu --image-type conda
|
||||
llama stack run distributions/meta-reference-quantized-gpu/run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run distributions/meta-reference-quantized-gpu/run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
|
@ -6,8 +6,8 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| datasetio | `inline::localfs`, `remote::nvidia` |
|
||||
| eval | `remote::nvidia` |
|
||||
| inference | `remote::nvidia` |
|
||||
| post_training | `remote::nvidia` |
|
||||
| safety | `remote::nvidia` |
|
||||
|
|
@ -22,13 +22,13 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
The following environment variables can be configured:
|
||||
|
||||
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
|
||||
- `NVIDIA_USER_ID`: NVIDIA User ID (default: `llama-stack-user`)
|
||||
- `NVIDIA_APPEND_API_VERSION`: Whether to append the API version to the base_url (default: `True`)
|
||||
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`)
|
||||
- `NVIDIA_ACCESS_POLICIES`: NVIDIA Access Policies (default: `{}`)
|
||||
- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`)
|
||||
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`)
|
||||
- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`)
|
||||
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
|
||||
- `NVIDIA_EVALUATOR_URL`: URL for the NeMo Evaluator Service (default: `http://0.0.0.0:7331`)
|
||||
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
|
||||
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
|
||||
|
||||
|
|
@ -143,7 +143,7 @@ docker run \
|
|||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-nvidia \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
||||
```
|
||||
|
|
|
|||
|
|
@ -19,10 +19,11 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
|
|||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::ollama` |
|
||||
| post_training | `inline::huggingface` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -97,7 +98,7 @@ docker run \
|
|||
-v ~/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-ollama \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ The `llamastack/distribution-passthrough` distribution consists of the following
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -233,7 +233,7 @@ docker run \
|
|||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./llama_stack/templates/remote-vllm/run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-remote-vllm \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1
|
||||
|
|
@ -255,7 +255,7 @@ docker run \
|
|||
-v ~/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/remote-vllm/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-remote-vllm \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1 \
|
||||
|
|
|
|||
|
|
@ -16,10 +16,10 @@ The `llamastack/distribution-sambanova` distribution consists of the following p
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::sambanova` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| inference | `remote::sambanova`, `inline::sentence-transformers` |
|
||||
| safety | `remote::sambanova` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -28,53 +28,64 @@ The `llamastack/distribution-sambanova` distribution consists of the following p
|
|||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `SAMBANOVA_API_KEY`: SambaNova.AI API Key (default: ``)
|
||||
- `SAMBANOVA_API_KEY`: SambaNova API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `Meta-Llama-3.1-8B-Instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `Meta-Llama-3.1-70B-Instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
||||
- `Meta-Llama-3.1-405B-Instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
||||
- `Meta-Llama-3.2-1B-Instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
|
||||
- `Meta-Llama-3.2-3B-Instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `Meta-Llama-3.3-70B-Instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
|
||||
- `Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
|
||||
- `sambanova/Meta-Llama-3.1-8B-Instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `sambanova/Meta-Llama-3.1-405B-Instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
||||
- `sambanova/Meta-Llama-3.2-1B-Instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
|
||||
- `sambanova/Meta-Llama-3.2-3B-Instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `sambanova/Meta-Llama-3.3-70B-Instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `sambanova/Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `sambanova/Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `sambanova/Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
|
||||
- `sambanova/Llama-4-Maverick-17B-128E-Instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
|
||||
- `sambanova/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](https://sambanova.ai/).
|
||||
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](http://cloud.sambanova.ai?utm_source=llamastack&utm_medium=external&utm_campaign=cloud_signup).
|
||||
|
||||
|
||||
## Running Llama Stack with SambaNova
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
### Via Docker
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=8321
|
||||
llama stack build --template sambanova --image-type container
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-sambanova \
|
||||
-v ~/.llama:/root/.llama \
|
||||
distribution-sambanova \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
|
||||
```
|
||||
|
||||
|
||||
### Via Venv
|
||||
|
||||
```bash
|
||||
llama stack build --template sambanova --image-type venv
|
||||
llama stack run --image-type venv ~/.llama/distributions/sambanova/sambanova-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
|
||||
```
|
||||
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template sambanova --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
llama stack run --image-type conda ~/.llama/distributions/sambanova/sambanova-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
|
||||
```
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@ The `llamastack/distribution-tgi` distribution consists of the following provide
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -117,7 +117,7 @@ docker run \
|
|||
-v ~/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-tgi \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ The `llamastack/distribution-together` distribution consists of the following pr
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -42,7 +42,7 @@ powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | ie
|
|||
Setup your virtual environment.
|
||||
|
||||
```bash
|
||||
uv venv --python 3.10
|
||||
uv sync --python 3.10
|
||||
source .venv/bin/activate
|
||||
```
|
||||
## Step 2: Run Llama Stack
|
||||
|
|
@ -445,7 +445,6 @@ from llama_stack_client import LlamaStackClient
|
|||
from llama_stack_client import Agent, AgentEventLogger
|
||||
from llama_stack_client.types import Document
|
||||
import uuid
|
||||
from termcolor import cprint
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:8321")
|
||||
|
||||
|
|
@ -463,7 +462,6 @@ urls = [
|
|||
"memory_optimizations.rst",
|
||||
"chat.rst",
|
||||
"llama3.rst",
|
||||
"datasets.rst",
|
||||
"qat_finetune.rst",
|
||||
"lora_finetune.rst",
|
||||
]
|
||||
|
|
|
|||
|
|
@ -82,7 +82,7 @@ for log in AgentEventLogger().log(response):
|
|||
```
|
||||
We will use `uv` to run the script
|
||||
```
|
||||
uv run --with llama-stack-client demo_script.py
|
||||
uv run --with llama-stack-client,fire,requests demo_script.py
|
||||
```
|
||||
And you should see output like below.
|
||||
```
|
||||
|
|
|
|||
|
|
@ -103,6 +103,7 @@ getting_started/index
|
|||
getting_started/detailed_tutorial
|
||||
introduction/index
|
||||
concepts/index
|
||||
openai/index
|
||||
providers/index
|
||||
distributions/index
|
||||
building_applications/index
|
||||
|
|
|
|||
193
docs/source/openai/index.md
Normal file
193
docs/source/openai/index.md
Normal file
|
|
@ -0,0 +1,193 @@
|
|||
# OpenAI API Compatibility
|
||||
|
||||
## Server path
|
||||
|
||||
Llama Stack exposes an OpenAI-compatible API endpoint at `/v1/openai/v1`. So, for a Llama Stack server running locally on port `8321`, the full url to the OpenAI-compatible API endpoint is `http://localhost:8321/v1/openai/v1`.
|
||||
|
||||
## Clients
|
||||
|
||||
You should be able to use any client that speaks OpenAI APIs with Llama Stack. We regularly test with the official Llama Stack clients as well as OpenAI's official Python client.
|
||||
|
||||
### Llama Stack Client
|
||||
|
||||
When using the Llama Stack client, set the `base_url` to the root of your Llama Stack server. It will automatically route OpenAI-compatible requests to the right server endpoint for you.
|
||||
|
||||
```python
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient(base_url="http://localhost:8321")
|
||||
```
|
||||
|
||||
### OpenAI Client
|
||||
|
||||
When using an OpenAI client, set the `base_url` to the `/v1/openai/v1` path on your Llama Stack server.
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(base_url="http://localhost:8321/v1/openai/v1", api_key="none")
|
||||
```
|
||||
|
||||
Regardless of the client you choose, the following code examples should all work the same.
|
||||
|
||||
## APIs implemented
|
||||
|
||||
### Models
|
||||
|
||||
Many of the APIs require you to pass in a model parameter. To see the list of models available in your Llama Stack server:
|
||||
|
||||
```python
|
||||
models = client.models.list()
|
||||
```
|
||||
|
||||
### Responses
|
||||
|
||||
:::{note}
|
||||
The Responses API implementation is still in active development. While it is quite usable, there are still unimplemented parts of the API. We'd love feedback on any use-cases you try that do not work to help prioritize the pieces left to implement. Please open issues in the [meta-llama/llama-stack](https://github.com/meta-llama/llama-stack) GitHub repository with details of anything that does not work.
|
||||
:::
|
||||
|
||||
#### Simple inference
|
||||
|
||||
Request:
|
||||
|
||||
```
|
||||
response = client.responses.create(
|
||||
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||
input="Write a haiku about coding."
|
||||
)
|
||||
|
||||
print(response.output_text)
|
||||
```
|
||||
Example output:
|
||||
|
||||
```text
|
||||
Pixels dancing slow
|
||||
Syntax whispers secrets sweet
|
||||
Code's gentle silence
|
||||
```
|
||||
|
||||
#### Structured Output
|
||||
|
||||
Request:
|
||||
|
||||
```python
|
||||
response = client.responses.create(
|
||||
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||
input=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Extract the participants from the event information.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Alice and Bob are going to a science fair on Friday.",
|
||||
},
|
||||
],
|
||||
text={
|
||||
"format": {
|
||||
"type": "json_schema",
|
||||
"name": "participants",
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"participants": {"type": "array", "items": {"type": "string"}}
|
||||
},
|
||||
"required": ["participants"],
|
||||
},
|
||||
}
|
||||
},
|
||||
)
|
||||
print(response.output_text)
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```text
|
||||
{ "participants": ["Alice", "Bob"] }
|
||||
```
|
||||
|
||||
### Chat Completions
|
||||
|
||||
#### Simple inference
|
||||
|
||||
Request:
|
||||
|
||||
```python
|
||||
chat_completion = client.chat.completions.create(
|
||||
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||
messages=[{"role": "user", "content": "Write a haiku about coding."}],
|
||||
)
|
||||
|
||||
print(chat_completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```text
|
||||
Lines of code unfold
|
||||
Logic flows like a river
|
||||
Code's gentle beauty
|
||||
```
|
||||
|
||||
#### Structured Output
|
||||
|
||||
Request:
|
||||
|
||||
```python
|
||||
chat_completion = client.chat.completions.create(
|
||||
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Extract the participants from the event information.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Alice and Bob are going to a science fair on Friday.",
|
||||
},
|
||||
],
|
||||
response_format={
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "participants",
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"participants": {"type": "array", "items": {"type": "string"}}
|
||||
},
|
||||
"required": ["participants"],
|
||||
},
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
print(chat_completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```text
|
||||
{ "participants": ["Alice", "Bob"] }
|
||||
```
|
||||
|
||||
### Completions
|
||||
|
||||
#### Simple inference
|
||||
|
||||
Request:
|
||||
|
||||
```python
|
||||
completion = client.completions.create(
|
||||
model="meta-llama/Llama-3.2-3B-Instruct", prompt="Write a haiku about coding."
