Merge branch 'main' into prompt-api

This commit is contained in:
Francisco Arceo 2025-09-06 21:53:34 -06:00 committed by GitHub
commit 60361b910c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 112 additions and 138 deletions

View file

@ -207,7 +207,7 @@ def available_providers() -> list[ProviderSpec]:
api=Api.inference,
adapter=AdapterSpec(
adapter_type="gemini",
pip_packages=["litellm"],
pip_packages=["litellm", "openai"],
module="llama_stack.providers.remote.inference.gemini",
config_class="llama_stack.providers.remote.inference.gemini.GeminiConfig",
provider_data_validator="llama_stack.providers.remote.inference.gemini.config.GeminiProviderDataValidator",
@ -248,7 +248,7 @@ Available Models:
api=Api.inference,
adapter=AdapterSpec(
adapter_type="groq",
pip_packages=["litellm"],
pip_packages=["litellm", "openai"],
module="llama_stack.providers.remote.inference.groq",
config_class="llama_stack.providers.remote.inference.groq.GroqConfig",
provider_data_validator="llama_stack.providers.remote.inference.groq.config.GroqProviderDataValidator",
@ -270,7 +270,7 @@ Available Models:
api=Api.inference,
adapter=AdapterSpec(
adapter_type="sambanova",
pip_packages=["litellm"],
pip_packages=["litellm", "openai"],
module="llama_stack.providers.remote.inference.sambanova",
config_class="llama_stack.providers.remote.inference.sambanova.SambaNovaImplConfig",
provider_data_validator="llama_stack.providers.remote.inference.sambanova.config.SambaNovaProviderDataValidator",

View file

@ -5,12 +5,13 @@
# the root directory of this source tree.
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import GeminiConfig
from .models import MODEL_ENTRIES
class GeminiInferenceAdapter(LiteLLMOpenAIMixin):
class GeminiInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
def __init__(self, config: GeminiConfig) -> None:
LiteLLMOpenAIMixin.__init__(
self,
@ -21,6 +22,11 @@ class GeminiInferenceAdapter(LiteLLMOpenAIMixin):
)
self.config = config
get_api_key = LiteLLMOpenAIMixin.get_api_key
def get_base_url(self):
return "https://generativelanguage.googleapis.com/v1beta/openai/"
async def initialize(self) -> None:
await super().initialize()

View file

@ -4,30 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncIterator
from typing import Any
from openai import AsyncOpenAI
from llama_stack.apis.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIChoiceDelta,
OpenAIChunkChoice,
OpenAIMessageParam,
OpenAIResponseFormatParam,
OpenAISystemMessageParam,
)
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_compat import (
prepare_openai_completion_params,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .models import MODEL_ENTRIES
class GroqInferenceAdapter(LiteLLMOpenAIMixin):
class GroqInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
_config: GroqConfig
def __init__(self, config: GroqConfig):
@ -40,122 +25,14 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin):
)
self.config = config
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
get_api_key = LiteLLMOpenAIMixin.get_api_key
def get_base_url(self) -> str:
return f"{self.config.url}/openai/v1"
async def initialize(self):
await super().initialize()
async def shutdown(self):
await super().shutdown()
def _get_openai_client(self) -> AsyncOpenAI:
return AsyncOpenAI(
base_url=f"{self.config.url}/openai/v1",
api_key=self.get_api_key(),
)
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
model_obj = await self.model_store.get_model(model)
# Groq does not support json_schema response format, so we need to convert it to json_object
if response_format and response_format.type == "json_schema":
response_format.type = "json_object"
schema = response_format.json_schema.get("schema", {})
response_format.json_schema = None
json_instructions = f"\nYour response should be a JSON object that matches the following schema: {schema}"
if messages and messages[0].role == "system":
messages[0].content = messages[0].content + json_instructions
else:
messages.insert(0, OpenAISystemMessageParam(content=json_instructions))
# Groq returns a 400 error if tools are provided but none are called
# So, set tool_choice to "required" to attempt to force a call
if tools and (not tool_choice or tool_choice == "auto"):
tool_choice = "required"
params = await prepare_openai_completion_params(
model=model_obj.provider_resource_id,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
# Groq does not support streaming requests that set response_format
fake_stream = False
if stream and response_format:
params["stream"] = False
fake_stream = True
response = await self._get_openai_client().chat.completions.create(**params)
if fake_stream:
chunk_choices = []
for choice in response.choices:
delta = OpenAIChoiceDelta(
content=choice.message.content,
role=choice.message.role,
tool_calls=choice.message.tool_calls,
)
chunk_choice = OpenAIChunkChoice(
delta=delta,
finish_reason=choice.finish_reason,
index=choice.index,
logprobs=None,
)
chunk_choices.append(chunk_choice)
chunk = OpenAIChatCompletionChunk(
id=response.id,
choices=chunk_choices,
object="chat.completion.chunk",
created=response.created,
model=response.model,
)
async def _fake_stream_generator():
yield chunk
return _fake_stream_generator()
else:
return response

View file

@ -4,13 +4,26 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import SambaNovaImplConfig
from .models import MODEL_ENTRIES
class SambaNovaInferenceAdapter(LiteLLMOpenAIMixin):
class SambaNovaInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
"""
SambaNova Inference Adapter for Llama Stack.
Note: The inheritance order is important here. OpenAIMixin must come before
LiteLLMOpenAIMixin to ensure that OpenAIMixin.check_model_availability()
is used instead of LiteLLMOpenAIMixin.check_model_availability().
- OpenAIMixin.check_model_availability() queries the /v1/models to check if a model exists
- LiteLLMOpenAIMixin.check_model_availability() checks the static registry within LiteLLM
"""
def __init__(self, config: SambaNovaImplConfig):
self.config = config
self.environment_available_models = []
@ -24,3 +37,14 @@ class SambaNovaInferenceAdapter(LiteLLMOpenAIMixin):
download_images=True, # SambaNova requires base64 image encoding
json_schema_strict=False, # SambaNova doesn't support strict=True yet
)
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
get_api_key = LiteLLMOpenAIMixin.get_api_key
def get_base_url(self) -> str:
"""
Get the base URL for OpenAI mixin.
:return: The SambaNova base URL
"""
return self.config.url