|
||||
)
|
||||
|
||||
print(completion.choices[0].text)
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
```text
|
||||
Lines of code unfurl
|
||||
Logic whispers in the dark
|
||||
Art in hidden form
|
||||
```
|
||||
|
|
@ -10,7 +10,7 @@ Llama Stack supports external providers that live outside of the main codebase.
|
|||
To enable external providers, you need to configure the `external_providers_dir` in your Llama Stack configuration. This directory should contain your external provider specifications:
|
||||
|
||||
```yaml
|
||||
external_providers_dir: /etc/llama-stack/providers.d/
|
||||
external_providers_dir: ~/.llama/providers.d/
|
||||
```
|
||||
|
||||
## Directory Structure
|
||||
|
|
@ -53,7 +53,9 @@ Here's a list of known external providers that you can use with Llama Stack:
|
|||
| Name | Description | API | Type | Repository |
|
||||
|------|-------------|-----|------|------------|
|
||||
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
|
||||
| RamaLama | Inference models with RamaLama | Inference | Remote | [llama-stack-provider-ramalama](https://github.com/containers/llama-stack-provider-ramalama) |
|
||||
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Inline **and** Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
|
||||
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
|
||||
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
|
||||
|
||||
### Remote Provider Specification
|
||||
|
||||
|
|
@ -180,7 +182,7 @@ dependencies = ["llama-stack", "pydantic", "ollama", "aiohttp"]
|
|||
3. Create the provider specification:
|
||||
|
||||
```yaml
|
||||
# /etc/llama-stack/providers.d/remote/inference/custom_ollama.yaml
|
||||
# ~/.llama/providers.d/remote/inference/custom_ollama.yaml
|
||||
adapter:
|
||||
adapter_type: custom_ollama
|
||||
pip_packages: ["ollama", "aiohttp"]
|
||||
|
|
@ -199,7 +201,7 @@ uv pip install -e .
|
|||
5. Configure Llama Stack to use external providers:
|
||||
|
||||
```yaml
|
||||
external_providers_dir: /etc/llama-stack/providers.d/
|
||||
external_providers_dir: ~/.llama/providers.d/
|
||||
```
|
||||
|
||||
The provider will now be available in Llama Stack with the type `remote::custom_ollama`.
|
||||
|
|
|
|||
|
|
@ -30,6 +30,18 @@ Runs inference with an LLM.
|
|||
## Post Training
|
||||
Fine-tunes a model.
|
||||
|
||||
#### Post Training Providers
|
||||
The following providers are available for Post Training:
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
external
|
||||
post_training/huggingface
|
||||
post_training/torchtune
|
||||
post_training/nvidia_nemo
|
||||
```
|
||||
|
||||
## Safety
|
||||
Applies safety policies to the output at a Systems (not only model) level.
|
||||
|
||||
|
|
|
|||
122
docs/source/providers/post_training/huggingface.md
Normal file
122
docs/source/providers/post_training/huggingface.md
Normal file
|
|
@ -0,0 +1,122 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# HuggingFace SFTTrainer
|
||||
|
||||
[HuggingFace SFTTrainer](https://huggingface.co/docs/trl/en/sft_trainer) is an inline post training provider for Llama Stack. It allows you to run supervised fine tuning on a variety of models using many datasets
|
||||
|
||||
## Features
|
||||
|
||||
- Simple access through the post_training API
|
||||
- Fully integrated with Llama Stack
|
||||
- GPU support, CPU support, and MPS support (MacOS Metal Performance Shaders)
|
||||
|
||||
## Usage
|
||||
|
||||
To use the HF SFTTrainer in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Configure your Llama Stack project to use this provider.
|
||||
2. Kick off a SFT job using the Llama Stack post_training API.
|
||||
|
||||
## Setup
|
||||
|
||||
You can access the HuggingFace trainer via the `ollama` distribution:
|
||||
|
||||
```bash
|
||||
llama stack build --template ollama --image-type venv
|
||||
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
|
||||
```
|
||||
|
||||
## Run Training
|
||||
|
||||
You can access the provider and the `supervised_fine_tune` method via the post_training API:
|
||||
|
||||
```python
|
||||
import time
|
||||
import uuid
|
||||
|
||||
|
||||
from llama_stack_client.types import (
|
||||
post_training_supervised_fine_tune_params,
|
||||
algorithm_config_param,
|
||||
)
|
||||
|
||||
|
||||
def create_http_client():
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
return LlamaStackClient(base_url="http://localhost:8321")
|
||||
|
||||
|
||||
client = create_http_client()
|
||||
|
||||
# Example Dataset
|
||||
client.datasets.register(
|
||||
purpose="post-training/messages",
|
||||
source={
|
||||
"type": "uri",
|
||||
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
|
||||
},
|
||||
dataset_id="simpleqa",
|
||||
)
|
||||
|
||||
training_config = post_training_supervised_fine_tune_params.TrainingConfig(
|
||||
data_config=post_training_supervised_fine_tune_params.TrainingConfigDataConfig(
|
||||
batch_size=32,
|
||||
data_format="instruct",
|
||||
dataset_id="simpleqa",
|
||||
shuffle=True,
|
||||
),
|
||||
gradient_accumulation_steps=1,
|
||||
max_steps_per_epoch=0,
|
||||
max_validation_steps=1,
|
||||
n_epochs=4,
|
||||
)
|
||||
|
||||
algorithm_config = algorithm_config_param.LoraFinetuningConfig( # this config is also currently mandatory but should not be
|
||||
alpha=1,
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=False,
|
||||
lora_attn_modules=["q_proj"],
|
||||
rank=1,
|
||||
type="LoRA",
|
||||
)
|
||||
|
||||
job_uuid = f"test-job{uuid.uuid4()}"
|
||||
|
||||
# Example Model
|
||||
training_model = "ibm-granite/granite-3.3-8b-instruct"
|
||||
|
||||
start_time = time.time()
|
||||
response = client.post_training.supervised_fine_tune(
|
||||
job_uuid=job_uuid,
|
||||
logger_config={},
|
||||
model=training_model,
|
||||
hyperparam_search_config={},
|
||||
training_config=training_config,
|
||||
algorithm_config=algorithm_config,
|
||||
checkpoint_dir="output",
|
||||
)
|
||||
print("Job: ", job_uuid)
|
||||
|
||||
|
||||
# Wait for the job to complete!
|
||||
while True:
|
||||
status = client.post_training.job.status(job_uuid=job_uuid)
|
||||
if not status:
|
||||
print("Job not found")
|
||||
break
|
||||
|
||||
print(status)
|
||||
if status.status == "completed":
|
||||
break
|
||||
|
||||
print("Waiting for job to complete...")
|
||||
time.sleep(5)
|
||||
|
||||
end_time = time.time()
|
||||
print("Job completed in", end_time - start_time, "seconds!")
|
||||
|
||||
print("Artifacts:")
|
||||
print(client.post_training.job.artifacts(job_uuid=job_uuid))
|
||||
```
|
||||
163
docs/source/providers/post_training/nvidia_nemo.md
Normal file
163
docs/source/providers/post_training/nvidia_nemo.md
Normal file
|
|
@ -0,0 +1,163 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# NVIDIA NEMO
|
||||
|
||||
[NVIDIA NEMO](https://developer.nvidia.com/nemo-framework) is a remote post training provider for Llama Stack. It provides enterprise-grade fine-tuning capabilities through NVIDIA's NeMo Customizer service.
|
||||
|
||||
## Features
|
||||
|
||||
- Enterprise-grade fine-tuning capabilities
|
||||
- Support for LoRA and SFT fine-tuning
|
||||
- Integration with NVIDIA's NeMo Customizer service
|
||||
- Support for various NVIDIA-optimized models
|
||||
- Efficient training with NVIDIA hardware acceleration
|
||||
|
||||
## Usage
|
||||
|
||||
To use NVIDIA NEMO in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Configure your Llama Stack project to use this provider.
|
||||
2. Set up your NVIDIA API credentials.
|
||||
3. Kick off a fine-tuning job using the Llama Stack post_training API.
|
||||
|
||||
## Setup
|
||||
|
||||
You'll need to set the following environment variables:
|
||||
|
||||
```bash
|
||||
export NVIDIA_API_KEY="your-api-key"
|
||||
export NVIDIA_DATASET_NAMESPACE="default"
|
||||
export NVIDIA_CUSTOMIZER_URL="your-customizer-url"
|
||||
export NVIDIA_PROJECT_ID="your-project-id"
|
||||
export NVIDIA_OUTPUT_MODEL_DIR="your-output-model-dir"
|
||||
```
|
||||
|
||||
## Run Training
|
||||
|
||||
You can access the provider and the `supervised_fine_tune` method via the post_training API:
|
||||
|
||||
```python
|
||||
import time
|
||||
import uuid
|
||||
|
||||
from llama_stack_client.types import (
|
||||
post_training_supervised_fine_tune_params,
|
||||
algorithm_config_param,
|
||||
)
|
||||
|
||||
|
||||
def create_http_client():
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
return LlamaStackClient(base_url="http://localhost:8321")
|
||||
|
||||
|
||||
client = create_http_client()
|
||||
|
||||
# Example Dataset
|
||||
client.datasets.register(
|
||||
purpose="post-training/messages",
|
||||
source={
|
||||
"type": "uri",
|
||||
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
|
||||
},
|
||||
dataset_id="simpleqa",
|
||||
)
|
||||
|
||||
training_config = post_training_supervised_fine_tune_params.TrainingConfig(
|
||||
data_config=post_training_supervised_fine_tune_params.TrainingConfigDataConfig(
|
||||
batch_size=8, # Default batch size for NEMO
|
||||
data_format="instruct",
|
||||
dataset_id="simpleqa",
|
||||
shuffle=True,
|
||||
),
|
||||
n_epochs=50, # Default epochs for NEMO
|
||||
optimizer_config=post_training_supervised_fine_tune_params.TrainingConfigOptimizerConfig(
|
||||
lr=0.0001, # Default learning rate
|
||||
weight_decay=0.01, # NEMO-specific parameter
|
||||
),
|
||||
# NEMO-specific parameters
|
||||
log_every_n_steps=None,
|
||||
val_check_interval=0.25,
|
||||
sequence_packing_enabled=False,
|
||||
hidden_dropout=None,
|
||||
attention_dropout=None,
|
||||
ffn_dropout=None,
|
||||
)
|
||||
|
||||
algorithm_config = algorithm_config_param.LoraFinetuningConfig(
|
||||
alpha=16, # Default alpha for NEMO
|
||||
type="LoRA",
|
||||
)
|
||||
|
||||
job_uuid = f"test-job{uuid.uuid4()}"
|
||||
|
||||
# Example Model - must be a supported NEMO model
|
||||
training_model = "meta/llama-3.1-8b-instruct"
|
||||
|
||||
start_time = time.time()
|
||||
response = client.post_training.supervised_fine_tune(
|
||||
job_uuid=job_uuid,
|
||||
logger_config={},
|
||||
model=training_model,
|
||||
hyperparam_search_config={},
|
||||
training_config=training_config,
|
||||
algorithm_config=algorithm_config,
|
||||
checkpoint_dir="output",
|
||||
)
|
||||
print("Job: ", job_uuid)
|
||||
|
||||
# Wait for the job to complete!
|
||||
while True:
|
||||
status = client.post_training.job.status(job_uuid=job_uuid)
|
||||
if not status:
|
||||
print("Job not found")
|
||||
break
|
||||
|
||||
print(status)
|
||||
if status.status == "completed":
|
||||
break
|
||||
|
||||
print("Waiting for job to complete...")
|
||||
time.sleep(5)
|
||||
|
||||
end_time = time.time()
|
||||
print("Job completed in", end_time - start_time, "seconds!")
|
||||
|
||||
print("Artifacts:")
|
||||
print(client.post_training.job.artifacts(job_uuid=job_uuid))
|
||||
```
|
||||
|
||||
## Supported Models
|
||||
|
||||
Currently supports the following models:
|
||||
- meta/llama-3.1-8b-instruct
|
||||
- meta/llama-3.2-1b-instruct
|
||||
|
||||
## Supported Parameters
|
||||
|
||||
### TrainingConfig
|
||||
- n_epochs (default: 50)
|
||||
- data_config
|
||||
- optimizer_config
|
||||
- log_every_n_steps
|
||||
- val_check_interval (default: 0.25)
|
||||
- sequence_packing_enabled (default: False)
|
||||
- hidden_dropout (0.0-1.0)
|
||||
- attention_dropout (0.0-1.0)
|
||||
- ffn_dropout (0.0-1.0)
|
||||
|
||||
### DataConfig
|
||||
- dataset_id
|
||||
- batch_size (default: 8)
|
||||
|
||||
### OptimizerConfig
|
||||
- lr (default: 0.0001)
|
||||
- weight_decay (default: 0.01)
|
||||
|
||||
### LoRA Config
|
||||
- alpha (default: 16)
|
||||
- type (must be "LoRA")
|
||||
|
||||
Note: Some parameters from the standard Llama Stack API are not supported and will be ignored with a warning.
|
||||
125
docs/source/providers/post_training/torchtune.md
Normal file
125
docs/source/providers/post_training/torchtune.md
Normal file
|
|
@ -0,0 +1,125 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# TorchTune
|
||||
|
||||
[TorchTune](https://github.com/pytorch/torchtune) is an inline post training provider for Llama Stack. It provides a simple and efficient way to fine-tune language models using PyTorch.
|
||||
|
||||
## Features
|
||||
|
||||
- Simple access through the post_training API
|
||||
- Fully integrated with Llama Stack
|
||||
- GPU support and single device capabilities.
|
||||
- Support for LoRA
|
||||
|
||||
## Usage
|
||||
|
||||
To use TorchTune in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Configure your Llama Stack project to use this provider.
|
||||
2. Kick off a fine-tuning job using the Llama Stack post_training API.
|
||||
|
||||
## Setup
|
||||
|
||||
You can access the TorchTune trainer by writing your own yaml pointing to the provider:
|
||||
|
||||
```yaml
|
||||
post_training:
|
||||
- provider_id: torchtune
|
||||
provider_type: inline::torchtune
|
||||
config: {}
|
||||
```
|
||||
|
||||
you can then build and run your own stack with this provider.
|
||||
|
||||
## Run Training
|
||||
|
||||
You can access the provider and the `supervised_fine_tune` method via the post_training API:
|
||||
|
||||
```python
|
||||
import time
|
||||
import uuid
|
||||
|
||||
from llama_stack_client.types import (
|
||||
post_training_supervised_fine_tune_params,
|
||||
algorithm_config_param,
|
||||
)
|
||||
|
||||
|
||||
def create_http_client():
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
return LlamaStackClient(base_url="http://localhost:8321")
|
||||
|
||||
|
||||
client = create_http_client()
|
||||
|
||||
# Example Dataset
|
||||
client.datasets.register(
|
||||
purpose="post-training/messages",
|
||||
source={
|
||||
"type": "uri",
|
||||
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
|
||||
},
|
||||
dataset_id="simpleqa",
|
||||
)
|
||||
|
||||
training_config = post_training_supervised_fine_tune_params.TrainingConfig(
|
||||
data_config=post_training_supervised_fine_tune_params.TrainingConfigDataConfig(
|
||||
batch_size=32,
|
||||
data_format="instruct",
|
||||
dataset_id="simpleqa",
|
||||
shuffle=True,
|
||||
),
|
||||
gradient_accumulation_steps=1,
|
||||
max_steps_per_epoch=0,
|
||||
max_validation_steps=1,
|
||||
n_epochs=4,
|
||||
)
|
||||
|
||||
algorithm_config = algorithm_config_param.LoraFinetuningConfig(
|
||||
alpha=1,
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=False,
|
||||
lora_attn_modules=["q_proj"],
|
||||
rank=1,
|
||||
type="LoRA",
|
||||
)
|
||||
|
||||
job_uuid = f"test-job{uuid.uuid4()}"
|
||||
|
||||
# Example Model
|
||||
training_model = "meta-llama/Llama-2-7b-hf"
|
||||
|
||||
start_time = time.time()
|
||||
response = client.post_training.supervised_fine_tune(
|
||||
job_uuid=job_uuid,
|
||||
logger_config={},
|
||||
model=training_model,
|
||||
hyperparam_search_config={},
|
||||
training_config=training_config,
|
||||
algorithm_config=algorithm_config,
|
||||
checkpoint_dir="output",
|
||||
)
|
||||
print("Job: ", job_uuid)
|
||||
|
||||
# Wait for the job to complete!
|
||||
while True:
|
||||
status = client.post_training.job.status(job_uuid=job_uuid)
|
||||
if not status:
|
||||
print("Job not found")
|
||||
break
|
||||
|
||||
print(status)
|
||||
if status.status == "completed":
|
||||
break
|
||||
|
||||
print("Waiting for job to complete...")
|
||||
time.sleep(5)
|
||||
|
||||
end_time = time.time()
|
||||
print("Job completed in", end_time - start_time, "seconds!")
|
||||
|
||||
print("Artifacts:")
|
||||
print(client.post_training.job.artifacts(job_uuid=job_uuid))
|
||||
```
|
||||
107
docs/source/providers/vector_io/milvus.md
Normal file
107
docs/source/providers/vector_io/milvus.md
Normal file
|
|
@ -0,0 +1,107 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Milvus
|
||||
|
||||
[Milvus](https://milvus.io/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly within a Milvus database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
||||
## Features
|
||||
|
||||
- Easy to use
|
||||
- Fully integrated with Llama Stack
|
||||
|
||||
## Usage
|
||||
|
||||
To use Milvus in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use Milvus.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
||||
You can install Milvus using pymilvus:
|
||||
|
||||
```bash
|
||||
pip install pymilvus
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
In Llama Stack, Milvus can be configured in two ways:
|
||||
- **Inline (Local) Configuration** - Uses Milvus-Lite for local storage
|
||||
- **Remote Configuration** - Connects to a remote Milvus server
|
||||
|
||||
### Inline (Local) Configuration
|
||||
|
||||
The simplest method is local configuration, which requires setting `db_path`, a path for locally storing Milvus-Lite files:
|
||||
|
||||
```yaml
|
||||
vector_io:
|
||||
- provider_id: milvus
|
||||
provider_type: inline::milvus
|
||||
config:
|
||||
db_path: ~/.llama/distributions/together/milvus_store.db
|
||||
```
|
||||
|
||||
### Remote Configuration
|
||||
|
||||
Remote configuration is suitable for larger data storage requirements:
|
||||
|
||||
#### Standard Remote Connection
|
||||
|
||||
```yaml
|
||||
vector_io:
|
||||
- provider_id: milvus
|
||||
provider_type: remote::milvus
|
||||
config:
|
||||
uri: "http://<host>:<port>"
|
||||
token: "<user>:<password>"
|
||||
```
|
||||
|
||||
#### TLS-Enabled Remote Connection (One-way TLS)
|
||||
|
||||
For connections to Milvus instances with one-way TLS enabled:
|
||||
|
||||
```yaml
|
||||
vector_io:
|
||||
- provider_id: milvus
|
||||
provider_type: remote::milvus
|
||||
config:
|
||||
uri: "https://<host>:<port>"
|
||||
token: "<user>:<password>"
|
||||
secure: True
|
||||
server_pem_path: "/path/to/server.pem"
|
||||
```
|
||||
|
||||
#### Mutual TLS (mTLS) Remote Connection
|
||||
|
||||
For connections to Milvus instances with mutual TLS (mTLS) enabled:
|
||||
|
||||
```yaml
|
||||
vector_io:
|
||||
- provider_id: milvus
|
||||
provider_type: remote::milvus
|
||||
config:
|
||||
uri: "https://<host>:<port>"
|
||||
token: "<user>:<password>"
|
||||
secure: True
|
||||
ca_pem_path: "/path/to/ca.pem"
|
||||
client_pem_path: "/path/to/client.pem"
|
||||
client_key_path: "/path/to/client.key"
|
||||
```
|
||||
|
||||
#### Key Parameters for TLS Configuration
|
||||
|
||||
- **`secure`**: Enables TLS encryption when set to `true`. Defaults to `false`.
|
||||
- **`server_pem_path`**: Path to the **server certificate** for verifying the server’s identity (used in one-way TLS).
|
||||
- **`ca_pem_path`**: Path to the **Certificate Authority (CA) certificate** for validating the server certificate (required in mTLS).
|
||||
- **`client_pem_path`**: Path to the **client certificate** file (required for mTLS).
|
||||
- **`client_key_path`**: Path to the **client private key** file (required for mTLS).
|
||||
|
||||
## Documentation
|
||||
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.
|
||||
|
||||
For more details on TLS configuration, refer to the [TLS setup guide](https://milvus.io/docs/tls.md).
|
||||
|
|
@ -1,31 +0,0 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Milvus
|
||||
|
||||
[Milvus](https://milvus.io/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly within a Milvus database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
||||
## Features
|
||||
|
||||
- Easy to use
|
||||
- Fully integrated with Llama Stack
|
||||
|
||||
## Usage
|
||||
|
||||
To use Milvus in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use Milvus.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
||||
You can install Milvus using pymilvus:
|
||||
|
||||
```bash
|
||||
pip install pymilvus
|
||||
```
|
||||
## Documentation
|
||||
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.
|
||||
|
|
@ -66,6 +66,25 @@ To use sqlite-vec in your Llama Stack project, follow these steps:
|
|||
2. Configure your Llama Stack project to use SQLite-Vec.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Supported Search Modes
|
||||
|
||||
The sqlite-vec provider supports both vector-based and keyword-based (full-text) search modes.
|
||||
|
||||
When using the RAGTool interface, you can specify the desired search behavior via the `mode` parameter in
|
||||
`RAGQueryConfig`. For example:
|
||||
|
||||
```python
|
||||
from llama_stack.apis.tool_runtime.rag import RAGQueryConfig
|
||||
|
||||
query_config = RAGQueryConfig(max_chunks=6, mode="vector")
|
||||
|
||||
results = client.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[vector_db_id],
|
||||
content="what is torchtune",
|
||||
query_config=query_config,
|
||||
)
|
||||
```
|
||||
|
||||
## Installation
|
||||
|
||||
You can install SQLite-Vec using pip:
|
||||
|
|
|
|||
|
|
@ -253,8 +253,6 @@ llama-stack-client toolgroups list
|
|||
+---------------------------+------------------+------+---------------+
|
||||
| identifier | provider_id | args | mcp_endpoint |
|
||||
+===========================+==================+======+===============+
|
||||
| builtin::code_interpreter | code-interpreter | None | None |
|
||||
+---------------------------+------------------+------+---------------+
|
||||
| builtin::rag | rag-runtime | None | None |
|
||||
+---------------------------+------------------+------+---------------+
|
||||
| builtin::websearch | tavily-search | None | None |
|
||||
|
|
|
|||
|
|
@ -389,5 +389,7 @@
|
|||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.15"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
|
|
|||
|
|
@ -256,5 +256,7 @@
|
|||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.15"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
|
|
|||
|
|
@ -301,5 +301,7 @@
|
|||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.2"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
|
|
|||
|
|
@ -200,5 +200,7 @@
|
|||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.2"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
|
|
|||
|
|
@ -355,5 +355,7 @@
|
|||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.15"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
|
|
|||
|
|
@ -398,5 +398,7 @@
|
|||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.15"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
|
|
|||
|
|
@ -132,5 +132,7 @@
|
|||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.10"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
|
|
|||
|
|
@ -188,5 +188,7 @@
|
|||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.15"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
|
|
|||
|
|
@ -86,11 +86,11 @@ If you're looking for more specific topics, we have a [Zero to Hero Guide](#next
|
|||
llama stack build --template ollama --image-type conda
|
||||
```
|
||||
**Expected Output:**
|
||||
```
|
||||
```bash
|
||||
...
|
||||
Build Successful! Next steps:
|
||||
1. Set the environment variables: LLAMA_STACK_PORT, OLLAMA_URL, INFERENCE_MODEL, SAFETY_MODEL
|
||||
2. `llama stack run /Users/<username>/.llama/distributions/llamastack-ollama/ollama-run.yaml
|
||||
Build Successful!
|
||||
You can find the newly-built template here: ~/.llama/distributions/ollama/ollama-run.yaml
|
||||
You can run the new Llama Stack Distro via: llama stack run ~/.llama/distributions/ollama/ollama-run.yaml --image-type conda
|
||||
```
|
||||
|
||||
3. **Set the ENV variables by exporting them to the terminal**:
|
||||
|
|
|
|||
206
install.sh
Executable file
206
install.sh
Executable file
|
|
@ -0,0 +1,206 @@
|
|||
#!/usr/bin/env bash
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
set -Eeuo pipefail
|
||||
|
||||
PORT=8321
|
||||
OLLAMA_PORT=11434
|
||||
MODEL_ALIAS="llama3.2:3b"
|
||||
SERVER_IMAGE="llamastack/distribution-ollama:0.2.2"
|
||||
WAIT_TIMEOUT=300
|
||||
|
||||
log(){ printf "\e[1;32m%s\e[0m\n" "$*"; }
|
||||
die(){ printf "\e[1;31m❌ %s\e[0m\n" "$*" >&2; exit 1; }
|
||||
|
||||
wait_for_service() {
|
||||
local url="$1"
|
||||
local pattern="$2"
|
||||
local timeout="$3"
|
||||
local name="$4"
|
||||
local start ts
|
||||
log "⏳ Waiting for ${name}…"
|
||||
start=$(date +%s)
|
||||
while true; do
|
||||
if curl --retry 5 --retry-delay 1 --retry-max-time "$timeout" --retry-all-errors --silent --fail "$url" 2>/dev/null | grep -q "$pattern"; then
|
||||
break
|
||||
fi
|
||||
ts=$(date +%s)
|
||||
if (( ts - start >= timeout )); then
|
||||
return 1
|
||||
fi
|
||||
printf '.'
|
||||
sleep 1
|
||||
done
|
||||
return 0
|
||||
}
|
||||
|
||||
usage() {
|
||||
cat << EOF
|
||||
📚 Llama-Stack Deployment Script
|
||||
|
||||
Description:
|
||||
This script sets up and deploys Llama-Stack with Ollama integration in containers.
|
||||
It handles both Docker and Podman runtimes and includes automatic platform detection.
|
||||
|
||||
Usage:
|
||||
$(basename "$0") [OPTIONS]
|
||||
|
||||
Options:
|
||||
-p, --port PORT Server port for Llama-Stack (default: ${PORT})
|
||||
-o, --ollama-port PORT Ollama service port (default: ${OLLAMA_PORT})
|
||||
-m, --model MODEL Model alias to use (default: ${MODEL_ALIAS})
|
||||
-i, --image IMAGE Server image (default: ${SERVER_IMAGE})
|
||||
-t, --timeout SECONDS Service wait timeout in seconds (default: ${WAIT_TIMEOUT})
|
||||
-h, --help Show this help message
|
||||
|
||||
For more information:
|
||||
Documentation: https://llama-stack.readthedocs.io/
|
||||
GitHub: https://github.com/meta-llama/llama-stack
|
||||
|
||||
Report issues:
|
||||
https://github.com/meta-llama/llama-stack/issues
|
||||
EOF
|
||||
}
|
||||
|
||||
# Parse command line arguments
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case $1 in
|
||||
-h|--help)
|
||||
usage
|
||||
exit 0
|
||||
;;
|
||||
-p|--port)
|
||||
PORT="$2"
|
||||
shift 2
|
||||
;;
|
||||
-o|--ollama-port)
|
||||
OLLAMA_PORT="$2"
|
||||
shift 2
|
||||
;;
|
||||
-m|--model)
|
||||
MODEL_ALIAS="$2"
|
||||
shift 2
|
||||
;;
|
||||
-i|--image)
|
||||
SERVER_IMAGE="$2"
|
||||
shift 2
|
||||
;;
|
||||
-t|--timeout)
|
||||
WAIT_TIMEOUT="$2"
|
||||
shift 2
|
||||
;;
|
||||
*)
|
||||
die "Unknown option: $1"
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
if command -v docker &> /dev/null; then
|
||||
ENGINE="docker"
|
||||
elif command -v podman &> /dev/null; then
|
||||
ENGINE="podman"
|
||||
else
|
||||
die "Docker or Podman is required. Install Docker: https://docs.docker.com/get-docker/ or Podman: https://podman.io/getting-started/installation"
|
||||
fi
|
||||
|
||||
# Explicitly set the platform for the host architecture
|
||||
HOST_ARCH="$(uname -m)"
|
||||
if [ "$HOST_ARCH" = "arm64" ]; then
|
||||
if [ "$ENGINE" = "docker" ]; then
|
||||
PLATFORM_OPTS=( --platform linux/amd64 )
|
||||
else
|
||||
PLATFORM_OPTS=( --os linux --arch amd64 )
|
||||
fi
|
||||
else
|
||||
PLATFORM_OPTS=()
|
||||
fi
|
||||
|
||||
# macOS + Podman: ensure VM is running before we try to launch containers
|
||||
# If you need GPU passthrough under Podman on macOS, init the VM with libkrun:
|
||||
# CONTAINERS_MACHINE_PROVIDER=libkrun podman machine init
|
||||
if [ "$ENGINE" = "podman" ] && [ "$(uname -s)" = "Darwin" ]; then
|
||||
if ! podman info &>/dev/null; then
|
||||
log "⌛️ Initializing Podman VM…"
|
||||
podman machine init &>/dev/null || true
|
||||
podman machine start &>/dev/null || true
|
||||
|
||||
log "⌛️ Waiting for Podman API…"
|
||||
until podman info &>/dev/null; do
|
||||
sleep 1
|
||||
done
|
||||
log "✅ Podman VM is up"
|
||||
fi
|
||||
fi
|
||||
|
||||
# Clean up any leftovers from earlier runs
|
||||
for name in ollama-server llama-stack; do
|
||||
ids=$($ENGINE ps -aq --filter "name=^${name}$")
|
||||
if [ -n "$ids" ]; then
|
||||
log "⚠️ Found existing container(s) for '${name}', removing…"
|
||||
$ENGINE rm -f "$ids" > /dev/null 2>&1
|
||||
fi
|
||||
done
|
||||
|
||||
###############################################################################
|
||||
# 0. Create a shared network
|
||||
###############################################################################
|
||||
if ! $ENGINE network inspect llama-net >/dev/null 2>&1; then
|
||||
log "🌐 Creating network…"
|
||||
$ENGINE network create llama-net >/dev/null 2>&1
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# 1. Ollama
|
||||
###############################################################################
|
||||
log "🦙 Starting Ollama…"
|
||||
$ENGINE run -d "${PLATFORM_OPTS[@]}" --name ollama-server \
|
||||
--network llama-net \
|
||||
-p "${OLLAMA_PORT}:${OLLAMA_PORT}" \
|
||||
ollama/ollama > /dev/null 2>&1
|
||||
|
||||
if ! wait_for_service "http://localhost:${OLLAMA_PORT}/" "Ollama" "$WAIT_TIMEOUT" "Ollama daemon"; then
|
||||
log "❌ Ollama daemon did not become ready in ${WAIT_TIMEOUT}s; dumping container logs:"
|
||||
$ENGINE logs --tail 200 ollama-server
|
||||
die "Ollama startup failed"
|
||||
fi
|
||||
|
||||
log "📦 Ensuring model is pulled: ${MODEL_ALIAS}…"
|
||||
if ! $ENGINE exec ollama-server ollama pull "${MODEL_ALIAS}" > /dev/null 2>&1; then
|
||||
log "❌ Failed to pull model ${MODEL_ALIAS}; dumping container logs:"
|
||||
$ENGINE logs --tail 200 ollama-server
|
||||
die "Model pull failed"
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# 2. Llama‑Stack
|
||||
###############################################################################
|
||||
cmd=( run -d "${PLATFORM_OPTS[@]}" --name llama-stack \
|
||||
--network llama-net \
|
||||
-p "${PORT}:${PORT}" \
|
||||
"${SERVER_IMAGE}" --port "${PORT}" \
|
||||
--env INFERENCE_MODEL="${MODEL_ALIAS}" \
|
||||
--env OLLAMA_URL="http://ollama-server:${OLLAMA_PORT}" )
|
||||
|
||||
log "🦙 Starting Llama‑Stack…"
|
||||
$ENGINE "${cmd[@]}" > /dev/null 2>&1
|
||||
|
||||
if ! wait_for_service "http://127.0.0.1:${PORT}/v1/health" "OK" "$WAIT_TIMEOUT" "Llama-Stack API"; then
|
||||
log "❌ Llama-Stack did not become ready in ${WAIT_TIMEOUT}s; dumping container logs:"
|
||||
$ENGINE logs --tail 200 llama-stack
|
||||
die "Llama-Stack startup failed"
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Done
|
||||
###############################################################################
|
||||
log ""
|
||||
log "🎉 Llama‑Stack is ready!"
|
||||
log "👉 API endpoint: http://localhost:${PORT}"
|
||||
log "📖 Documentation: https://llama-stack.readthedocs.io/en/latest/references/index.html"
|
||||
log "💻 To access the llama‑stack CLI, exec into the container:"
|
||||
log " $ENGINE exec -ti llama-stack bash"
|
||||
log ""
|
||||
|
|
@ -4,24 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import sys
|
||||
from collections.abc import AsyncIterator
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import (
|
||||
Annotated,
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Protocol,
|
||||
Union,
|
||||
runtime_checkable,
|
||||
)
|
||||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from llama_stack.apis.common.content_types import URL, ContentDelta, InterleavedContent
|
||||
from llama_stack.apis.common.responses import Order, PaginatedResponse
|
||||
from llama_stack.apis.inference import (
|
||||
CompletionMessage,
|
||||
ResponseFormat,
|
||||
|
|
@ -38,6 +30,24 @@ from llama_stack.apis.safety import SafetyViolation
|
|||
from llama_stack.apis.tools import ToolDef
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
from .openai_responses import (
|
||||
ListOpenAIResponseInputItem,
|
||||
ListOpenAIResponseObject,
|
||||
OpenAIResponseInput,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseText,
|
||||
)
|
||||
|
||||
# TODO: use enum.StrEnum when we drop support for python 3.10
|
||||
if sys.version_info >= (3, 11):
|
||||
from enum import StrEnum
|
||||
else:
|
||||
|
||||
class StrEnum(str, Enum):
|
||||
"""Backport of StrEnum for Python 3.10 and below."""
|
||||
|
||||
|
||||
class Attachment(BaseModel):
|
||||
"""An attachment to an agent turn.
|
||||
|
|
@ -72,11 +82,11 @@ class StepCommon(BaseModel):
|
|||
|
||||
turn_id: str
|
||||
step_id: str
|
||||
started_at: Optional[datetime] = None
|
||||
completed_at: Optional[datetime] = None
|
||||
started_at: datetime | None = None
|
||||
completed_at: datetime | None = None
|
||||
|
||||
|
||||
class StepType(Enum):
|
||||
class StepType(StrEnum):
|
||||
"""Type of the step in an agent turn.
|
||||
|
||||
:cvar inference: The step is an inference step that calls an LLM.
|
||||
|
|
@ -100,7 +110,7 @@ class InferenceStep(StepCommon):
|
|||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
step_type: Literal[StepType.inference.value] = StepType.inference.value
|
||||
step_type: Literal[StepType.inference] = StepType.inference
|
||||
model_response: CompletionMessage
|
||||
|
||||
|
||||
|
|
@ -112,9 +122,9 @@ class ToolExecutionStep(StepCommon):
|
|||
:param tool_responses: The tool responses from the tool calls.
|
||||
"""
|
||||
|
||||
step_type: Literal[StepType.tool_execution.value] = StepType.tool_execution.value
|
||||
tool_calls: List[ToolCall]
|
||||
tool_responses: List[ToolResponse]
|
||||
step_type: Literal[StepType.tool_execution] = StepType.tool_execution
|
||||
tool_calls: list[ToolCall]
|
||||
tool_responses: list[ToolResponse]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -124,8 +134,8 @@ class ShieldCallStep(StepCommon):
|
|||
:param violation: The violation from the shield call.
|
||||
"""
|
||||
|
||||
step_type: Literal[StepType.shield_call.value] = StepType.shield_call.value
|
||||
violation: Optional[SafetyViolation]
|
||||
step_type: Literal[StepType.shield_call] = StepType.shield_call
|
||||
violation: SafetyViolation | None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -136,19 +146,14 @@ class MemoryRetrievalStep(StepCommon):
|
|||
:param inserted_context: The context retrieved from the vector databases.
|
||||
"""
|
||||
|
||||
step_type: Literal[StepType.memory_retrieval.value] = StepType.memory_retrieval.value
|
||||
step_type: Literal[StepType.memory_retrieval] = StepType.memory_retrieval
|
||||
# TODO: should this be List[str]?
|
||||
vector_db_ids: str
|
||||
inserted_context: InterleavedContent
|
||||
|
||||
|
||||
Step = Annotated[
|
||||
Union[
|
||||
InferenceStep,
|
||||
ToolExecutionStep,
|
||||
ShieldCallStep,
|
||||
MemoryRetrievalStep,
|
||||
],
|
||||
InferenceStep | ToolExecutionStep | ShieldCallStep | MemoryRetrievalStep,
|
||||
Field(discriminator="step_type"),
|
||||
]
|
||||
|
||||
|
|
@ -159,18 +164,13 @@ class Turn(BaseModel):
|
|||
|
||||
turn_id: str
|
||||
session_id: str
|
||||
input_messages: List[
|
||||
Union[
|
||||
UserMessage,
|
||||
ToolResponseMessage,
|
||||
]
|
||||
]
|
||||
steps: List[Step]
|
||||
input_messages: list[UserMessage | ToolResponseMessage]
|
||||
steps: list[Step]
|
||||
output_message: CompletionMessage
|
||||
output_attachments: Optional[List[Attachment]] = Field(default_factory=list)
|
||||
output_attachments: list[Attachment] | None = Field(default_factory=lambda: [])
|
||||
|
||||
started_at: datetime
|
||||
completed_at: Optional[datetime] = None
|
||||
completed_at: datetime | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -179,34 +179,31 @@ class Session(BaseModel):
|
|||
|
||||
session_id: str
|
||||
session_name: str
|
||||
turns: List[Turn]
|
||||
turns: list[Turn]
|
||||
started_at: datetime
|
||||
|
||||
|
||||
class AgentToolGroupWithArgs(BaseModel):
|
||||
name: str
|
||||
args: Dict[str, Any]
|
||||
args: dict[str, Any]
|
||||
|
||||
|
||||
AgentToolGroup = Union[
|
||||
str,
|
||||
AgentToolGroupWithArgs,
|
||||
]
|
||||
AgentToolGroup = str | AgentToolGroupWithArgs
|
||||
register_schema(AgentToolGroup, name="AgentTool")
|
||||
|
||||
|
||||
class AgentConfigCommon(BaseModel):
|
||||
sampling_params: Optional[SamplingParams] = Field(default_factory=SamplingParams)
|
||||
sampling_params: SamplingParams | None = Field(default_factory=SamplingParams)
|
||||
|
||||
input_shields: Optional[List[str]] = Field(default_factory=list)
|
||||
output_shields: Optional[List[str]] = Field(default_factory=list)
|
||||
toolgroups: Optional[List[AgentToolGroup]] = Field(default_factory=list)
|
||||
client_tools: Optional[List[ToolDef]] = Field(default_factory=list)
|
||||
tool_choice: Optional[ToolChoice] = Field(default=None, deprecated="use tool_config instead")
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = Field(default=None, deprecated="use tool_config instead")
|
||||
tool_config: Optional[ToolConfig] = Field(default=None)
|
||||
input_shields: list[str] | None = Field(default_factory=lambda: [])
|
||||
output_shields: list[str] | None = Field(default_factory=lambda: [])
|
||||
toolgroups: list[AgentToolGroup] | None = Field(default_factory=lambda: [])
|
||||
client_tools: list[ToolDef] | None = Field(default_factory=lambda: [])
|
||||
tool_choice: ToolChoice | None = Field(default=None, deprecated="use tool_config instead")
|
||||
tool_prompt_format: ToolPromptFormat | None = Field(default=None, deprecated="use tool_config instead")
|
||||
tool_config: ToolConfig | None = Field(default=None)
|
||||
|
||||
max_infer_iters: Optional[int] = 10
|
||||
max_infer_iters: int | None = 10
|
||||
|
||||
def model_post_init(self, __context):
|
||||
if self.tool_config:
|
||||
|
|
@ -236,9 +233,9 @@ class AgentConfig(AgentConfigCommon):
|
|||
|
||||
model: str
|
||||
instructions: str
|
||||
name: Optional[str] = None
|
||||
enable_session_persistence: Optional[bool] = False
|
||||
response_format: Optional[ResponseFormat] = None
|
||||
name: str | None = None
|
||||
enable_session_persistence: bool | None = False
|
||||
response_format: ResponseFormat | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -248,21 +245,11 @@ class Agent(BaseModel):
|
|||
created_at: datetime
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ListAgentsResponse(BaseModel):
|
||||
data: List[Agent]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ListAgentSessionsResponse(BaseModel):
|
||||
data: List[Session]
|
||||
|
||||
|
||||
class AgentConfigOverridablePerTurn(AgentConfigCommon):
|
||||
instructions: Optional[str] = None
|
||||
instructions: str | None = None
|
||||
|
||||
|
||||
class AgentTurnResponseEventType(Enum):
|
||||
class AgentTurnResponseEventType(StrEnum):
|
||||
step_start = "step_start"
|
||||
step_complete = "step_complete"
|
||||
step_progress = "step_progress"
|
||||
|
|
@ -274,15 +261,15 @@ class AgentTurnResponseEventType(Enum):
|
|||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseStepStartPayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.step_start.value] = AgentTurnResponseEventType.step_start.value
|
||||
event_type: Literal[AgentTurnResponseEventType.step_start] = AgentTurnResponseEventType.step_start
|
||||
step_type: StepType
|
||||
step_id: str
|
||||
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict)
|
||||
metadata: dict[str, Any] | None = Field(default_factory=lambda: {})
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseStepCompletePayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.step_complete.value] = AgentTurnResponseEventType.step_complete.value
|
||||
event_type: Literal[AgentTurnResponseEventType.step_complete] = AgentTurnResponseEventType.step_complete
|
||||
step_type: StepType
|
||||
step_id: str
|
||||
step_details: Step
|
||||
|
|
@ -292,7 +279,7 @@ class AgentTurnResponseStepCompletePayload(BaseModel):
|
|||
class AgentTurnResponseStepProgressPayload(BaseModel):
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
event_type: Literal[AgentTurnResponseEventType.step_progress.value] = AgentTurnResponseEventType.step_progress.value
|
||||
event_type: Literal[AgentTurnResponseEventType.step_progress] = AgentTurnResponseEventType.step_progress
|
||||
step_type: StepType
|
||||
step_id: str
|
||||
|
||||
|
|
@ -301,33 +288,29 @@ class AgentTurnResponseStepProgressPayload(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseTurnStartPayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_start.value] = AgentTurnResponseEventType.turn_start.value
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_start] = AgentTurnResponseEventType.turn_start
|
||||
turn_id: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseTurnCompletePayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_complete.value] = AgentTurnResponseEventType.turn_complete.value
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_complete] = AgentTurnResponseEventType.turn_complete
|
||||
turn: Turn
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseTurnAwaitingInputPayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_awaiting_input.value] = (
|
||||
AgentTurnResponseEventType.turn_awaiting_input.value
|
||||
)
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_awaiting_input] = AgentTurnResponseEventType.turn_awaiting_input
|
||||
turn: Turn
|
||||
|
||||
|
||||
AgentTurnResponseEventPayload = Annotated[
|
||||
Union[
|
||||
AgentTurnResponseStepStartPayload,
|
||||
AgentTurnResponseStepProgressPayload,
|
||||
AgentTurnResponseStepCompletePayload,
|
||||
AgentTurnResponseTurnStartPayload,
|
||||
AgentTurnResponseTurnCompletePayload,
|
||||
AgentTurnResponseTurnAwaitingInputPayload,
|
||||
],
|
||||
AgentTurnResponseStepStartPayload
|
||||
| AgentTurnResponseStepProgressPayload
|
||||
| AgentTurnResponseStepCompletePayload
|
||||
| AgentTurnResponseTurnStartPayload
|
||||
| AgentTurnResponseTurnCompletePayload
|
||||
| AgentTurnResponseTurnAwaitingInputPayload,
|
||||
Field(discriminator="event_type"),
|
||||
]
|
||||
register_schema(AgentTurnResponseEventPayload, name="AgentTurnResponseEventPayload")
|
||||
|
|
@ -356,18 +339,13 @@ class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
|
|||
# TODO: figure out how we can simplify this and make why
|
||||
# ToolResponseMessage needs to be here (it is function call
|
||||
# execution from outside the system)
|
||||
messages: List[
|
||||
Union[
|
||||
UserMessage,
|
||||
ToolResponseMessage,
|
||||
]
|
||||
]
|
||||
messages: list[UserMessage | ToolResponseMessage]
|
||||
|
||||
documents: Optional[List[Document]] = None
|
||||
toolgroups: Optional[List[AgentToolGroup]] = None
|
||||
documents: list[Document] | None = None
|
||||
toolgroups: list[AgentToolGroup] | None = Field(default_factory=lambda: [])
|
||||
|
||||
stream: Optional[bool] = False
|
||||
tool_config: Optional[ToolConfig] = None
|
||||
stream: bool | None = False
|
||||
tool_config: ToolConfig | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -375,8 +353,8 @@ class AgentTurnResumeRequest(BaseModel):
|
|||
agent_id: str
|
||||
session_id: str
|
||||
turn_id: str
|
||||
tool_responses: List[ToolResponse]
|
||||
stream: Optional[bool] = False
|
||||
tool_responses: list[ToolResponse]
|
||||
stream: bool | None = False
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -422,17 +400,12 @@ class Agents(Protocol):
|
|||
self,
|
||||
agent_id: str,
|
||||
session_id: str,
|
||||
messages: List[
|
||||
Union[
|
||||
UserMessage,
|
||||
ToolResponseMessage,
|
||||
]
|
||||
],
|
||||
stream: Optional[bool] = False,
|
||||
documents: Optional[List[Document]] = None,
|
||||
toolgroups: Optional[List[AgentToolGroup]] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
|
||||
messages: list[UserMessage | ToolResponseMessage],
|
||||
stream: bool | None = False,
|
||||
documents: list[Document] | None = None,
|
||||
toolgroups: list[AgentToolGroup] | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> Turn | AsyncIterator[AgentTurnResponseStreamChunk]:
|
||||
"""Create a new turn for an agent.
|
||||
|
||||
:param agent_id: The ID of the agent to create the turn for.
|
||||
|
|
@ -443,8 +416,9 @@ class Agents(Protocol):
|
|||
:param toolgroups: (Optional) List of toolgroups to create the turn with, will be used in addition to the agent's config toolgroups for the request.
|
||||
:param tool_config: (Optional) The tool configuration to create the turn with, will be used to override the agent's tool_config.
|
||||
:returns: If stream=False, returns a Turn object.
|
||||
If stream=True, returns an SSE event stream of AgentTurnResponseStreamChunk
|
||||
If stream=True, returns an SSE event stream of AgentTurnResponseStreamChunk.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume",
|
||||
|
|
@ -456,9 +430,9 @@ class Agents(Protocol):
|
|||
agent_id: str,
|
||||
session_id: str,
|
||||
turn_id: str,
|
||||
tool_responses: List[ToolResponse],
|
||||
stream: Optional[bool] = False,
|
||||
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
|
||||
tool_responses: list[ToolResponse],
|
||||
stream: bool | None = False,
|
||||
) -> Turn | AsyncIterator[AgentTurnResponseStreamChunk]:
|
||||
"""Resume an agent turn with executed tool call responses.
|
||||
|
||||
When a Turn has the status `awaiting_input` due to pending input from client side tool calls, this endpoint can be used to submit the outputs from the tool calls once they are ready.
|
||||
|
|
@ -531,13 +505,14 @@ class Agents(Protocol):
|
|||
self,
|
||||
session_id: str,
|
||||
agent_id: str,
|
||||
turn_ids: Optional[List[str]] = None,
|
||||
turn_ids: list[str] | None = None,
|
||||
) -> Session:
|
||||
"""Retrieve an agent session by its ID.
|
||||
|
||||
:param session_id: The ID of the session to get.
|
||||
:param agent_id: The ID of the agent to get the session for.
|
||||
:param turn_ids: (Optional) List of turn IDs to filter the session by.
|
||||
:returns: A Session.
|
||||
"""
|
||||
...
|
||||
|
||||
|
|
@ -547,7 +522,7 @@ class Agents(Protocol):
|
|||
session_id: str,
|
||||
agent_id: str,
|
||||
) -> None:
|
||||
"""Delete an agent session by its ID.
|
||||
"""Delete an agent session by its ID and its associated turns.
|
||||
|
||||
:param session_id: The ID of the session to delete.
|
||||
:param agent_id: The ID of the agent to delete the session for.
|
||||
|
|
@ -559,17 +534,19 @@ class Agents(Protocol):
|
|||
self,
|
||||
agent_id: str,
|
||||
) -> None:
|
||||
"""Delete an agent by its ID.
|
||||
"""Delete an agent by its ID and its associated sessions and turns.
|
||||
|
||||
:param agent_id: The ID of the agent to delete.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents", method="GET")
|
||||
async def list_agents(self) -> ListAgentsResponse:
|
||||
async def list_agents(self, start_index: int | None = None, limit: int | None = None) -> PaginatedResponse:
|
||||
"""List all agents.
|
||||
|
||||
:returns: A ListAgentsResponse.
|
||||
:param start_index: The index to start the pagination from.
|
||||
:param limit: The number of agents to return.
|
||||
:returns: A PaginatedResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
|
|
@ -586,10 +563,96 @@ class Agents(Protocol):
|
|||
async def list_agent_sessions(
|
||||
self,
|
||||
agent_id: str,
|
||||
) -> ListAgentSessionsResponse:
|
||||
start_index: int | None = None,
|
||||
limit: int | None = None,
|
||||
) -> PaginatedResponse:
|
||||
"""List all session(s) of a given agent.
|
||||
|
||||
:param agent_id: The ID of the agent to list sessions for.
|
||||
:returns: A ListAgentSessionsResponse.
|
||||
:param start_index: The index to start the pagination from.
|
||||
:param limit: The number of sessions to return.
|
||||
:returns: A PaginatedResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
# We situate the OpenAI Responses API in the Agents API just like we did things
|
||||
# for Inference. The Responses API, in its intent, serves the same purpose as
|
||||
# the Agents API above -- it is essentially a lightweight "agentic loop" with
|
||||
# integrated tool calling.
|
||||
#
|
||||
# Both of these APIs are inherently stateful.
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}", method="GET")
|
||||
async def get_openai_response(
|
||||
self,
|
||||
response_id: str,
|
||||
) -> OpenAIResponseObject:
|
||||
"""Retrieve an OpenAI response by its ID.
|
||||
|
||||
:param response_id: The ID of the OpenAI response to retrieve.
|
||||
:returns: An OpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="POST")
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10, # this is an extension to the OpenAI API
|
||||
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
|
||||
"""Create a new OpenAI response.
|
||||
|
||||
:param input: Input message(s) to create the response.
|
||||
:param model: The underlying LLM used for completions.
|
||||
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
|
||||
:returns: An OpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="GET")
|
||||
async def list_openai_responses(
|
||||
self,
|
||||
after: str | None = None,
|
||||
limit: int | None = 50,
|
||||
model: str | None = None,
|
||||
order: Order | None = Order.desc,
|
||||
) -> ListOpenAIResponseObject:
|
||||
"""List all OpenAI responses.
|
||||
|
||||
:param after: The ID of the last response to return.
|
||||
:param limit: The number of responses to return.
|
||||
:param model: The model to filter responses by.
|
||||
:param order: The order to sort responses by when sorted by created_at ('asc' or 'desc').
|
||||
:returns: A ListOpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}/input_items", method="GET")
|
||||
async def list_openai_response_input_items(
|
||||
self,
|
||||
response_id: str,
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
include: list[str] | None = None,
|
||||
limit: int | None = 20,
|
||||
order: Order | None = Order.desc,
|
||||
) -> ListOpenAIResponseInputItem:
|
||||
"""List input items for a given OpenAI response.
|
||||
|
||||
:param response_id: The ID of the response to retrieve input items for.
|
||||
:param after: An item ID to list items after, used for pagination.
|
||||
:param before: An item ID to list items before, used for pagination.
|
||||
:param include: Additional fields to include in the response.
|
||||
:param limit: A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
|
||||
:param order: The order to return the input items in. Default is desc.
|
||||
:returns: An ListOpenAIResponseInputItem.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
451
llama_stack/apis/agents/openai_responses.py
Normal file
451
llama_stack/apis/agents/openai_responses.py
Normal file
|
|
@ -0,0 +1,451 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Annotated, Any, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema
|
||||
|
||||
# NOTE(ashwin): this file is literally a copy of the OpenAI responses API schema. We should probably
|
||||
# take their YAML and generate this file automatically. Their YAML is available.
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseError(BaseModel):
|
||||
code: str
|
||||
message: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputMessageContentText(BaseModel):
|
||||
text: str
|
||||
type: Literal["input_text"] = "input_text"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputMessageContentImage(BaseModel):
|
||||
detail: Literal["low"] | Literal["high"] | Literal["auto"] = "auto"
|
||||
type: Literal["input_image"] = "input_image"
|
||||
# TODO: handle file_id
|
||||
image_url: str | None = None
|
||||
|
||||
|
||||
# TODO: handle file content types
|
||||
OpenAIResponseInputMessageContent = Annotated[
|
||||
OpenAIResponseInputMessageContentText | OpenAIResponseInputMessageContentImage,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMessageContent")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseOutputMessageContentOutputText(BaseModel):
|
||||
text: str
|
||||
type: Literal["output_text"] = "output_text"
|
||||
|
||||
|
||||
OpenAIResponseOutputMessageContent = Annotated[
|
||||
OpenAIResponseOutputMessageContentOutputText,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseOutputMessageContent, name="OpenAIResponseOutputMessageContent")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseMessage(BaseModel):
|
||||
"""
|
||||
Corresponds to the various Message types in the Responses API.
|
||||
They are all under one type because the Responses API gives them all
|
||||
the same "type" value, and there is no way to tell them apart in certain
|
||||
scenarios.
|
||||
"""
|
||||
|
||||
content: str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent]
|
||||
role: Literal["system"] | Literal["developer"] | Literal["user"] | Literal["assistant"]
|
||||
type: Literal["message"] = "message"
|
||||
|
||||
# The fields below are not used in all scenarios, but are required in others.
|
||||
id: str | None = None
|
||||
status: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
|
||||
id: str
|
||||
status: str
|
||||
type: Literal["web_search_call"] = "web_search_call"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseOutputMessageFunctionToolCall(BaseModel):
|
||||
call_id: str
|
||||
name: str
|
||||
arguments: str
|
||||
type: Literal["function_call"] = "function_call"
|
||||
id: str | None = None
|
||||
status: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseOutputMessageMCPCall(BaseModel):
|
||||
id: str
|
||||
type: Literal["mcp_call"] = "mcp_call"
|
||||
arguments: str
|
||||
name: str
|
||||
server_label: str
|
||||
error: str | None = None
|
||||
output: str | None = None
|
||||
|
||||
|
||||
class MCPListToolsTool(BaseModel):
|
||||
input_schema: dict[str, Any]
|
||||
name: str
|
||||
description: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseOutputMessageMCPListTools(BaseModel):
|
||||
id: str
|
||||
type: Literal["mcp_list_tools"] = "mcp_list_tools"
|
||||
server_label: str
|
||||
tools: list[MCPListToolsTool]
|
||||
|
||||
|
||||
OpenAIResponseOutput = Annotated[
|
||||
OpenAIResponseMessage
|
||||
| OpenAIResponseOutputMessageWebSearchToolCall
|
||||
| OpenAIResponseOutputMessageFunctionToolCall
|
||||
| OpenAIResponseOutputMessageMCPCall
|
||||
| OpenAIResponseOutputMessageMCPListTools,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseOutput, name="OpenAIResponseOutput")
|
||||
|
||||
|
||||
# This has to be a TypedDict because we need a "schema" field and our strong
|
||||
# typing code in the schema generator doesn't support Pydantic aliases. That also
|
||||
# means we can't use a discriminator field here, because TypedDicts don't support
|
||||
# default values which the strong typing code requires for discriminators.
|
||||
class OpenAIResponseTextFormat(TypedDict, total=False):
|
||||
"""Configuration for Responses API text format.
|
||||
|
||||
:param type: Must be "text", "json_schema", or "json_object" to identify the format type
|
||||
:param name: The name of the response format. Only used for json_schema.
|
||||
:param schema: The JSON schema the response should conform to. In a Python SDK, this is often a `pydantic` model. Only used for json_schema.
|
||||
:param description: (Optional) A description of the response format. Only used for json_schema.
|
||||
:param strict: (Optional) Whether to strictly enforce the JSON schema. If true, the response must match the schema exactly. Only used for json_schema.
|
||||
"""
|
||||
|
||||
type: Literal["text"] | Literal["json_schema"] | Literal["json_object"]
|
||||
name: str | None
|
||||
schema: dict[str, Any] | None
|
||||
description: str | None
|
||||
strict: bool | None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseText(BaseModel):
|
||||
format: OpenAIResponseTextFormat | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObject(BaseModel):
|
||||
created_at: int
|
||||
error: OpenAIResponseError | None = None
|
||||
id: str
|
||||
model: str
|
||||
object: Literal["response"] = "response"
|
||||
output: list[OpenAIResponseOutput]
|
||||
parallel_tool_calls: bool = False
|
||||
previous_response_id: str | None = None
|
||||
status: str
|
||||
temperature: float | None = None
|
||||
# Default to text format to avoid breaking the loading of old responses
|
||||
# before the field was added. New responses will have this set always.
|
||||
text: OpenAIResponseText = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text"))
|
||||
top_p: float | None = None
|
||||
truncation: str | None = None
|
||||
user: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseCreated(BaseModel):
|
||||
response: OpenAIResponseObject
|
||||
type: Literal["response.created"] = "response.created"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
|
||||
response: OpenAIResponseObject
|
||||
type: Literal["response.completed"] = "response.completed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseOutputItemAdded(BaseModel):
|
||||
response_id: str
|
||||
item: OpenAIResponseOutput
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.output_item.added"] = "response.output_item.added"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseOutputItemDone(BaseModel):
|
||||
response_id: str
|
||||
item: OpenAIResponseOutput
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.output_item.done"] = "response.output_item.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseOutputTextDelta(BaseModel):
|
||||
content_index: int
|
||||
delta: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.output_text.delta"] = "response.output_text.delta"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseOutputTextDone(BaseModel):
|
||||
content_index: int
|
||||
text: str # final text of the output item
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.output_text.done"] = "response.output_text.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(BaseModel):
|
||||
delta: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.function_call_arguments.delta"] = "response.function_call_arguments.delta"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(BaseModel):
|
||||
arguments: str # final arguments of the function call
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.function_call_arguments.done"] = "response.function_call_arguments.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseWebSearchCallInProgress(BaseModel):
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.web_search_call.in_progress"] = "response.web_search_call.in_progress"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseWebSearchCallSearching(BaseModel):
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.web_search_call.searching"] = "response.web_search_call.searching"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseWebSearchCallCompleted(BaseModel):
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.web_search_call.completed"] = "response.web_search_call.completed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseMcpListToolsInProgress(BaseModel):
|
||||
sequence_number: int
|
||||
type: Literal["response.mcp_list_tools.in_progress"] = "response.mcp_list_tools.in_progress"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseMcpListToolsFailed(BaseModel):
|
||||
sequence_number: int
|
||||
type: Literal["response.mcp_list_tools.failed"] = "response.mcp_list_tools.failed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseMcpListToolsCompleted(BaseModel):
|
||||
sequence_number: int
|
||||
type: Literal["response.mcp_list_tools.completed"] = "response.mcp_list_tools.completed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta(BaseModel):
|
||||
delta: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.mcp_call.arguments.delta"] = "response.mcp_call.arguments.delta"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseMcpCallArgumentsDone(BaseModel):
|
||||
arguments: str # final arguments of the MCP call
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.mcp_call.arguments.done"] = "response.mcp_call.arguments.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseMcpCallInProgress(BaseModel):
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.mcp_call.in_progress"] = "response.mcp_call.in_progress"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseMcpCallFailed(BaseModel):
|
||||
sequence_number: int
|
||||
type: Literal["response.mcp_call.failed"] = "response.mcp_call.failed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseMcpCallCompleted(BaseModel):
|
||||
sequence_number: int
|
||||
type: Literal["response.mcp_call.completed"] = "response.mcp_call.completed"
|
||||
|
||||
|
||||
OpenAIResponseObjectStream = Annotated[
|
||||
OpenAIResponseObjectStreamResponseCreated
|
||||
| OpenAIResponseObjectStreamResponseOutputItemAdded
|
||||
| OpenAIResponseObjectStreamResponseOutputItemDone
|
||||
| OpenAIResponseObjectStreamResponseOutputTextDelta
|
||||
| OpenAIResponseObjectStreamResponseOutputTextDone
|
||||
| OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta
|
||||
| OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone
|
||||
| OpenAIResponseObjectStreamResponseWebSearchCallInProgress
|
||||
| OpenAIResponseObjectStreamResponseWebSearchCallSearching
|
||||
| OpenAIResponseObjectStreamResponseWebSearchCallCompleted
|
||||
| OpenAIResponseObjectStreamResponseMcpListToolsInProgress
|
||||
| OpenAIResponseObjectStreamResponseMcpListToolsFailed
|
||||
| OpenAIResponseObjectStreamResponseMcpListToolsCompleted
|
||||
| OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta
|
||||
| OpenAIResponseObjectStreamResponseMcpCallArgumentsDone
|
||||
| OpenAIResponseObjectStreamResponseMcpCallInProgress
|
||||
| OpenAIResponseObjectStreamResponseMcpCallFailed
|
||||
| OpenAIResponseObjectStreamResponseMcpCallCompleted
|
||||
| OpenAIResponseObjectStreamResponseCompleted,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseObjectStream, name="OpenAIResponseObjectStream")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputFunctionToolCallOutput(BaseModel):
|
||||
"""
|
||||
This represents the output of a function call that gets passed back to the model.
|
||||
"""
|
||||
|
||||
call_id: str
|
||||
output: str
|
||||
type: Literal["function_call_output"] = "function_call_output"
|
||||
id: str | None = None
|
||||
status: str | None = None
|
||||
|
||||
|
||||
OpenAIResponseInput = Annotated[
|
||||
# Responses API allows output messages to be passed in as input
|
||||
OpenAIResponseOutputMessageWebSearchToolCall
|
||||
| OpenAIResponseOutputMessageFunctionToolCall
|
||||
| OpenAIResponseInputFunctionToolCallOutput
|
||||
|
|
||||
# Fallback to the generic message type as a last resort
|
||||
OpenAIResponseMessage,
|
||||
Field(union_mode="left_to_right"),
|
||||
]
|
||||
register_schema(OpenAIResponseInput, name="OpenAIResponseInput")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolWebSearch(BaseModel):
|
||||
type: Literal["web_search"] | Literal["web_search_preview_2025_03_11"] = "web_search"
|
||||
# TODO: actually use search_context_size somewhere...
|
||||
search_context_size: str | None = Field(default="medium", pattern="^low|medium|high$")
|
||||
# TODO: add user_location
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolFunction(BaseModel):
|
||||
type: Literal["function"] = "function"
|
||||
name: str
|
||||
description: str | None = None
|
||||
parameters: dict[str, Any] | None
|
||||
strict: bool | None = None
|
||||
|
||||
|
||||
class FileSearchRankingOptions(BaseModel):
|
||||
ranker: str | None = None
|
||||
score_threshold: float | None = Field(default=0.0, ge=0.0, le=1.0)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolFileSearch(BaseModel):
|
||||
type: Literal["file_search"] = "file_search"
|
||||
vector_store_id: list[str]
|
||||
ranking_options: FileSearchRankingOptions | None = None
|
||||
# TODO: add filters
|
||||
|
||||
|
||||
class ApprovalFilter(BaseModel):
|
||||
always: list[str] | None = None
|
||||
never: list[str] | None = None
|
||||
|
||||
|
||||
class AllowedToolsFilter(BaseModel):
|
||||
tool_names: list[str] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolMCP(BaseModel):
|
||||
type: Literal["mcp"] = "mcp"
|
||||
server_label: str
|
||||
server_url: str
|
||||
headers: dict[str, Any] | None = None
|
||||
|
||||
require_approval: Literal["always"] | Literal["never"] | ApprovalFilter = "never"
|
||||
allowed_tools: list[str] | AllowedToolsFilter | None = None
|
||||
|
||||
|
||||
OpenAIResponseInputTool = Annotated[
|
||||
OpenAIResponseInputToolWebSearch
|
||||
| OpenAIResponseInputToolFileSearch
|
||||
| OpenAIResponseInputToolFunction
|
||||
| OpenAIResponseInputToolMCP,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseInputTool, name="OpenAIResponseInputTool")
|
||||
|
||||
|
||||
class ListOpenAIResponseInputItem(BaseModel):
|
||||
data: list[OpenAIResponseInput]
|
||||
object: Literal["list"] = "list"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectWithInput(OpenAIResponseObject):
|
||||
input: list[OpenAIResponseInput]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ListOpenAIResponseObject(BaseModel):
|
||||
data: list[OpenAIResponseObjectWithInput]
|
||||
has_more: bool
|
||||
first_id: str
|
||||
last_id: str
|
||||
object: Literal["list"] = "list"
|
||||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List, Optional, Protocol, runtime_checkable
|
||||
from typing import Protocol, runtime_checkable
|
||||
|
||||
from llama_stack.apis.common.job_types import Job
|
||||
from llama_stack.apis.inference import (
|
||||
|
|
@ -34,22 +34,45 @@ class BatchInference(Protocol):
|
|||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content_batch: List[InterleavedContent],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Job: ...
|
||||
content_batch: list[InterleavedContent],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> Job:
|
||||
"""Generate completions for a batch of content.
|
||||
|
||||
:param model: The model to use for the completion.
|
||||
:param content_batch: The content to complete.
|
||||
:param sampling_params: The sampling parameters to use for the completion.
|
||||
:param response_format: The response format to use for the completion.
|
||||
:param logprobs: The logprobs to use for the completion.
|
||||
:returns: A job for the completion.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/batch-inference/chat-completion", method="POST")
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages_batch: List[List[Message]],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
messages_batch: list[list[Message]],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
# zero-shot tool definitions as input to the model
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Job: ...
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> Job:
|
||||
"""Generate chat completions for a batch of messages.
|
||||
|
||||
:param model: The model to use for the chat completion.
|
||||
:param messages_batch: The messages to complete.
|
||||
:param sampling_params: The sampling parameters to use for the completion.
|
||||
:param tools: The tools to use for the chat completion.
|
||||
:param tool_choice: The tool choice to use for the chat completion.
|
||||
:param tool_prompt_format: The tool prompt format to use for the chat completion.
|
||||
:param response_format: The response format to use for the chat completion.
|
||||
:param logprobs: The logprobs to use for the chat completion.
|
||||
:returns: A job for the chat completion.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
|
||||
from typing import Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -13,8 +13,8 @@ from llama_stack.schema_utils import json_schema_type, webmethod
|
|||
|
||||
class CommonBenchmarkFields(BaseModel):
|
||||
dataset_id: str
|
||||
scoring_functions: List[str]
|
||||
metadata: Dict[str, Any] = Field(
|
||||
scoring_functions: list[str]
|
||||
metadata: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Metadata for this evaluation task",
|
||||
)
|
||||
|
|
@ -22,45 +22,66 @@ class CommonBenchmarkFields(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class Benchmark(CommonBenchmarkFields, Resource):
|
||||
type: Literal[ResourceType.benchmark.value] = ResourceType.benchmark.value
|
||||
type: Literal[ResourceType.benchmark] = ResourceType.benchmark
|
||||
|
||||
@property
|
||||
def benchmark_id(self) -> str:
|
||||
return self.identifier
|
||||
|
||||
@property
|
||||
def provider_benchmark_id(self) -> str:
|
||||
def provider_benchmark_id(self) -> str | None:
|
||||
return self.provider_resource_id
|
||||
|
||||
|
||||
class BenchmarkInput(CommonBenchmarkFields, BaseModel):
|
||||
benchmark_id: str
|
||||
provider_id: Optional[str] = None
|
||||
provider_benchmark_id: Optional[str] = None
|
||||
provider_id: str | None = None
|
||||
provider_benchmark_id: str | None = None
|
||||
|
||||
|
||||
class ListBenchmarksResponse(BaseModel):
|
||||
data: List[Benchmark]
|
||||
data: list[Benchmark]
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Benchmarks(Protocol):
|
||||
@webmethod(route="/eval/benchmarks", method="GET")
|
||||
async def list_benchmarks(self) -> ListBenchmarksResponse: ...
|
||||
async def list_benchmarks(self) -> ListBenchmarksResponse:
|
||||
"""List all benchmarks.
|
||||
|
||||
:returns: A ListBenchmarksResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="GET")
|
||||
async def get_benchmark(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
) -> Benchmark: ...
|
||||
) -> Benchmark:
|
||||
"""Get a benchmark by its ID.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to get.
|
||||
:returns: A Benchmark.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks", method="POST")
|
||||
async def register_benchmark(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
dataset_id: str,
|
||||
scoring_functions: List[str],
|
||||
provider_benchmark_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> None: ...
|
||||
scoring_functions: list[str],
|
||||
provider_benchmark_id: str | None = None,
|
||||
provider_id: str | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> None:
|
||||
"""Register a benchmark.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to register.
|
||||
:param dataset_id: The ID of the dataset to use for the benchmark.
|
||||
:param scoring_functions: The scoring functions to use for the benchmark.
|
||||
:param provider_benchmark_id: The ID of the provider benchmark to use for the benchmark.
|
||||
:param provider_id: The ID of the provider to use for the benchmark.
|
||||
:param metadata: The metadata to use for the benchmark.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue