mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-05 10:23:44 +00:00
Merge branch 'main' into fix-vector
This commit is contained in:
commit
60b3ac7f10
508 changed files with 101100 additions and 82743 deletions
60
.github/actions/install-llama-stack-client/action.yml
vendored
Normal file
60
.github/actions/install-llama-stack-client/action.yml
vendored
Normal file
|
|
@ -0,0 +1,60 @@
|
|||
name: Install llama-stack-client
|
||||
description: Install llama-stack-client based on branch context and client-version input
|
||||
|
||||
inputs:
|
||||
client-version:
|
||||
description: 'Client version to install on non-release branches (latest or published). Ignored on release branches.'
|
||||
required: false
|
||||
default: ""
|
||||
|
||||
outputs:
|
||||
uv-extra-index-url:
|
||||
description: 'UV_EXTRA_INDEX_URL to use (set for release branches)'
|
||||
value: ${{ steps.configure.outputs.uv-extra-index-url }}
|
||||
install-after-sync:
|
||||
description: 'Whether to install client after uv sync'
|
||||
value: ${{ steps.configure.outputs.install-after-sync }}
|
||||
install-source:
|
||||
description: 'Where to install client from after sync'
|
||||
value: ${{ steps.configure.outputs.install-source }}
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Configure client installation
|
||||
id: configure
|
||||
shell: bash
|
||||
run: |
|
||||
# Determine the branch we're working with
|
||||
BRANCH="${{ github.base_ref || github.ref }}"
|
||||
BRANCH="${BRANCH#refs/heads/}"
|
||||
|
||||
echo "Working with branch: $BRANCH"
|
||||
|
||||
# On release branches: use test.pypi for uv sync, then install from git
|
||||
# On non-release branches: install based on client-version after sync
|
||||
if [[ "$BRANCH" =~ ^release-[0-9]+\.[0-9]+\.x$ ]]; then
|
||||
echo "Detected release branch: $BRANCH"
|
||||
|
||||
# Check if matching branch exists in client repo
|
||||
if ! git ls-remote --exit-code --heads https://github.com/llamastack/llama-stack-client-python.git "$BRANCH" > /dev/null 2>&1; then
|
||||
echo "::error::Branch $BRANCH not found in llama-stack-client-python repository"
|
||||
echo "::error::Please create the matching release branch in llama-stack-client-python before testing"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Configure to use test.pypi as extra index (PyPI is primary)
|
||||
echo "uv-extra-index-url=https://test.pypi.org/simple/" >> $GITHUB_OUTPUT
|
||||
echo "install-after-sync=true" >> $GITHUB_OUTPUT
|
||||
echo "install-source=git+https://github.com/llamastack/llama-stack-client-python.git@$BRANCH" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ inputs.client-version }}" = "latest" ]; then
|
||||
# Install from main git after sync
|
||||
echo "install-after-sync=true" >> $GITHUB_OUTPUT
|
||||
echo "install-source=git+https://github.com/llamastack/llama-stack-client-python.git@main" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ inputs.client-version }}" = "published" ]; then
|
||||
# Use published version from PyPI (installed by sync)
|
||||
echo "install-after-sync=false" >> $GITHUB_OUTPUT
|
||||
elif [ -n "${{ inputs.client-version }}" ]; then
|
||||
echo "::error::Invalid client-version: ${{ inputs.client-version }}"
|
||||
exit 1
|
||||
fi
|
||||
|
|
@ -94,7 +94,7 @@ runs:
|
|||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
|
||||
with:
|
||||
name: logs-${{ github.run_id }}-${{ github.run_attempt || '' }}-${{ strategy.job-index }}
|
||||
name: logs-${{ github.run_id }}-${{ github.run_attempt || '1' }}-${{ strategy.job-index || github.job }}-${{ github.action }}
|
||||
path: |
|
||||
*.log
|
||||
retention-days: 1
|
||||
|
|
|
|||
30
.github/actions/setup-runner/action.yml
vendored
30
.github/actions/setup-runner/action.yml
vendored
|
|
@ -18,25 +18,35 @@ runs:
|
|||
python-version: ${{ inputs.python-version }}
|
||||
version: 0.7.6
|
||||
|
||||
- name: Configure client installation
|
||||
id: client-config
|
||||
uses: ./.github/actions/install-llama-stack-client
|
||||
with:
|
||||
client-version: ${{ inputs.client-version }}
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
env:
|
||||
UV_EXTRA_INDEX_URL: ${{ steps.client-config.outputs.uv-extra-index-url }}
|
||||
run: |
|
||||
# Export UV env vars for current step and persist to GITHUB_ENV for subsequent steps
|
||||
if [ -n "$UV_EXTRA_INDEX_URL" ]; then
|
||||
export UV_INDEX_STRATEGY=unsafe-best-match
|
||||
echo "UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL" >> $GITHUB_ENV
|
||||
echo "UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY" >> $GITHUB_ENV
|
||||
echo "Exported UV environment variables for current and subsequent steps"
|
||||
fi
|
||||
|
||||
echo "Updating project dependencies via uv sync"
|
||||
uv sync --all-groups
|
||||
|
||||
echo "Installing ad-hoc dependencies"
|
||||
uv pip install faiss-cpu
|
||||
|
||||
# Install llama-stack-client-python based on the client-version input
|
||||
if [ "${{ inputs.client-version }}" = "latest" ]; then
|
||||
echo "Installing latest llama-stack-client-python from main branch"
|
||||
uv pip install git+https://github.com/llamastack/llama-stack-client-python.git@main
|
||||
elif [ "${{ inputs.client-version }}" = "published" ]; then
|
||||
echo "Installing published llama-stack-client-python from PyPI"
|
||||
uv pip install llama-stack-client
|
||||
else
|
||||
echo "Invalid client-version: ${{ inputs.client-version }}"
|
||||
exit 1
|
||||
# Install specific client version after sync if needed
|
||||
if [ "${{ steps.client-config.outputs.install-after-sync }}" = "true" ]; then
|
||||
echo "Installing llama-stack-client from: ${{ steps.client-config.outputs.install-source }}"
|
||||
uv pip install ${{ steps.client-config.outputs.install-source }}
|
||||
fi
|
||||
|
||||
echo "Installed llama packages"
|
||||
|
|
|
|||
|
|
@ -42,18 +42,7 @@ runs:
|
|||
- name: Build Llama Stack
|
||||
shell: bash
|
||||
run: |
|
||||
# Install llama-stack-client-python based on the client-version input
|
||||
if [ "${{ inputs.client-version }}" = "latest" ]; then
|
||||
echo "Installing latest llama-stack-client-python from main branch"
|
||||
export LLAMA_STACK_CLIENT_DIR=git+https://github.com/llamastack/llama-stack-client-python.git@main
|
||||
elif [ "${{ inputs.client-version }}" = "published" ]; then
|
||||
echo "Installing published llama-stack-client-python from PyPI"
|
||||
unset LLAMA_STACK_CLIENT_DIR
|
||||
else
|
||||
echo "Invalid client-version: ${{ inputs.client-version }}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Client is already installed by setup-runner (handles both main and release branches)
|
||||
echo "Building Llama Stack"
|
||||
|
||||
LLAMA_STACK_DIR=. \
|
||||
|
|
|
|||
23
.github/mergify.yml
vendored
Normal file
23
.github/mergify.yml
vendored
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
pull_request_rules:
|
||||
- name: ping author on conflicts and add 'needs-rebase' label
|
||||
conditions:
|
||||
- conflict
|
||||
- -closed
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- needs-rebase
|
||||
comment:
|
||||
message: >
|
||||
This pull request has merge conflicts that must be resolved before it
|
||||
can be merged. @{{author}} please rebase it.
|
||||
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
|
||||
|
||||
- name: remove 'needs-rebase' label when conflict is resolved
|
||||
conditions:
|
||||
- -conflict
|
||||
- -closed
|
||||
actions:
|
||||
label:
|
||||
remove:
|
||||
- needs-rebase
|
||||
2
.github/workflows/README.md
vendored
2
.github/workflows/README.md
vendored
|
|
@ -4,6 +4,7 @@ Llama Stack uses GitHub Actions for Continuous Integration (CI). Below is a tabl
|
|||
|
||||
| Name | File | Purpose |
|
||||
| ---- | ---- | ------- |
|
||||
| Backward Compatibility Check | [backward-compat.yml](backward-compat.yml) | Check backward compatibility for run.yaml configs |
|
||||
| Update Changelog | [changelog.yml](changelog.yml) | Creates PR for updating the CHANGELOG.md |
|
||||
| API Conformance Tests | [conformance.yml](conformance.yml) | Run the API Conformance test suite on the changes. |
|
||||
| Installer CI | [install-script-ci.yml](install-script-ci.yml) | Test the installation script |
|
||||
|
|
@ -12,7 +13,6 @@ Llama Stack uses GitHub Actions for Continuous Integration (CI). Below is a tabl
|
|||
| Integration Tests (Replay) | [integration-tests.yml](integration-tests.yml) | Run the integration test suites from tests/integration in replay mode |
|
||||
| Vector IO Integration Tests | [integration-vector-io-tests.yml](integration-vector-io-tests.yml) | Run the integration test suite with various VectorIO providers |
|
||||
| Pre-commit | [pre-commit.yml](pre-commit.yml) | Run pre-commit checks |
|
||||
| Pre-commit Bot | [precommit-trigger.yml](precommit-trigger.yml) | Pre-commit bot for PR |
|
||||
| Test Llama Stack Build | [providers-build.yml](providers-build.yml) | Test llama stack build |
|
||||
| Test llama stack list-deps | [providers-list-deps.yml](providers-list-deps.yml) | Test llama stack list-deps |
|
||||
| Python Package Build Test | [python-build-test.yml](python-build-test.yml) | Test building the llama-stack PyPI project |
|
||||
|
|
|
|||
578
.github/workflows/backward-compat.yml
vendored
Normal file
578
.github/workflows/backward-compat.yml
vendored
Normal file
|
|
@ -0,0 +1,578 @@
|
|||
name: Backward Compatibility Check
|
||||
|
||||
run-name: Check backward compatibility for run.yaml configs
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.[0-9]+.[0-9]+'
|
||||
- 'release-[0-9]+.[0-9]+.[0-9]+'
|
||||
- 'release-[0-9]+.[0-9]+'
|
||||
paths:
|
||||
- 'src/llama_stack/core/datatypes.py'
|
||||
- 'src/llama_stack/providers/datatypes.py'
|
||||
- 'src/llama_stack/distributions/**/run.yaml'
|
||||
- 'tests/backward_compat/**'
|
||||
- '.github/workflows/backward-compat.yml'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
check-main-compatibility:
|
||||
name: Check Compatibility with main
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout PR branch
|
||||
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
|
||||
with:
|
||||
fetch-depth: 0 # Need full history to access main branch
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@85856786d1ce8acfbcc2f13a5f3fbd6b938f9f41 # v7.1.2
|
||||
with:
|
||||
enable-cache: true
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv sync --group dev
|
||||
|
||||
- name: Extract run.yaml files from main branch
|
||||
id: extract_configs
|
||||
run: |
|
||||
# Get list of run.yaml paths from main
|
||||
git fetch origin main
|
||||
CONFIG_PATHS=$(git ls-tree -r --name-only origin/main | grep "src/llama_stack/distributions/.*/run.yaml$" || true)
|
||||
|
||||
if [ -z "$CONFIG_PATHS" ]; then
|
||||
echo "No run.yaml files found in main branch"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Extract all configs to a temp directory
|
||||
mkdir -p /tmp/main_configs
|
||||
echo "Extracting configs from main branch:"
|
||||
|
||||
while IFS= read -r config_path; do
|
||||
if [ -z "$config_path" ]; then
|
||||
continue
|
||||
fi
|
||||
|
||||
# Extract filename for storage
|
||||
filename=$(basename $(dirname "$config_path"))
|
||||
echo " - $filename (from $config_path)"
|
||||
|
||||
git show origin/main:"$config_path" > "/tmp/main_configs/${filename}.yaml"
|
||||
done <<< "$CONFIG_PATHS"
|
||||
|
||||
echo ""
|
||||
echo "Extracted $(ls /tmp/main_configs/*.yaml | wc -l) config files"
|
||||
|
||||
- name: Test all configs from main
|
||||
id: test_configs
|
||||
continue-on-error: true
|
||||
run: |
|
||||
# Run pytest once with all configs parameterized
|
||||
if COMPAT_TEST_CONFIGS_DIR=/tmp/main_configs uv run pytest tests/backward_compat/test_run_config.py -v; then
|
||||
echo "failed=false" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "failed=true" >> $GITHUB_OUTPUT
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Check for breaking change acknowledgment
|
||||
id: check_ack
|
||||
if: steps.test_configs.outputs.failed == 'true'
|
||||
run: |
|
||||
echo "Breaking changes detected. Checking for acknowledgment..."
|
||||
|
||||
# Check PR title for '!:' marker (conventional commits)
|
||||
PR_TITLE="${{ github.event.pull_request.title }}"
|
||||
if [[ "$PR_TITLE" =~ ^[a-z]+\!: ]]; then
|
||||
echo "✓ Breaking change acknowledged in PR title"
|
||||
echo "acknowledged=true" >> $GITHUB_OUTPUT
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Check commit messages for BREAKING CHANGE:
|
||||
if git log origin/main..HEAD --format=%B | grep -q "BREAKING CHANGE:"; then
|
||||
echo "✓ Breaking change acknowledged in commit message"
|
||||
echo "acknowledged=true" >> $GITHUB_OUTPUT
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "✗ Breaking change NOT acknowledged"
|
||||
echo "acknowledged=false" >> $GITHUB_OUTPUT
|
||||
env:
|
||||
GH_TOKEN: ${{ github.token }}
|
||||
|
||||
- name: Evaluate results
|
||||
if: always()
|
||||
run: |
|
||||
FAILED="${{ steps.test_configs.outputs.failed }}"
|
||||
ACKNOWLEDGED="${{ steps.check_ack.outputs.acknowledged }}"
|
||||
|
||||
if [[ "$FAILED" == "true" ]]; then
|
||||
if [[ "$ACKNOWLEDGED" == "true" ]]; then
|
||||
echo ""
|
||||
echo "⚠️ WARNING: Breaking changes detected but acknowledged"
|
||||
echo ""
|
||||
echo "This PR introduces backward-incompatible changes to run.yaml."
|
||||
echo "The changes have been properly acknowledged."
|
||||
echo ""
|
||||
exit 0 # Pass the check
|
||||
else
|
||||
echo ""
|
||||
echo "❌ ERROR: Breaking changes detected without acknowledgment"
|
||||
echo ""
|
||||
echo "This PR introduces backward-incompatible changes to run.yaml"
|
||||
echo "that will break existing user configurations."
|
||||
echo ""
|
||||
echo "To acknowledge this breaking change, do ONE of:"
|
||||
echo " 1. Add '!:' to your PR title (e.g., 'feat!: change xyz')"
|
||||
echo " 2. Add the 'breaking-change' label to this PR"
|
||||
echo " 3. Include 'BREAKING CHANGE:' in a commit message"
|
||||
echo ""
|
||||
exit 1 # Fail the check
|
||||
fi
|
||||
fi
|
||||
|
||||
test-integration-main:
|
||||
name: Run Integration Tests with main Config
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout PR branch
|
||||
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Extract ci-tests run.yaml from main
|
||||
run: |
|
||||
git fetch origin main
|
||||
git show origin/main:src/llama_stack/distributions/ci-tests/run.yaml > /tmp/main-ci-tests-run.yaml
|
||||
echo "Extracted ci-tests run.yaml from main branch"
|
||||
|
||||
- name: Setup test environment
|
||||
uses: ./.github/actions/setup-test-environment
|
||||
with:
|
||||
python-version: '3.12'
|
||||
client-version: 'latest'
|
||||
setup: 'ollama'
|
||||
suite: 'base'
|
||||
inference-mode: 'replay'
|
||||
|
||||
- name: Run integration tests with main config
|
||||
id: test_integration
|
||||
continue-on-error: true
|
||||
uses: ./.github/actions/run-and-record-tests
|
||||
with:
|
||||
stack-config: /tmp/main-ci-tests-run.yaml
|
||||
setup: 'ollama'
|
||||
inference-mode: 'replay'
|
||||
suite: 'base'
|
||||
|
||||
- name: Check for breaking change acknowledgment
|
||||
id: check_ack
|
||||
if: steps.test_integration.outcome == 'failure'
|
||||
run: |
|
||||
echo "Integration tests failed. Checking for acknowledgment..."
|
||||
|
||||
# Check PR title for '!:' marker (conventional commits)
|
||||
PR_TITLE="${{ github.event.pull_request.title }}"
|
||||
if [[ "$PR_TITLE" =~ ^[a-z]+\!: ]]; then
|
||||
echo "✓ Breaking change acknowledged in PR title"
|
||||
echo "acknowledged=true" >> $GITHUB_OUTPUT
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Check commit messages for BREAKING CHANGE:
|
||||
if git log origin/main..HEAD --format=%B | grep -q "BREAKING CHANGE:"; then
|
||||
echo "✓ Breaking change acknowledged in commit message"
|
||||
echo "acknowledged=true" >> $GITHUB_OUTPUT
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "✗ Breaking change NOT acknowledged"
|
||||
echo "acknowledged=false" >> $GITHUB_OUTPUT
|
||||
env:
|
||||
GH_TOKEN: ${{ github.token }}
|
||||
|
||||
- name: Evaluate integration test results
|
||||
if: always()
|
||||
run: |
|
||||
TEST_FAILED="${{ steps.test_integration.outcome == 'failure' }}"
|
||||
ACKNOWLEDGED="${{ steps.check_ack.outputs.acknowledged }}"
|
||||
|
||||
if [[ "$TEST_FAILED" == "true" ]]; then
|
||||
if [[ "$ACKNOWLEDGED" == "true" ]]; then
|
||||
echo ""
|
||||
echo "⚠️ WARNING: Integration tests failed with main config but acknowledged"
|
||||
echo ""
|
||||
exit 0 # Pass the check
|
||||
else
|
||||
echo ""
|
||||
echo "❌ ERROR: Integration tests failed with main config without acknowledgment"
|
||||
echo ""
|
||||
echo "To acknowledge this breaking change, do ONE of:"
|
||||
echo " 1. Add '!:' to your PR title (e.g., 'feat!: change xyz')"
|
||||
echo " 2. Include 'BREAKING CHANGE:' in a commit message"
|
||||
echo ""
|
||||
exit 1 # Fail the check
|
||||
fi
|
||||
fi
|
||||
|
||||
test-integration-release:
|
||||
name: Run Integration Tests with Latest Release (Informational)
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout PR branch
|
||||
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Get latest release
|
||||
id: get_release
|
||||
run: |
|
||||
# Get the latest release from GitHub
|
||||
LATEST_TAG=$(gh release list --limit 1 --json tagName --jq '.[0].tagName' 2>/dev/null || echo "")
|
||||
|
||||
if [ -z "$LATEST_TAG" ]; then
|
||||
echo "No releases found, skipping release compatibility check"
|
||||
echo "has_release=false" >> $GITHUB_OUTPUT
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Latest release: $LATEST_TAG"
|
||||
echo "has_release=true" >> $GITHUB_OUTPUT
|
||||
echo "tag=$LATEST_TAG" >> $GITHUB_OUTPUT
|
||||
env:
|
||||
GH_TOKEN: ${{ github.token }}
|
||||
|
||||
- name: Extract ci-tests run.yaml from release
|
||||
if: steps.get_release.outputs.has_release == 'true'
|
||||
id: extract_config
|
||||
run: |
|
||||
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
|
||||
|
||||
# Try with src/ prefix first (newer releases), then without (older releases)
|
||||
if git show "$RELEASE_TAG:src/llama_stack/distributions/ci-tests/run.yaml" > /tmp/release-ci-tests-run.yaml 2>/dev/null; then
|
||||
echo "Extracted ci-tests run.yaml from release $RELEASE_TAG (src/ path)"
|
||||
echo "has_config=true" >> $GITHUB_OUTPUT
|
||||
elif git show "$RELEASE_TAG:llama_stack/distributions/ci-tests/run.yaml" > /tmp/release-ci-tests-run.yaml 2>/dev/null; then
|
||||
echo "Extracted ci-tests run.yaml from release $RELEASE_TAG (old path)"
|
||||
echo "has_config=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "::warning::ci-tests/run.yaml not found in release $RELEASE_TAG"
|
||||
echo "has_config=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Setup test environment
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
|
||||
uses: ./.github/actions/setup-test-environment
|
||||
with:
|
||||
python-version: '3.12'
|
||||
client-version: 'latest'
|
||||
setup: 'ollama'
|
||||
suite: 'base'
|
||||
inference-mode: 'replay'
|
||||
|
||||
- name: Run integration tests with release config (PR branch)
|
||||
id: test_release_pr
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
|
||||
continue-on-error: true
|
||||
uses: ./.github/actions/run-and-record-tests
|
||||
with:
|
||||
stack-config: /tmp/release-ci-tests-run.yaml
|
||||
setup: 'ollama'
|
||||
inference-mode: 'replay'
|
||||
suite: 'base'
|
||||
|
||||
- name: Checkout main branch to test baseline
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
|
||||
run: |
|
||||
git checkout origin/main
|
||||
|
||||
- name: Setup test environment for main
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
|
||||
uses: ./.github/actions/setup-test-environment
|
||||
with:
|
||||
python-version: '3.12'
|
||||
client-version: 'latest'
|
||||
setup: 'ollama'
|
||||
suite: 'base'
|
||||
inference-mode: 'replay'
|
||||
|
||||
- name: Run integration tests with release config (main branch)
|
||||
id: test_release_main
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
|
||||
continue-on-error: true
|
||||
uses: ./.github/actions/run-and-record-tests
|
||||
with:
|
||||
stack-config: /tmp/release-ci-tests-run.yaml
|
||||
setup: 'ollama'
|
||||
inference-mode: 'replay'
|
||||
suite: 'base'
|
||||
|
||||
- name: Report results and post PR comment
|
||||
if: always() && steps.get_release.outputs.has_release == 'true' && steps.extract_config.outputs.has_config == 'true'
|
||||
run: |
|
||||
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
|
||||
PR_OUTCOME="${{ steps.test_release_pr.outcome }}"
|
||||
MAIN_OUTCOME="${{ steps.test_release_main.outcome }}"
|
||||
|
||||
if [[ "$PR_OUTCOME" == "failure" && "$MAIN_OUTCOME" == "success" ]]; then
|
||||
# NEW breaking change - PR fails but main passes
|
||||
echo "::error::🚨 This PR introduces a NEW breaking change!"
|
||||
|
||||
# Check if we already posted a comment (to avoid spam on every push)
|
||||
EXISTING_COMMENT=$(gh pr view ${{ github.event.pull_request.number }} --json comments --jq '.comments[] | select(.body | contains("🚨 New Breaking Change Detected") and contains("Integration tests")) | .id' | head -1)
|
||||
|
||||
if [[ -z "$EXISTING_COMMENT" ]]; then
|
||||
gh pr comment ${{ github.event.pull_request.number }} --body "## 🚨 New Breaking Change Detected
|
||||
|
||||
**Integration tests against release \`$RELEASE_TAG\` are now failing**
|
||||
|
||||
⚠️ This PR introduces a breaking change that affects compatibility with the latest release.
|
||||
|
||||
- Users on release \`$RELEASE_TAG\` may not be able to upgrade
|
||||
- Existing configurations may break
|
||||
|
||||
The tests pass on \`main\` but fail with this PR's changes.
|
||||
|
||||
> **Note:** This is informational only and does not block merge.
|
||||
> Consider whether this breaking change is acceptable for users."
|
||||
else
|
||||
echo "Comment already exists, skipping to avoid spam"
|
||||
fi
|
||||
|
||||
cat >> $GITHUB_STEP_SUMMARY <<EOF
|
||||
## 🚨 NEW Breaking Change Detected
|
||||
|
||||
**Integration tests against release \`$RELEASE_TAG\` FAILED**
|
||||
|
||||
⚠️ **This PR introduces a NEW breaking change**
|
||||
|
||||
- Tests **PASS** on main branch ✅
|
||||
- Tests **FAIL** on PR branch ❌
|
||||
- Users on release \`$RELEASE_TAG\` may not be able to upgrade
|
||||
- Existing configurations may break
|
||||
|
||||
> **Note:** This is informational only and does not block merge.
|
||||
> Consider whether this breaking change is acceptable for users.
|
||||
EOF
|
||||
|
||||
elif [[ "$PR_OUTCOME" == "failure" ]]; then
|
||||
# Existing breaking change - both PR and main fail
|
||||
echo "::warning::Breaking change already exists in main branch"
|
||||
|
||||
cat >> $GITHUB_STEP_SUMMARY <<EOF
|
||||
## ⚠️ Release Compatibility Test Failed (Existing Issue)
|
||||
|
||||
**Integration tests against release \`$RELEASE_TAG\` FAILED**
|
||||
|
||||
- Tests **FAIL** on main branch ❌
|
||||
- Tests **FAIL** on PR branch ❌
|
||||
- This breaking change already exists in main (not introduced by this PR)
|
||||
|
||||
> **Note:** This is informational only.
|
||||
EOF
|
||||
|
||||
else
|
||||
# Success - tests pass
|
||||
cat >> $GITHUB_STEP_SUMMARY <<EOF
|
||||
## ✅ Release Compatibility Test Passed
|
||||
|
||||
Integration tests against release \`$RELEASE_TAG\` passed successfully.
|
||||
This PR maintains compatibility with the latest release.
|
||||
EOF
|
||||
fi
|
||||
env:
|
||||
GH_TOKEN: ${{ github.token }}
|
||||
|
||||
check-schema-release-compatibility:
|
||||
name: Check Schema Compatibility with Latest Release (Informational)
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout PR branch
|
||||
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@85856786d1ce8acfbcc2f13a5f3fbd6b938f9f41 # v7.1.2
|
||||
with:
|
||||
enable-cache: true
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv sync --group dev
|
||||
|
||||
- name: Get latest release
|
||||
id: get_release
|
||||
run: |
|
||||
# Get the latest release from GitHub
|
||||
LATEST_TAG=$(gh release list --limit 1 --json tagName --jq '.[0].tagName' 2>/dev/null || echo "")
|
||||
|
||||
if [ -z "$LATEST_TAG" ]; then
|
||||
echo "No releases found, skipping release compatibility check"
|
||||
echo "has_release=false" >> $GITHUB_OUTPUT
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Latest release: $LATEST_TAG"
|
||||
echo "has_release=true" >> $GITHUB_OUTPUT
|
||||
echo "tag=$LATEST_TAG" >> $GITHUB_OUTPUT
|
||||
env:
|
||||
GH_TOKEN: ${{ github.token }}
|
||||
|
||||
- name: Extract configs from release
|
||||
if: steps.get_release.outputs.has_release == 'true'
|
||||
id: extract_release_configs
|
||||
run: |
|
||||
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
|
||||
|
||||
# Get run.yaml files from the release (try both src/ and old path)
|
||||
CONFIG_PATHS=$(git ls-tree -r --name-only "$RELEASE_TAG" | grep "llama_stack/distributions/.*/run.yaml$" || true)
|
||||
|
||||
if [ -z "$CONFIG_PATHS" ]; then
|
||||
echo "::warning::No run.yaml files found in release $RELEASE_TAG"
|
||||
echo "has_configs=false" >> $GITHUB_OUTPUT
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Extract all configs to a temp directory
|
||||
mkdir -p /tmp/release_configs
|
||||
echo "Extracting configs from release $RELEASE_TAG:"
|
||||
|
||||
while IFS= read -r config_path; do
|
||||
if [ -z "$config_path" ]; then
|
||||
continue
|
||||
fi
|
||||
|
||||
filename=$(basename $(dirname "$config_path"))
|
||||
echo " - $filename (from $config_path)"
|
||||
|
||||
git show "$RELEASE_TAG:$config_path" > "/tmp/release_configs/${filename}.yaml" 2>/dev/null || true
|
||||
done <<< "$CONFIG_PATHS"
|
||||
|
||||
echo ""
|
||||
echo "Extracted $(ls /tmp/release_configs/*.yaml 2>/dev/null | wc -l) config files"
|
||||
echo "has_configs=true" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Test against release configs (PR branch)
|
||||
id: test_schema_pr
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
|
||||
continue-on-error: true
|
||||
run: |
|
||||
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
|
||||
COMPAT_TEST_CONFIGS_DIR=/tmp/release_configs uv run pytest tests/backward_compat/test_run_config.py -v --tb=short
|
||||
|
||||
- name: Checkout main branch to test baseline
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
|
||||
run: |
|
||||
git checkout origin/main
|
||||
|
||||
- name: Install dependencies for main
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
|
||||
run: |
|
||||
uv sync --group dev
|
||||
|
||||
- name: Test against release configs (main branch)
|
||||
id: test_schema_main
|
||||
if: steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
|
||||
continue-on-error: true
|
||||
run: |
|
||||
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
|
||||
COMPAT_TEST_CONFIGS_DIR=/tmp/release_configs uv run pytest tests/backward_compat/test_run_config.py -v --tb=short
|
||||
|
||||
- name: Report results and post PR comment
|
||||
if: always() && steps.get_release.outputs.has_release == 'true' && steps.extract_release_configs.outputs.has_configs == 'true'
|
||||
run: |
|
||||
RELEASE_TAG="${{ steps.get_release.outputs.tag }}"
|
||||
PR_OUTCOME="${{ steps.test_schema_pr.outcome }}"
|
||||
MAIN_OUTCOME="${{ steps.test_schema_main.outcome }}"
|
||||
|
||||
if [[ "$PR_OUTCOME" == "failure" && "$MAIN_OUTCOME" == "success" ]]; then
|
||||
# NEW breaking change - PR fails but main passes
|
||||
echo "::error::🚨 This PR introduces a NEW schema breaking change!"
|
||||
|
||||
# Check if we already posted a comment (to avoid spam on every push)
|
||||
EXISTING_COMMENT=$(gh pr view ${{ github.event.pull_request.number }} --json comments --jq '.comments[] | select(.body | contains("🚨 New Schema Breaking Change Detected")) | .id' | head -1)
|
||||
|
||||
if [[ -z "$EXISTING_COMMENT" ]]; then
|
||||
gh pr comment ${{ github.event.pull_request.number }} --body "## 🚨 New Schema Breaking Change Detected
|
||||
|
||||
**Schema validation against release \`$RELEASE_TAG\` is now failing**
|
||||
|
||||
⚠️ This PR introduces a schema breaking change that affects compatibility with the latest release.
|
||||
|
||||
- Users on release \`$RELEASE_TAG\` will not be able to upgrade
|
||||
- Existing run.yaml configurations will fail validation
|
||||
|
||||
The tests pass on \`main\` but fail with this PR's changes.
|
||||
|
||||
> **Note:** This is informational only and does not block merge.
|
||||
> Consider whether this breaking change is acceptable for users."
|
||||
else
|
||||
echo "Comment already exists, skipping to avoid spam"
|
||||
fi
|
||||
|
||||
cat >> $GITHUB_STEP_SUMMARY <<EOF
|
||||
## 🚨 NEW Schema Breaking Change Detected
|
||||
|
||||
**Schema validation against release \`$RELEASE_TAG\` FAILED**
|
||||
|
||||
⚠️ **This PR introduces a NEW schema breaking change**
|
||||
|
||||
- Tests **PASS** on main branch ✅
|
||||
- Tests **FAIL** on PR branch ❌
|
||||
- Users on release \`$RELEASE_TAG\` will not be able to upgrade
|
||||
- Existing run.yaml configurations will fail validation
|
||||
|
||||
> **Note:** This is informational only and does not block merge.
|
||||
> Consider whether this breaking change is acceptable for users.
|
||||
EOF
|
||||
|
||||
elif [[ "$PR_OUTCOME" == "failure" ]]; then
|
||||
# Existing breaking change - both PR and main fail
|
||||
echo "::warning::Schema breaking change already exists in main branch"
|
||||
|
||||
cat >> $GITHUB_STEP_SUMMARY <<EOF
|
||||
## ⚠️ Release Schema Compatibility Failed (Existing Issue)
|
||||
|
||||
**Schema validation against release \`$RELEASE_TAG\` FAILED**
|
||||
|
||||
- Tests **FAIL** on main branch ❌
|
||||
- Tests **FAIL** on PR branch ❌
|
||||
- This schema breaking change already exists in main (not introduced by this PR)
|
||||
|
||||
> **Note:** This is informational only.
|
||||
EOF
|
||||
|
||||
else
|
||||
# Success - tests pass
|
||||
cat >> $GITHUB_STEP_SUMMARY <<EOF
|
||||
## ✅ Release Schema Compatibility Passed
|
||||
|
||||
All run.yaml configs from release \`$RELEASE_TAG\` are compatible.
|
||||
This PR maintains backward compatibility with the latest release.
|
||||
EOF
|
||||
fi
|
||||
env:
|
||||
GH_TOKEN: ${{ github.token }}
|
||||
1
.github/workflows/conformance.yml
vendored
1
.github/workflows/conformance.yml
vendored
|
|
@ -22,7 +22,6 @@ on:
|
|||
- 'docs/static/stable-llama-stack-spec.yaml' # Stable APIs spec
|
||||
- 'docs/static/experimental-llama-stack-spec.yaml' # Experimental APIs spec
|
||||
- 'docs/static/deprecated-llama-stack-spec.yaml' # Deprecated APIs spec
|
||||
- 'docs/static/llama-stack-spec.html' # Legacy HTML spec
|
||||
- '.github/workflows/conformance.yml' # This workflow itself
|
||||
|
||||
concurrency:
|
||||
|
|
|
|||
10
.github/workflows/install-script-ci.yml
vendored
10
.github/workflows/install-script-ci.yml
vendored
|
|
@ -30,10 +30,16 @@ jobs:
|
|||
|
||||
- name: Build a single provider
|
||||
run: |
|
||||
BUILD_ARGS="--build-arg INSTALL_MODE=editable --build-arg DISTRO_NAME=starter"
|
||||
if [ -n "${UV_EXTRA_INDEX_URL:-}" ]; then
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL"
|
||||
fi
|
||||
if [ -n "${UV_INDEX_STRATEGY:-}" ]; then
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY"
|
||||
fi
|
||||
docker build . \
|
||||
-f containers/Containerfile \
|
||||
--build-arg INSTALL_MODE=editable \
|
||||
--build-arg DISTRO_NAME=starter \
|
||||
$BUILD_ARGS \
|
||||
--tag llama-stack:starter-ci
|
||||
|
||||
- name: Run installer end-to-end
|
||||
|
|
|
|||
8
.github/workflows/integration-auth-tests.yml
vendored
8
.github/workflows/integration-auth-tests.yml
vendored
|
|
@ -4,9 +4,13 @@ run-name: Run the integration test suite with Kubernetes authentication
|
|||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
paths:
|
||||
- 'distributions/**'
|
||||
- 'src/llama_stack/**'
|
||||
|
|
|
|||
|
|
@ -4,9 +4,13 @@ run-name: Run the integration test suite with SqlStore
|
|||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
paths:
|
||||
- 'src/llama_stack/providers/utils/sqlstore/**'
|
||||
- 'tests/integration/sqlstore/**'
|
||||
|
|
|
|||
11
.github/workflows/integration-tests.yml
vendored
11
.github/workflows/integration-tests.yml
vendored
|
|
@ -4,9 +4,13 @@ run-name: Run the integration test suites from tests/integration in replay mode
|
|||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
types: [opened, synchronize, reopened]
|
||||
paths:
|
||||
- 'src/llama_stack/**'
|
||||
|
|
@ -18,6 +22,7 @@ on:
|
|||
- '.github/actions/setup-ollama/action.yml'
|
||||
- '.github/actions/setup-test-environment/action.yml'
|
||||
- '.github/actions/run-and-record-tests/action.yml'
|
||||
- 'scripts/integration-tests.sh'
|
||||
schedule:
|
||||
# If changing the cron schedule, update the provider in the test-matrix job
|
||||
- cron: '0 0 * * *' # (test latest client) Daily at 12 AM UTC
|
||||
|
|
@ -47,7 +52,7 @@ jobs:
|
|||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
client-type: [library, docker]
|
||||
client-type: [library, docker, server]
|
||||
# Use Python 3.13 only on nightly schedule (daily latest client test), otherwise use 3.12
|
||||
python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }}
|
||||
client-version: ${{ (github.event.schedule == '0 0 * * *' || github.event.inputs.test-all-client-versions == 'true') && fromJSON('["published", "latest"]') || fromJSON('["latest"]') }}
|
||||
|
|
|
|||
|
|
@ -4,9 +4,13 @@ run-name: Run the integration test suite with various VectorIO providers
|
|||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
paths:
|
||||
- 'src/llama_stack/**'
|
||||
- '!src/llama_stack/ui/**'
|
||||
|
|
|
|||
68
.github/workflows/pre-commit.yml
vendored
68
.github/workflows/pre-commit.yml
vendored
|
|
@ -5,7 +5,9 @@ run-name: Run pre-commit checks
|
|||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches: [main]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref == 'refs/heads/main' && github.run_id || github.ref }}
|
||||
|
|
@ -43,23 +45,41 @@ jobs:
|
|||
cache: 'npm'
|
||||
cache-dependency-path: 'src/llama_stack/ui/'
|
||||
|
||||
- name: Set up uv
|
||||
uses: astral-sh/setup-uv@85856786d1ce8acfbcc2f13a5f3fbd6b938f9f41 # v7.1.2
|
||||
|
||||
- name: Install npm dependencies
|
||||
run: npm ci
|
||||
working-directory: src/llama_stack/ui
|
||||
|
||||
- name: Install pre-commit
|
||||
run: python -m pip install pre-commit
|
||||
|
||||
- name: Cache pre-commit
|
||||
uses: actions/cache@0057852bfaa89a56745cba8c7296529d2fc39830 # v4
|
||||
with:
|
||||
path: ~/.cache/pre-commit
|
||||
key: pre-commit-3|${{ env.pythonLocation }}|${{ hashFiles('.pre-commit-config.yaml') }}
|
||||
|
||||
- name: Run pre-commit
|
||||
id: precommit
|
||||
uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
|
||||
continue-on-error: true
|
||||
run: |
|
||||
set +e
|
||||
pre-commit run --show-diff-on-failure --color=always --all-files 2>&1 | tee /tmp/precommit.log
|
||||
status=${PIPESTATUS[0]}
|
||||
echo "status=$status" >> $GITHUB_OUTPUT
|
||||
exit 0
|
||||
env:
|
||||
SKIP: no-commit-to-branch
|
||||
SKIP: no-commit-to-branch,mypy
|
||||
RUFF_OUTPUT_FORMAT: github
|
||||
|
||||
- name: Check pre-commit results
|
||||
if: steps.precommit.outcome == 'failure'
|
||||
if: steps.precommit.outputs.status != '0'
|
||||
run: |
|
||||
echo "::error::Pre-commit hooks failed. Please run 'pre-commit run --all-files' locally and commit the fixes."
|
||||
echo "::warning::Some pre-commit hooks failed. Check the output above for details."
|
||||
echo ""
|
||||
echo "Failed hooks output:"
|
||||
cat /tmp/precommit.log
|
||||
exit 1
|
||||
|
||||
- name: Debug
|
||||
|
|
@ -109,3 +129,39 @@ jobs:
|
|||
echo "$unstaged_files"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Configure client installation
|
||||
id: client-config
|
||||
uses: ./.github/actions/install-llama-stack-client
|
||||
|
||||
- name: Sync dev + type_checking dependencies
|
||||
env:
|
||||
UV_EXTRA_INDEX_URL: ${{ steps.client-config.outputs.uv-extra-index-url }}
|
||||
run: |
|
||||
if [ -n "$UV_EXTRA_INDEX_URL" ]; then
|
||||
export UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
fi
|
||||
|
||||
uv sync --group dev --group type_checking
|
||||
|
||||
# Install specific client version after sync if needed
|
||||
if [ "${{ steps.client-config.outputs.install-after-sync }}" = "true" ]; then
|
||||
echo "Installing llama-stack-client from: ${{ steps.client-config.outputs.install-source }}"
|
||||
uv pip install ${{ steps.client-config.outputs.install-source }}
|
||||
fi
|
||||
|
||||
- name: Run mypy (full type_checking)
|
||||
env:
|
||||
UV_EXTRA_INDEX_URL: ${{ steps.client-config.outputs.uv-extra-index-url }}
|
||||
run: |
|
||||
if [ -n "$UV_EXTRA_INDEX_URL" ]; then
|
||||
export UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
fi
|
||||
|
||||
set +e
|
||||
uv run --group dev --group type_checking mypy
|
||||
status=$?
|
||||
if [ $status -ne 0 ]; then
|
||||
echo "::error::Full mypy failed. Reproduce locally with 'uv run pre-commit run mypy-full --hook-stage manual --all-files'."
|
||||
fi
|
||||
exit $status
|
||||
|
|
|
|||
227
.github/workflows/precommit-trigger.yml
vendored
227
.github/workflows/precommit-trigger.yml
vendored
|
|
@ -1,227 +0,0 @@
|
|||
name: Pre-commit Bot
|
||||
|
||||
run-name: Pre-commit bot for PR #${{ github.event.issue.number }}
|
||||
|
||||
on:
|
||||
issue_comment:
|
||||
types: [created]
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
# Only run on pull request comments
|
||||
if: github.event.issue.pull_request && contains(github.event.comment.body, '@github-actions run precommit')
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
|
||||
steps:
|
||||
- name: Check comment author and get PR details
|
||||
id: check_author
|
||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
// Get PR details
|
||||
const pr = await github.rest.pulls.get({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
pull_number: context.issue.number
|
||||
});
|
||||
|
||||
// Check if commenter has write access or is the PR author
|
||||
const commenter = context.payload.comment.user.login;
|
||||
const prAuthor = pr.data.user.login;
|
||||
|
||||
let hasPermission = false;
|
||||
|
||||
// Check if commenter is PR author
|
||||
if (commenter === prAuthor) {
|
||||
hasPermission = true;
|
||||
console.log(`Comment author ${commenter} is the PR author`);
|
||||
} else {
|
||||
// Check if commenter has write/admin access
|
||||
try {
|
||||
const permission = await github.rest.repos.getCollaboratorPermissionLevel({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
username: commenter
|
||||
});
|
||||
|
||||
const level = permission.data.permission;
|
||||
hasPermission = ['write', 'admin', 'maintain'].includes(level);
|
||||
console.log(`Comment author ${commenter} has permission: ${level}`);
|
||||
} catch (error) {
|
||||
console.log(`Could not check permissions for ${commenter}: ${error.message}`);
|
||||
}
|
||||
}
|
||||
|
||||
if (!hasPermission) {
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
body: `❌ @${commenter} You don't have permission to trigger pre-commit. Only PR authors or repository collaborators can run this command.`
|
||||
});
|
||||
core.setFailed(`User ${commenter} does not have permission`);
|
||||
return;
|
||||
}
|
||||
|
||||
// Save PR info for later steps
|
||||
core.setOutput('pr_number', context.issue.number);
|
||||
core.setOutput('pr_head_ref', pr.data.head.ref);
|
||||
core.setOutput('pr_head_sha', pr.data.head.sha);
|
||||
core.setOutput('pr_head_repo', pr.data.head.repo.full_name);
|
||||
core.setOutput('pr_base_ref', pr.data.base.ref);
|
||||
core.setOutput('is_fork', pr.data.head.repo.full_name !== context.payload.repository.full_name);
|
||||
core.setOutput('authorized', 'true');
|
||||
|
||||
- name: React to comment
|
||||
if: steps.check_author.outputs.authorized == 'true'
|
||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
await github.rest.reactions.createForIssueComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
comment_id: context.payload.comment.id,
|
||||
content: 'rocket'
|
||||
});
|
||||
|
||||
- name: Comment starting
|
||||
if: steps.check_author.outputs.authorized == 'true'
|
||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: ${{ steps.check_author.outputs.pr_number }},
|
||||
body: `⏳ Running [pre-commit hooks](https://github.com/${context.repo.owner}/${context.repo.repo}/actions/runs/${context.runId}) on PR #${{ steps.check_author.outputs.pr_number }}...`
|
||||
});
|
||||
|
||||
- name: Checkout PR branch (same-repo)
|
||||
if: steps.check_author.outputs.authorized == 'true' && steps.check_author.outputs.is_fork == 'false'
|
||||
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
|
||||
with:
|
||||
ref: ${{ steps.check_author.outputs.pr_head_ref }}
|
||||
fetch-depth: 0
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Checkout PR branch (fork)
|
||||
if: steps.check_author.outputs.authorized == 'true' && steps.check_author.outputs.is_fork == 'true'
|
||||
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
|
||||
with:
|
||||
repository: ${{ steps.check_author.outputs.pr_head_repo }}
|
||||
ref: ${{ steps.check_author.outputs.pr_head_ref }}
|
||||
fetch-depth: 0
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Verify checkout
|
||||
if: steps.check_author.outputs.authorized == 'true'
|
||||
run: |
|
||||
echo "Current SHA: $(git rev-parse HEAD)"
|
||||
echo "Expected SHA: ${{ steps.check_author.outputs.pr_head_sha }}"
|
||||
if [[ "$(git rev-parse HEAD)" != "${{ steps.check_author.outputs.pr_head_sha }}" ]]; then
|
||||
echo "::error::Checked out SHA does not match expected SHA"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Set up Python
|
||||
if: steps.check_author.outputs.authorized == 'true'
|
||||
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
|
||||
with:
|
||||
python-version: '3.12'
|
||||
cache: pip
|
||||
cache-dependency-path: |
|
||||
**/requirements*.txt
|
||||
.pre-commit-config.yaml
|
||||
|
||||
- name: Set up Node.js
|
||||
if: steps.check_author.outputs.authorized == 'true'
|
||||
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0
|
||||
with:
|
||||
node-version: '20'
|
||||
cache: 'npm'
|
||||
cache-dependency-path: 'src/llama_stack/ui/'
|
||||
|
||||
- name: Install npm dependencies
|
||||
if: steps.check_author.outputs.authorized == 'true'
|
||||
run: npm ci
|
||||
working-directory: src/llama_stack/ui
|
||||
|
||||
- name: Run pre-commit
|
||||
if: steps.check_author.outputs.authorized == 'true'
|
||||
id: precommit
|
||||
uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
|
||||
continue-on-error: true
|
||||
env:
|
||||
SKIP: no-commit-to-branch
|
||||
RUFF_OUTPUT_FORMAT: github
|
||||
|
||||
- name: Check for changes
|
||||
if: steps.check_author.outputs.authorized == 'true'
|
||||
id: changes
|
||||
run: |
|
||||
if ! git diff --exit-code || [ -n "$(git ls-files --others --exclude-standard)" ]; then
|
||||
echo "has_changes=true" >> $GITHUB_OUTPUT
|
||||
echo "Changes detected after pre-commit"
|
||||
else
|
||||
echo "has_changes=false" >> $GITHUB_OUTPUT
|
||||
echo "No changes after pre-commit"
|
||||
fi
|
||||
|
||||
- name: Commit and push changes
|
||||
if: steps.check_author.outputs.authorized == 'true' && steps.changes.outputs.has_changes == 'true'
|
||||
run: |
|
||||
git config --local user.email "github-actions[bot]@users.noreply.github.com"
|
||||
git config --local user.name "github-actions[bot]"
|
||||
|
||||
git add -A
|
||||
git commit -m "style: apply pre-commit fixes
|
||||
|
||||
🤖 Applied by @github-actions bot via pre-commit workflow"
|
||||
|
||||
# Push changes
|
||||
git push origin HEAD:${{ steps.check_author.outputs.pr_head_ref }}
|
||||
|
||||
- name: Comment success with changes
|
||||
if: steps.check_author.outputs.authorized == 'true' && steps.changes.outputs.has_changes == 'true'
|
||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: ${{ steps.check_author.outputs.pr_number }},
|
||||
body: `✅ Pre-commit hooks completed successfully!\n\n🔧 Changes have been committed and pushed to the PR branch.`
|
||||
});
|
||||
|
||||
- name: Comment success without changes
|
||||
if: steps.check_author.outputs.authorized == 'true' && steps.changes.outputs.has_changes == 'false' && steps.precommit.outcome == 'success'
|
||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: ${{ steps.check_author.outputs.pr_number }},
|
||||
body: `✅ Pre-commit hooks passed!\n\n✨ No changes needed - your code is already formatted correctly.`
|
||||
});
|
||||
|
||||
- name: Comment failure
|
||||
if: failure()
|
||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: ${{ steps.check_author.outputs.pr_number }},
|
||||
body: `❌ Pre-commit workflow failed!\n\nPlease check the [workflow logs](https://github.com/${context.repo.owner}/${context.repo.repo}/actions/runs/${context.runId}) for details.`
|
||||
});
|
||||
38
.github/workflows/providers-build.yml
vendored
38
.github/workflows/providers-build.yml
vendored
|
|
@ -72,10 +72,16 @@ jobs:
|
|||
- name: Build container image
|
||||
if: matrix.image-type == 'container'
|
||||
run: |
|
||||
BUILD_ARGS="--build-arg INSTALL_MODE=editable --build-arg DISTRO_NAME=${{ matrix.distro }}"
|
||||
if [ -n "${UV_EXTRA_INDEX_URL:-}" ]; then
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL"
|
||||
fi
|
||||
if [ -n "${UV_INDEX_STRATEGY:-}" ]; then
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY"
|
||||
fi
|
||||
docker build . \
|
||||
-f containers/Containerfile \
|
||||
--build-arg INSTALL_MODE=editable \
|
||||
--build-arg DISTRO_NAME=${{ matrix.distro }} \
|
||||
$BUILD_ARGS \
|
||||
--tag llama-stack:${{ matrix.distro }}-ci
|
||||
|
||||
- name: Print dependencies in the image
|
||||
|
|
@ -108,12 +114,18 @@ jobs:
|
|||
- name: Build container image
|
||||
run: |
|
||||
BASE_IMAGE=$(yq -r '.distribution_spec.container_image // "python:3.12-slim"' src/llama_stack/distributions/ci-tests/build.yaml)
|
||||
BUILD_ARGS="--build-arg INSTALL_MODE=editable --build-arg DISTRO_NAME=ci-tests"
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg BASE_IMAGE=$BASE_IMAGE"
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg RUN_CONFIG_PATH=/workspace/src/llama_stack/distributions/ci-tests/run.yaml"
|
||||
if [ -n "${UV_EXTRA_INDEX_URL:-}" ]; then
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL"
|
||||
fi
|
||||
if [ -n "${UV_INDEX_STRATEGY:-}" ]; then
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY"
|
||||
fi
|
||||
docker build . \
|
||||
-f containers/Containerfile \
|
||||
--build-arg INSTALL_MODE=editable \
|
||||
--build-arg DISTRO_NAME=ci-tests \
|
||||
--build-arg BASE_IMAGE="$BASE_IMAGE" \
|
||||
--build-arg RUN_CONFIG_PATH=/workspace/src/llama_stack/distributions/ci-tests/run.yaml \
|
||||
$BUILD_ARGS \
|
||||
-t llama-stack:ci-tests
|
||||
|
||||
- name: Inspect the container image entrypoint
|
||||
|
|
@ -148,12 +160,18 @@ jobs:
|
|||
- name: Build UBI9 container image
|
||||
run: |
|
||||
BASE_IMAGE=$(yq -r '.distribution_spec.container_image // "registry.access.redhat.com/ubi9:latest"' src/llama_stack/distributions/ci-tests/build.yaml)
|
||||
BUILD_ARGS="--build-arg INSTALL_MODE=editable --build-arg DISTRO_NAME=ci-tests"
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg BASE_IMAGE=$BASE_IMAGE"
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg RUN_CONFIG_PATH=/workspace/src/llama_stack/distributions/ci-tests/run.yaml"
|
||||
if [ -n "${UV_EXTRA_INDEX_URL:-}" ]; then
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL"
|
||||
fi
|
||||
if [ -n "${UV_INDEX_STRATEGY:-}" ]; then
|
||||
BUILD_ARGS="$BUILD_ARGS --build-arg UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY"
|
||||
fi
|
||||
docker build . \
|
||||
-f containers/Containerfile \
|
||||
--build-arg INSTALL_MODE=editable \
|
||||
--build-arg DISTRO_NAME=ci-tests \
|
||||
--build-arg BASE_IMAGE="$BASE_IMAGE" \
|
||||
--build-arg RUN_CONFIG_PATH=/workspace/src/llama_stack/distributions/ci-tests/run.yaml \
|
||||
$BUILD_ARGS \
|
||||
-t llama-stack:ci-tests-ubi9
|
||||
|
||||
- name: Inspect UBI9 image
|
||||
|
|
|
|||
2
.github/workflows/python-build-test.yml
vendored
2
.github/workflows/python-build-test.yml
vendored
|
|
@ -24,7 +24,7 @@ jobs:
|
|||
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@2ddd2b9cb38ad8efd50337e8ab201519a34c9f24 # v7.1.1
|
||||
uses: astral-sh/setup-uv@85856786d1ce8acfbcc2f13a5f3fbd6b938f9f41 # v7.1.2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
activate-environment: true
|
||||
|
|
|
|||
8
.github/workflows/unit-tests.yml
vendored
8
.github/workflows/unit-tests.yml
vendored
|
|
@ -4,9 +4,13 @@ run-name: Run the unit test suite
|
|||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
branches:
|
||||
- main
|
||||
- 'release-[0-9]+.[0-9]+.x'
|
||||
paths:
|
||||
- 'src/llama_stack/**'
|
||||
- '!src/llama_stack/ui/**'
|
||||
|
|
|
|||
3
.gitignore
vendored
3
.gitignore
vendored
|
|
@ -32,3 +32,6 @@ CLAUDE.md
|
|||
docs/.docusaurus/
|
||||
docs/node_modules/
|
||||
docs/static/imported-files/
|
||||
docs/docs/api-deprecated/
|
||||
docs/docs/api-experimental/
|
||||
docs/docs/api/
|
||||
|
|
|
|||
|
|
@ -52,13 +52,9 @@ repos:
|
|||
additional_dependencies:
|
||||
- black==24.3.0
|
||||
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
rev: 0.7.20
|
||||
hooks:
|
||||
- id: uv-lock
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v1.16.1
|
||||
rev: v1.18.2
|
||||
hooks:
|
||||
- id: mypy
|
||||
additional_dependencies:
|
||||
|
|
@ -78,11 +74,26 @@ repos:
|
|||
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: uv-lock
|
||||
name: uv-lock
|
||||
additional_dependencies:
|
||||
- uv==0.7.20
|
||||
entry: ./scripts/uv-run-with-index.sh lock
|
||||
language: python
|
||||
pass_filenames: false
|
||||
require_serial: true
|
||||
files: ^(pyproject\.toml|uv\.lock)$
|
||||
- id: mypy-full
|
||||
name: mypy (full type_checking)
|
||||
entry: ./scripts/uv-run-with-index.sh run --group dev --group type_checking mypy
|
||||
language: system
|
||||
pass_filenames: false
|
||||
stages: [manual]
|
||||
- id: distro-codegen
|
||||
name: Distribution Template Codegen
|
||||
additional_dependencies:
|
||||
- uv==0.7.8
|
||||
entry: uv run --group codegen ./scripts/distro_codegen.py
|
||||
entry: ./scripts/uv-run-with-index.sh run --group codegen ./scripts/distro_codegen.py
|
||||
language: python
|
||||
pass_filenames: false
|
||||
require_serial: true
|
||||
|
|
@ -91,7 +102,7 @@ repos:
|
|||
name: Provider Codegen
|
||||
additional_dependencies:
|
||||
- uv==0.7.8
|
||||
entry: uv run --group codegen ./scripts/provider_codegen.py
|
||||
entry: ./scripts/uv-run-with-index.sh run --group codegen ./scripts/provider_codegen.py
|
||||
language: python
|
||||
pass_filenames: false
|
||||
require_serial: true
|
||||
|
|
@ -100,7 +111,7 @@ repos:
|
|||
name: API Spec Codegen
|
||||
additional_dependencies:
|
||||
- uv==0.7.8
|
||||
entry: sh -c 'uv run ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
|
||||
entry: sh -c './scripts/uv-run-with-index.sh run ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
|
||||
language: python
|
||||
pass_filenames: false
|
||||
require_serial: true
|
||||
|
|
@ -141,7 +152,7 @@ repos:
|
|||
name: Generate CI documentation
|
||||
additional_dependencies:
|
||||
- uv==0.7.8
|
||||
entry: uv run ./scripts/gen-ci-docs.py
|
||||
entry: ./scripts/uv-run-with-index.sh run ./scripts/gen-ci-docs.py
|
||||
language: python
|
||||
pass_filenames: false
|
||||
require_serial: true
|
||||
|
|
@ -172,6 +183,23 @@ repos:
|
|||
exit 1
|
||||
fi
|
||||
exit 0
|
||||
- id: fips-compliance
|
||||
name: Ensure llama-stack remains FIPS compliant
|
||||
entry: bash
|
||||
language: system
|
||||
types: [python]
|
||||
pass_filenames: true
|
||||
exclude: '^tests/.*$' # Exclude test dir as some safety tests used MD5
|
||||
args:
|
||||
- -c
|
||||
- |
|
||||
grep -EnH '^[^#]*\b(md5|sha1|uuid3|uuid5)\b' "$@" && {
|
||||
echo;
|
||||
echo "❌ Do not use any of the following functions: hashlib.md5, hashlib.sha1, uuid.uuid3, uuid.uuid5"
|
||||
echo " These functions are not FIPS-compliant"
|
||||
echo;
|
||||
exit 1;
|
||||
} || true
|
||||
|
||||
ci:
|
||||
autofix_commit_msg: 🎨 [pre-commit.ci] Auto format from pre-commit.com hooks
|
||||
|
|
|
|||
|
|
@ -61,6 +61,18 @@ uv run pre-commit run --all-files -v
|
|||
|
||||
The `-v` (verbose) parameter is optional but often helpful for getting more information about any issues with that the pre-commit checks identify.
|
||||
|
||||
To run the expanded mypy configuration that CI enforces, use:
|
||||
|
||||
```bash
|
||||
uv run pre-commit run mypy-full --hook-stage manual --all-files
|
||||
```
|
||||
|
||||
or invoke mypy directly with all optional dependencies:
|
||||
|
||||
```bash
|
||||
uv run --group dev --group type_checking mypy
|
||||
```
|
||||
|
||||
```{caution}
|
||||
Before pushing your changes, make sure that the pre-commit hooks have passed successfully.
|
||||
```
|
||||
|
|
|
|||
|
|
@ -1,610 +0,0 @@
|
|||
# yaml-language-server: $schema=https://app.stainlessapi.com/config-internal.schema.json
|
||||
|
||||
organization:
|
||||
# Name of your organization or company, used to determine the name of the client
|
||||
# and headings.
|
||||
name: llama-stack-client
|
||||
docs: https://llama-stack.readthedocs.io/en/latest/
|
||||
contact: llamastack@meta.com
|
||||
security:
|
||||
- {}
|
||||
- BearerAuth: []
|
||||
security_schemes:
|
||||
BearerAuth:
|
||||
type: http
|
||||
scheme: bearer
|
||||
# `targets` define the output targets and their customization options, such as
|
||||
# whether to emit the Node SDK and what it's package name should be.
|
||||
targets:
|
||||
node:
|
||||
package_name: llama-stack-client
|
||||
production_repo: llamastack/llama-stack-client-typescript
|
||||
publish:
|
||||
npm: false
|
||||
python:
|
||||
package_name: llama_stack_client
|
||||
production_repo: llamastack/llama-stack-client-python
|
||||
options:
|
||||
use_uv: true
|
||||
publish:
|
||||
pypi: true
|
||||
project_name: llama_stack_client
|
||||
kotlin:
|
||||
reverse_domain: com.llama_stack_client.api
|
||||
production_repo: null
|
||||
publish:
|
||||
maven: false
|
||||
go:
|
||||
package_name: llama-stack-client
|
||||
production_repo: llamastack/llama-stack-client-go
|
||||
options:
|
||||
enable_v2: true
|
||||
back_compat_use_shared_package: false
|
||||
|
||||
# `client_settings` define settings for the API client, such as extra constructor
|
||||
# arguments (used for authentication), retry behavior, idempotency, etc.
|
||||
client_settings:
|
||||
default_env_prefix: LLAMA_STACK_CLIENT
|
||||
opts:
|
||||
api_key:
|
||||
type: string
|
||||
read_env: LLAMA_STACK_CLIENT_API_KEY
|
||||
auth: { security_scheme: BearerAuth }
|
||||
nullable: true
|
||||
|
||||
# `environments` are a map of the name of the environment (e.g. "sandbox",
|
||||
# "production") to the corresponding url to use.
|
||||
environments:
|
||||
production: http://any-hosted-llama-stack.com
|
||||
|
||||
# `pagination` defines [pagination schemes] which provides a template to match
|
||||
# endpoints and generate next-page and auto-pagination helpers in the SDKs.
|
||||
pagination:
|
||||
- name: datasets_iterrows
|
||||
type: offset
|
||||
request:
|
||||
dataset_id:
|
||||
type: string
|
||||
start_index:
|
||||
type: integer
|
||||
x-stainless-pagination-property:
|
||||
purpose: offset_count_param
|
||||
limit:
|
||||
type: integer
|
||||
response:
|
||||
data:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
next_index:
|
||||
type: integer
|
||||
x-stainless-pagination-property:
|
||||
purpose: offset_count_start_field
|
||||
- name: openai_cursor_page
|
||||
type: cursor
|
||||
request:
|
||||
limit:
|
||||
type: integer
|
||||
after:
|
||||
type: string
|
||||
x-stainless-pagination-property:
|
||||
purpose: next_cursor_param
|
||||
response:
|
||||
data:
|
||||
type: array
|
||||
items: {}
|
||||
has_more:
|
||||
type: boolean
|
||||
last_id:
|
||||
type: string
|
||||
x-stainless-pagination-property:
|
||||
purpose: next_cursor_field
|
||||
# `resources` define the structure and organziation for your API, such as how
|
||||
# methods and models are grouped together and accessed. See the [configuration
|
||||
# guide] for more information.
|
||||
#
|
||||
# [configuration guide]:
|
||||
# https://app.stainlessapi.com/docs/guides/configure#resources
|
||||
resources:
|
||||
$shared:
|
||||
models:
|
||||
agent_config: AgentConfig
|
||||
interleaved_content_item: InterleavedContentItem
|
||||
interleaved_content: InterleavedContent
|
||||
param_type: ParamType
|
||||
safety_violation: SafetyViolation
|
||||
sampling_params: SamplingParams
|
||||
scoring_result: ScoringResult
|
||||
message: Message
|
||||
user_message: UserMessage
|
||||
completion_message: CompletionMessage
|
||||
tool_response_message: ToolResponseMessage
|
||||
system_message: SystemMessage
|
||||
tool_call: ToolCall
|
||||
query_result: RAGQueryResult
|
||||
document: RAGDocument
|
||||
query_config: RAGQueryConfig
|
||||
response_format: ResponseFormat
|
||||
toolgroups:
|
||||
models:
|
||||
tool_group: ToolGroup
|
||||
list_tool_groups_response: ListToolGroupsResponse
|
||||
methods:
|
||||
register: post /v1/toolgroups
|
||||
get: get /v1/toolgroups/{toolgroup_id}
|
||||
list: get /v1/toolgroups
|
||||
unregister: delete /v1/toolgroups/{toolgroup_id}
|
||||
tools:
|
||||
methods:
|
||||
get: get /v1/tools/{tool_name}
|
||||
list:
|
||||
endpoint: get /v1/tools
|
||||
paginated: false
|
||||
|
||||
tool_runtime:
|
||||
models:
|
||||
tool_def: ToolDef
|
||||
tool_invocation_result: ToolInvocationResult
|
||||
methods:
|
||||
list_tools:
|
||||
endpoint: get /v1/tool-runtime/list-tools
|
||||
paginated: false
|
||||
invoke_tool: post /v1/tool-runtime/invoke
|
||||
subresources:
|
||||
rag_tool:
|
||||
methods:
|
||||
insert: post /v1/tool-runtime/rag-tool/insert
|
||||
query: post /v1/tool-runtime/rag-tool/query
|
||||
|
||||
responses:
|
||||
models:
|
||||
response_object_stream: OpenAIResponseObjectStream
|
||||
response_object: OpenAIResponseObject
|
||||
methods:
|
||||
create:
|
||||
type: http
|
||||
endpoint: post /v1/responses
|
||||
streaming:
|
||||
stream_event_model: responses.response_object_stream
|
||||
param_discriminator: stream
|
||||
retrieve: get /v1/responses/{response_id}
|
||||
list:
|
||||
type: http
|
||||
endpoint: get /v1/responses
|
||||
delete:
|
||||
type: http
|
||||
endpoint: delete /v1/responses/{response_id}
|
||||
subresources:
|
||||
input_items:
|
||||
methods:
|
||||
list:
|
||||
type: http
|
||||
endpoint: get /v1/responses/{response_id}/input_items
|
||||
|
||||
conversations:
|
||||
models:
|
||||
conversation_object: Conversation
|
||||
methods:
|
||||
create:
|
||||
type: http
|
||||
endpoint: post /v1/conversations
|
||||
retrieve: get /v1/conversations/{conversation_id}
|
||||
update:
|
||||
type: http
|
||||
endpoint: post /v1/conversations/{conversation_id}
|
||||
delete:
|
||||
type: http
|
||||
endpoint: delete /v1/conversations/{conversation_id}
|
||||
subresources:
|
||||
items:
|
||||
methods:
|
||||
get:
|
||||
type: http
|
||||
endpoint: get /v1/conversations/{conversation_id}/items/{item_id}
|
||||
list:
|
||||
type: http
|
||||
endpoint: get /v1/conversations/{conversation_id}/items
|
||||
create:
|
||||
type: http
|
||||
endpoint: post /v1/conversations/{conversation_id}/items
|
||||
|
||||
inspect:
|
||||
models:
|
||||
healthInfo: HealthInfo
|
||||
providerInfo: ProviderInfo
|
||||
routeInfo: RouteInfo
|
||||
versionInfo: VersionInfo
|
||||
methods:
|
||||
health: get /v1/health
|
||||
version: get /v1/version
|
||||
|
||||
embeddings:
|
||||
models:
|
||||
create_embeddings_response: OpenAIEmbeddingsResponse
|
||||
methods:
|
||||
create: post /v1/embeddings
|
||||
|
||||
chat:
|
||||
models:
|
||||
chat_completion_chunk: OpenAIChatCompletionChunk
|
||||
subresources:
|
||||
completions:
|
||||
methods:
|
||||
create:
|
||||
type: http
|
||||
endpoint: post /v1/chat/completions
|
||||
streaming:
|
||||
stream_event_model: chat.chat_completion_chunk
|
||||
param_discriminator: stream
|
||||
list:
|
||||
type: http
|
||||
endpoint: get /v1/chat/completions
|
||||
retrieve:
|
||||
type: http
|
||||
endpoint: get /v1/chat/completions/{completion_id}
|
||||
completions:
|
||||
methods:
|
||||
create:
|
||||
type: http
|
||||
endpoint: post /v1/completions
|
||||
streaming:
|
||||
param_discriminator: stream
|
||||
|
||||
vector_io:
|
||||
models:
|
||||
queryChunksResponse: QueryChunksResponse
|
||||
methods:
|
||||
insert: post /v1/vector-io/insert
|
||||
query: post /v1/vector-io/query
|
||||
|
||||
vector_stores:
|
||||
models:
|
||||
vector_store: VectorStoreObject
|
||||
list_vector_stores_response: VectorStoreListResponse
|
||||
vector_store_delete_response: VectorStoreDeleteResponse
|
||||
vector_store_search_response: VectorStoreSearchResponsePage
|
||||
methods:
|
||||
create: post /v1/vector_stores
|
||||
list:
|
||||
endpoint: get /v1/vector_stores
|
||||
retrieve: get /v1/vector_stores/{vector_store_id}
|
||||
update: post /v1/vector_stores/{vector_store_id}
|
||||
delete: delete /v1/vector_stores/{vector_store_id}
|
||||
search: post /v1/vector_stores/{vector_store_id}/search
|
||||
subresources:
|
||||
files:
|
||||
models:
|
||||
vector_store_file: VectorStoreFileObject
|
||||
methods:
|
||||
list: get /v1/vector_stores/{vector_store_id}/files
|
||||
retrieve: get /v1/vector_stores/{vector_store_id}/files/{file_id}
|
||||
update: post /v1/vector_stores/{vector_store_id}/files/{file_id}
|
||||
delete: delete /v1/vector_stores/{vector_store_id}/files/{file_id}
|
||||
create: post /v1/vector_stores/{vector_store_id}/files
|
||||
content: get /v1/vector_stores/{vector_store_id}/files/{file_id}/content
|
||||
file_batches:
|
||||
models:
|
||||
vector_store_file_batches: VectorStoreFileBatchObject
|
||||
list_vector_store_files_in_batch_response: VectorStoreFilesListInBatchResponse
|
||||
methods:
|
||||
create: post /v1/vector_stores/{vector_store_id}/file_batches
|
||||
retrieve: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}
|
||||
list_files: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files
|
||||
cancel: post /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel
|
||||
|
||||
models:
|
||||
models:
|
||||
model: Model
|
||||
list_models_response: ListModelsResponse
|
||||
methods:
|
||||
retrieve: get /v1/models/{model_id}
|
||||
list:
|
||||
endpoint: get /v1/models
|
||||
paginated: false
|
||||
register: post /v1/models
|
||||
unregister: delete /v1/models/{model_id}
|
||||
subresources:
|
||||
openai:
|
||||
methods:
|
||||
list:
|
||||
endpoint: get /v1/models
|
||||
paginated: false
|
||||
|
||||
providers:
|
||||
models:
|
||||
list_providers_response: ListProvidersResponse
|
||||
methods:
|
||||
list:
|
||||
endpoint: get /v1/providers
|
||||
paginated: false
|
||||
retrieve: get /v1/providers/{provider_id}
|
||||
|
||||
routes:
|
||||
models:
|
||||
list_routes_response: ListRoutesResponse
|
||||
methods:
|
||||
list:
|
||||
endpoint: get /v1/inspect/routes
|
||||
paginated: false
|
||||
|
||||
|
||||
moderations:
|
||||
models:
|
||||
create_response: ModerationObject
|
||||
methods:
|
||||
create: post /v1/moderations
|
||||
|
||||
|
||||
safety:
|
||||
models:
|
||||
run_shield_response: RunShieldResponse
|
||||
methods:
|
||||
run_shield: post /v1/safety/run-shield
|
||||
|
||||
|
||||
shields:
|
||||
models:
|
||||
shield: Shield
|
||||
list_shields_response: ListShieldsResponse
|
||||
methods:
|
||||
retrieve: get /v1/shields/{identifier}
|
||||
list:
|
||||
endpoint: get /v1/shields
|
||||
paginated: false
|
||||
register: post /v1/shields
|
||||
delete: delete /v1/shields/{identifier}
|
||||
|
||||
synthetic_data_generation:
|
||||
models:
|
||||
syntheticDataGenerationResponse: SyntheticDataGenerationResponse
|
||||
methods:
|
||||
generate: post /v1/synthetic-data-generation/generate
|
||||
|
||||
telemetry:
|
||||
models:
|
||||
span_with_status: SpanWithStatus
|
||||
trace: Trace
|
||||
query_spans_response: QuerySpansResponse
|
||||
event: Event
|
||||
query_condition: QueryCondition
|
||||
methods:
|
||||
query_traces:
|
||||
endpoint: post /v1alpha/telemetry/traces
|
||||
skip_test_reason: 'unsupported query params in java / kotlin'
|
||||
get_span_tree: post /v1alpha/telemetry/spans/{span_id}/tree
|
||||
query_spans:
|
||||
endpoint: post /v1alpha/telemetry/spans
|
||||
skip_test_reason: 'unsupported query params in java / kotlin'
|
||||
query_metrics:
|
||||
endpoint: post /v1alpha/telemetry/metrics/{metric_name}
|
||||
skip_test_reason: 'unsupported query params in java / kotlin'
|
||||
# log_event: post /v1alpha/telemetry/events
|
||||
save_spans_to_dataset: post /v1alpha/telemetry/spans/export
|
||||
get_span: get /v1alpha/telemetry/traces/{trace_id}/spans/{span_id}
|
||||
get_trace: get /v1alpha/telemetry/traces/{trace_id}
|
||||
|
||||
scoring:
|
||||
methods:
|
||||
score: post /v1/scoring/score
|
||||
score_batch: post /v1/scoring/score-batch
|
||||
scoring_functions:
|
||||
methods:
|
||||
retrieve: get /v1/scoring-functions/{scoring_fn_id}
|
||||
list:
|
||||
endpoint: get /v1/scoring-functions
|
||||
paginated: false
|
||||
register: post /v1/scoring-functions
|
||||
models:
|
||||
scoring_fn: ScoringFn
|
||||
scoring_fn_params: ScoringFnParams
|
||||
list_scoring_functions_response: ListScoringFunctionsResponse
|
||||
|
||||
benchmarks:
|
||||
methods:
|
||||
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}
|
||||
list:
|
||||
endpoint: get /v1alpha/eval/benchmarks
|
||||
paginated: false
|
||||
register: post /v1alpha/eval/benchmarks
|
||||
models:
|
||||
benchmark: Benchmark
|
||||
list_benchmarks_response: ListBenchmarksResponse
|
||||
|
||||
files:
|
||||
methods:
|
||||
create: post /v1/files
|
||||
list: get /v1/files
|
||||
retrieve: get /v1/files/{file_id}
|
||||
delete: delete /v1/files/{file_id}
|
||||
content: get /v1/files/{file_id}/content
|
||||
models:
|
||||
file: OpenAIFileObject
|
||||
list_files_response: ListOpenAIFileResponse
|
||||
delete_file_response: OpenAIFileDeleteResponse
|
||||
|
||||
alpha:
|
||||
subresources:
|
||||
inference:
|
||||
methods:
|
||||
rerank: post /v1alpha/inference/rerank
|
||||
|
||||
post_training:
|
||||
models:
|
||||
algorithm_config: AlgorithmConfig
|
||||
post_training_job: PostTrainingJob
|
||||
list_post_training_jobs_response: ListPostTrainingJobsResponse
|
||||
methods:
|
||||
preference_optimize: post /v1alpha/post-training/preference-optimize
|
||||
supervised_fine_tune: post /v1alpha/post-training/supervised-fine-tune
|
||||
subresources:
|
||||
job:
|
||||
methods:
|
||||
artifacts: get /v1alpha/post-training/job/artifacts
|
||||
cancel: post /v1alpha/post-training/job/cancel
|
||||
status: get /v1alpha/post-training/job/status
|
||||
list:
|
||||
endpoint: get /v1alpha/post-training/jobs
|
||||
paginated: false
|
||||
|
||||
eval:
|
||||
methods:
|
||||
evaluate_rows: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
|
||||
run_eval: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
|
||||
evaluate_rows_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
|
||||
run_eval_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
|
||||
|
||||
subresources:
|
||||
jobs:
|
||||
methods:
|
||||
cancel: delete /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
|
||||
status: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
|
||||
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result
|
||||
models:
|
||||
evaluate_response: EvaluateResponse
|
||||
benchmark_config: BenchmarkConfig
|
||||
job: Job
|
||||
|
||||
agents:
|
||||
methods:
|
||||
create: post /v1alpha/agents
|
||||
list: get /v1alpha/agents
|
||||
retrieve: get /v1alpha/agents/{agent_id}
|
||||
delete: delete /v1alpha/agents/{agent_id}
|
||||
models:
|
||||
inference_step: InferenceStep
|
||||
tool_execution_step: ToolExecutionStep
|
||||
tool_response: ToolResponse
|
||||
shield_call_step: ShieldCallStep
|
||||
memory_retrieval_step: MemoryRetrievalStep
|
||||
subresources:
|
||||
session:
|
||||
models:
|
||||
session: Session
|
||||
methods:
|
||||
list: get /v1alpha/agents/{agent_id}/sessions
|
||||
create: post /v1alpha/agents/{agent_id}/session
|
||||
delete: delete /v1alpha/agents/{agent_id}/session/{session_id}
|
||||
retrieve: get /v1alpha/agents/{agent_id}/session/{session_id}
|
||||
steps:
|
||||
methods:
|
||||
retrieve: get /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}
|
||||
turn:
|
||||
models:
|
||||
turn: Turn
|
||||
turn_response_event: AgentTurnResponseEvent
|
||||
agent_turn_response_stream_chunk: AgentTurnResponseStreamChunk
|
||||
methods:
|
||||
create:
|
||||
type: http
|
||||
endpoint: post /v1alpha/agents/{agent_id}/session/{session_id}/turn
|
||||
streaming:
|
||||
stream_event_model: alpha.agents.turn.agent_turn_response_stream_chunk
|
||||
param_discriminator: stream
|
||||
retrieve: get /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}
|
||||
resume:
|
||||
type: http
|
||||
endpoint: post /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume
|
||||
streaming:
|
||||
stream_event_model: alpha.agents.turn.agent_turn_response_stream_chunk
|
||||
param_discriminator: stream
|
||||
|
||||
beta:
|
||||
subresources:
|
||||
datasets:
|
||||
models:
|
||||
list_datasets_response: ListDatasetsResponse
|
||||
methods:
|
||||
register: post /v1beta/datasets
|
||||
retrieve: get /v1beta/datasets/{dataset_id}
|
||||
list:
|
||||
endpoint: get /v1beta/datasets
|
||||
paginated: false
|
||||
unregister: delete /v1beta/datasets/{dataset_id}
|
||||
iterrows: get /v1beta/datasetio/iterrows/{dataset_id}
|
||||
appendrows: post /v1beta/datasetio/append-rows/{dataset_id}
|
||||
|
||||
|
||||
settings:
|
||||
license: MIT
|
||||
unwrap_response_fields: [ data ]
|
||||
|
||||
openapi:
|
||||
transformations:
|
||||
- command: renameValue
|
||||
reason: pydantic reserved name
|
||||
args:
|
||||
filter:
|
||||
only:
|
||||
- '$.components.schemas.InferenceStep.properties.model_response'
|
||||
rename:
|
||||
python:
|
||||
property_name: 'inference_model_response'
|
||||
|
||||
# - command: renameValue
|
||||
# reason: pydantic reserved name
|
||||
# args:
|
||||
# filter:
|
||||
# only:
|
||||
# - '$.components.schemas.Model.properties.model_type'
|
||||
# rename:
|
||||
# python:
|
||||
# property_name: 'type'
|
||||
- command: mergeObject
|
||||
reason: Better return_type using enum
|
||||
args:
|
||||
target:
|
||||
- '$.components.schemas'
|
||||
object:
|
||||
ReturnType:
|
||||
additionalProperties: false
|
||||
properties:
|
||||
type:
|
||||
enum:
|
||||
- string
|
||||
- number
|
||||
- boolean
|
||||
- array
|
||||
- object
|
||||
- json
|
||||
- union
|
||||
- chat_completion_input
|
||||
- completion_input
|
||||
- agent_turn_input
|
||||
required:
|
||||
- type
|
||||
type: object
|
||||
- command: replaceProperties
|
||||
reason: Replace return type properties with better model (see above)
|
||||
args:
|
||||
filter:
|
||||
only:
|
||||
- '$.components.schemas.ScoringFn.properties.return_type'
|
||||
- '$.components.schemas.RegisterScoringFunctionRequest.properties.return_type'
|
||||
value:
|
||||
$ref: '#/components/schemas/ReturnType'
|
||||
- command: oneOfToAnyOf
|
||||
reason: Prism (mock server) doesn't like one of our requests as it technically matches multiple variants
|
||||
- reason: For better names
|
||||
command: extractToRefs
|
||||
args:
|
||||
ref:
|
||||
target: '$.components.schemas.ToolCallDelta.properties.tool_call'
|
||||
name: '#/components/schemas/ToolCallOrString'
|
||||
|
||||
# `readme` is used to configure the code snippets that will be rendered in the
|
||||
# README.md of various SDKs. In particular, you can change the `headline`
|
||||
# snippet's endpoint and the arguments to call it with.
|
||||
readme:
|
||||
example_requests:
|
||||
default:
|
||||
type: request
|
||||
endpoint: post /v1/chat/completions
|
||||
params: &ref_0 {}
|
||||
headline:
|
||||
type: request
|
||||
endpoint: post /v1/models
|
||||
params: *ref_0
|
||||
pagination:
|
||||
type: request
|
||||
endpoint: post /v1/chat/completions
|
||||
params: {}
|
||||
File diff suppressed because it is too large
Load diff
|
|
@ -19,6 +19,8 @@ ARG KEEP_WORKSPACE=""
|
|||
ARG DISTRO_NAME="starter"
|
||||
ARG RUN_CONFIG_PATH=""
|
||||
ARG UV_HTTP_TIMEOUT=500
|
||||
ARG UV_EXTRA_INDEX_URL=""
|
||||
ARG UV_INDEX_STRATEGY=""
|
||||
ENV UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT}
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ENV PIP_DISABLE_PIP_VERSION_CHECK=1
|
||||
|
|
@ -45,7 +47,7 @@ RUN set -eux; \
|
|||
exit 1; \
|
||||
fi
|
||||
|
||||
RUN pip install --no-cache uv
|
||||
RUN pip install --no-cache-dir uv
|
||||
ENV UV_SYSTEM_PYTHON=1
|
||||
|
||||
ENV INSTALL_MODE=${INSTALL_MODE}
|
||||
|
|
@ -62,47 +64,60 @@ COPY . /workspace
|
|||
|
||||
# Install the client package if it is provided
|
||||
# NOTE: this is installed before llama-stack since llama-stack depends on llama-stack-client-python
|
||||
# Unset UV index env vars to ensure we only use PyPI for the client
|
||||
RUN set -eux; \
|
||||
unset UV_EXTRA_INDEX_URL UV_INDEX_STRATEGY; \
|
||||
if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then \
|
||||
if [ ! -d "$LLAMA_STACK_CLIENT_DIR" ]; then \
|
||||
echo "LLAMA_STACK_CLIENT_DIR is set but $LLAMA_STACK_CLIENT_DIR does not exist" >&2; \
|
||||
exit 1; \
|
||||
fi; \
|
||||
uv pip install --no-cache -e "$LLAMA_STACK_CLIENT_DIR"; \
|
||||
uv pip install --no-cache-dir -e "$LLAMA_STACK_CLIENT_DIR"; \
|
||||
fi;
|
||||
|
||||
# Install llama-stack
|
||||
# Use UV_EXTRA_INDEX_URL inline only for editable install with RC dependencies
|
||||
RUN set -eux; \
|
||||
SAVED_UV_EXTRA_INDEX_URL="${UV_EXTRA_INDEX_URL:-}"; \
|
||||
SAVED_UV_INDEX_STRATEGY="${UV_INDEX_STRATEGY:-}"; \
|
||||
unset UV_EXTRA_INDEX_URL UV_INDEX_STRATEGY; \
|
||||
if [ "$INSTALL_MODE" = "editable" ]; then \
|
||||
if [ ! -d "$LLAMA_STACK_DIR" ]; then \
|
||||
echo "INSTALL_MODE=editable requires LLAMA_STACK_DIR to point to a directory inside the build context" >&2; \
|
||||
exit 1; \
|
||||
fi; \
|
||||
uv pip install --no-cache -e "$LLAMA_STACK_DIR"; \
|
||||
elif [ "$INSTALL_MODE" = "test-pypi" ]; then \
|
||||
uv pip install --no-cache fastapi libcst; \
|
||||
if [ -n "$TEST_PYPI_VERSION" ]; then \
|
||||
uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match "llama-stack==$TEST_PYPI_VERSION"; \
|
||||
if [ -n "$SAVED_UV_EXTRA_INDEX_URL" ] && [ -n "$SAVED_UV_INDEX_STRATEGY" ]; then \
|
||||
UV_EXTRA_INDEX_URL="$SAVED_UV_EXTRA_INDEX_URL" UV_INDEX_STRATEGY="$SAVED_UV_INDEX_STRATEGY" \
|
||||
uv pip install --no-cache-dir -e "$LLAMA_STACK_DIR"; \
|
||||
else \
|
||||
uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match llama-stack; \
|
||||
uv pip install --no-cache-dir -e "$LLAMA_STACK_DIR"; \
|
||||
fi; \
|
||||
elif [ "$INSTALL_MODE" = "test-pypi" ]; then \
|
||||
uv pip install --no-cache-dir fastapi libcst; \
|
||||
if [ -n "$TEST_PYPI_VERSION" ]; then \
|
||||
uv pip install --no-cache-dir --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match "llama-stack==$TEST_PYPI_VERSION"; \
|
||||
else \
|
||||
uv pip install --no-cache-dir --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match llama-stack; \
|
||||
fi; \
|
||||
else \
|
||||
if [ -n "$PYPI_VERSION" ]; then \
|
||||
uv pip install --no-cache "llama-stack==$PYPI_VERSION"; \
|
||||
uv pip install --no-cache-dir "llama-stack==$PYPI_VERSION"; \
|
||||
else \
|
||||
uv pip install --no-cache llama-stack; \
|
||||
uv pip install --no-cache-dir llama-stack; \
|
||||
fi; \
|
||||
fi;
|
||||
|
||||
# Install the dependencies for the distribution
|
||||
# Explicitly unset UV index env vars to ensure we only use PyPI for distribution deps
|
||||
RUN set -eux; \
|
||||
unset UV_EXTRA_INDEX_URL UV_INDEX_STRATEGY; \
|
||||
if [ -z "$DISTRO_NAME" ]; then \
|
||||
echo "DISTRO_NAME must be provided" >&2; \
|
||||
exit 1; \
|
||||
fi; \
|
||||
deps="$(llama stack list-deps "$DISTRO_NAME")"; \
|
||||
if [ -n "$deps" ]; then \
|
||||
printf '%s\n' "$deps" | xargs -L1 uv pip install --no-cache; \
|
||||
printf '%s\n' "$deps" | xargs -L1 uv pip install --no-cache-dir; \
|
||||
fi
|
||||
|
||||
# Cleanup
|
||||
|
|
|
|||
|
|
@ -23,5 +23,4 @@ A Llama Stack API is described as a collection of REST endpoints. We currently s
|
|||
We are working on adding a few more APIs to complete the application lifecycle. These will include:
|
||||
- **Batch Inference**: run inference on a dataset of inputs
|
||||
- **Batch Agents**: run agents on a dataset of inputs
|
||||
- **Synthetic Data Generation**: generate synthetic data for model development
|
||||
- **Batches**: OpenAI-compatible batch management for inference
|
||||
|
|
|
|||
|
|
@ -79,6 +79,33 @@ docker run \
|
|||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
### Via Docker with Custom Run Configuration
|
||||
|
||||
You can also run the Docker container with a custom run configuration file by mounting it into the container:
|
||||
|
||||
```bash
|
||||
# Set the path to your custom run.yaml file
|
||||
CUSTOM_RUN_CONFIG=/path/to/your/custom-run.yaml
|
||||
LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
--gpu all \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v $CUSTOM_RUN_CONFIG:/app/custom-run.yaml \
|
||||
-e RUN_CONFIG_PATH=/app/custom-run.yaml \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
**Note**: The run configuration must be mounted into the container before it can be used. The `-v` flag mounts your local file into the container, and the `RUN_CONFIG_PATH` environment variable tells the entrypoint script which configuration to use.
|
||||
|
||||
Available run configurations for this distribution:
|
||||
- `run.yaml`
|
||||
- `run-with-safety.yaml`
|
||||
|
||||
### Via venv
|
||||
|
||||
Make sure you have the Llama Stack CLI available.
|
||||
|
|
|
|||
|
|
@ -127,13 +127,39 @@ docker run \
|
|||
-it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-e NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
llamastack/distribution-nvidia \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
### Via Docker with Custom Run Configuration
|
||||
|
||||
You can also run the Docker container with a custom run configuration file by mounting it into the container:
|
||||
|
||||
```bash
|
||||
# Set the path to your custom run.yaml file
|
||||
CUSTOM_RUN_CONFIG=/path/to/your/custom-run.yaml
|
||||
LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v $CUSTOM_RUN_CONFIG:/app/custom-run.yaml \
|
||||
-e RUN_CONFIG_PATH=/app/custom-run.yaml \
|
||||
-e NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
llamastack/distribution-nvidia \
|
||||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
**Note**: The run configuration must be mounted into the container before it can be used. The `-v` flag mounts your local file into the container, and the `RUN_CONFIG_PATH` environment variable tells the entrypoint script which configuration to use.
|
||||
|
||||
Available run configurations for this distribution:
|
||||
- `run.yaml`
|
||||
- `run-with-safety.yaml`
|
||||
|
||||
### Via venv
|
||||
|
||||
If you've set up your local development environment, you can also install the distribution dependencies using your local virtual environment.
|
||||
|
|
|
|||
|
|
@ -239,8 +239,13 @@ client = LlamaStackClient(base_url="http://localhost:8321")
|
|||
models = client.models.list()
|
||||
|
||||
# Select the first LLM
|
||||
llm = next(m for m in models if m.model_type == "llm" and m.provider_id == "ollama")
|
||||
model_id = llm.identifier
|
||||
llm = next(
|
||||
m for m in models
|
||||
if m.custom_metadata
|
||||
and m.custom_metadata.get("model_type") == "llm"
|
||||
and m.custom_metadata.get("provider_id") == "ollama"
|
||||
)
|
||||
model_id = llm.id
|
||||
|
||||
print("Model:", model_id)
|
||||
|
||||
|
|
@ -279,8 +284,13 @@ import uuid
|
|||
client = LlamaStackClient(base_url=f"http://localhost:8321")
|
||||
|
||||
models = client.models.list()
|
||||
llm = next(m for m in models if m.model_type == "llm" and m.provider_id == "ollama")
|
||||
model_id = llm.identifier
|
||||
llm = next(
|
||||
m for m in models
|
||||
if m.custom_metadata
|
||||
and m.custom_metadata.get("model_type") == "llm"
|
||||
and m.custom_metadata.get("provider_id") == "ollama"
|
||||
)
|
||||
model_id = llm.id
|
||||
|
||||
agent = Agent(client, model=model_id, instructions="You are a helpful assistant.")
|
||||
|
||||
|
|
@ -450,8 +460,11 @@ import uuid
|
|||
client = LlamaStackClient(base_url="http://localhost:8321")
|
||||
|
||||
# Create a vector database instance
|
||||
embed_lm = next(m for m in client.models.list() if m.model_type == "embedding")
|
||||
embedding_model = embed_lm.identifier
|
||||
embed_lm = next(
|
||||
m for m in client.models.list()
|
||||
if m.custom_metadata and m.custom_metadata.get("model_type") == "embedding"
|
||||
)
|
||||
embedding_model = embed_lm.id
|
||||
vector_db_id = f"v{uuid.uuid4().hex}"
|
||||
# The VectorDB API is deprecated; the server now returns its own authoritative ID.
|
||||
# We capture the correct ID from the response's .identifier attribute.
|
||||
|
|
@ -489,9 +502,11 @@ client.tool_runtime.rag_tool.insert(
|
|||
llm = next(
|
||||
m
|
||||
for m in client.models.list()
|
||||
if m.model_type == "llm" and m.provider_id == "ollama"
|
||||
if m.custom_metadata
|
||||
and m.custom_metadata.get("model_type") == "llm"
|
||||
and m.custom_metadata.get("provider_id") == "ollama"
|
||||
)
|
||||
model = llm.identifier
|
||||
model = llm.id
|
||||
|
||||
# Create the RAG agent
|
||||
rag_agent = Agent(
|
||||
|
|
|
|||
27
docs/docs/providers/files/remote_openai.mdx
Normal file
27
docs/docs/providers/files/remote_openai.mdx
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
---
|
||||
description: "OpenAI Files API provider for managing files through OpenAI's native file storage service."
|
||||
sidebar_label: Remote - Openai
|
||||
title: remote::openai
|
||||
---
|
||||
|
||||
# remote::openai
|
||||
|
||||
## Description
|
||||
|
||||
OpenAI Files API provider for managing files through OpenAI's native file storage service.
|
||||
|
||||
## Configuration
|
||||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'str'>` | No | | OpenAI API key for authentication |
|
||||
| `metadata_store` | `<class 'llama_stack.core.storage.datatypes.SqlStoreReference'>` | No | | SQL store configuration for file metadata |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
```yaml
|
||||
api_key: ${env.OPENAI_API_KEY}
|
||||
metadata_store:
|
||||
table_name: openai_files_metadata
|
||||
backend: sql_default
|
||||
```
|
||||
|
|
@ -20,6 +20,7 @@ NVIDIA inference provider for accessing NVIDIA NIM models and AI services.
|
|||
| `url` | `<class 'str'>` | No | https://integrate.api.nvidia.com | A base url for accessing the NVIDIA NIM |
|
||||
| `timeout` | `<class 'int'>` | No | 60 | Timeout for the HTTP requests |
|
||||
| `append_api_version` | `<class 'bool'>` | No | True | When set to false, the API version will not be appended to the base_url. By default, it is true. |
|
||||
| `rerank_model_to_url` | `dict[str, str` | No | `{'nv-rerank-qa-mistral-4b:1': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/reranking', 'nvidia/nv-rerankqa-mistral-4b-v3': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/nv-rerankqa-mistral-4b-v3/reranking', 'nvidia/llama-3.2-nv-rerankqa-1b-v2': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/llama-3_2-nv-rerankqa-1b-v2/reranking'}` | Mapping of rerank model identifiers to their API endpoints. |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
|||
1036
docs/notebooks/llamastack_agents_getting_started_examples.ipynb
Normal file
1036
docs/notebooks/llamastack_agents_getting_started_examples.ipynb
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -84,7 +84,6 @@ def generate_spec(output_dir: Path, stability_filter: str = None, main_spec: boo
|
|||
)
|
||||
|
||||
yaml_filename = f"{filename_prefix}llama-stack-spec.yaml"
|
||||
html_filename = f"{filename_prefix}llama-stack-spec.html"
|
||||
|
||||
with open(output_dir / yaml_filename, "w", encoding="utf-8") as fp:
|
||||
y = yaml.YAML()
|
||||
|
|
@ -102,11 +101,6 @@ def generate_spec(output_dir: Path, stability_filter: str = None, main_spec: boo
|
|||
fp,
|
||||
)
|
||||
|
||||
with open(output_dir / html_filename, "w") as fp:
|
||||
spec.write_html(fp, pretty_print=True)
|
||||
|
||||
print(f"Generated {yaml_filename} and {html_filename}")
|
||||
|
||||
def main(output_dir: str):
|
||||
output_dir = Path(output_dir)
|
||||
if not output_dir.exists():
|
||||
|
|
|
|||
|
|
@ -242,15 +242,6 @@ const sidebars: SidebarsConfig = {
|
|||
'providers/eval/remote_nvidia'
|
||||
],
|
||||
},
|
||||
{
|
||||
type: 'category',
|
||||
label: 'Telemetry',
|
||||
collapsed: true,
|
||||
items: [
|
||||
'providers/telemetry/index',
|
||||
'providers/telemetry/inline_meta-reference'
|
||||
],
|
||||
},
|
||||
{
|
||||
type: 'category',
|
||||
label: 'Batches',
|
||||
|
|
|
|||
13503
docs/static/deprecated-llama-stack-spec.html
vendored
13503
docs/static/deprecated-llama-stack-spec.html
vendored
File diff suppressed because it is too large
Load diff
10155
docs/static/deprecated-llama-stack-spec.yaml
vendored
10155
docs/static/deprecated-llama-stack-spec.yaml
vendored
File diff suppressed because it is too large
Load diff
5552
docs/static/experimental-llama-stack-spec.html
vendored
5552
docs/static/experimental-llama-stack-spec.html
vendored
File diff suppressed because it is too large
Load diff
1156
docs/static/llama-stack-spec.html
vendored
1156
docs/static/llama-stack-spec.html
vendored
File diff suppressed because it is too large
Load diff
1020
docs/static/llama-stack-spec.yaml
vendored
1020
docs/static/llama-stack-spec.yaml
vendored
File diff suppressed because it is too large
Load diff
18012
docs/static/stainless-llama-stack-spec.html
vendored
18012
docs/static/stainless-llama-stack-spec.html
vendored
File diff suppressed because it is too large
Load diff
1153
docs/static/stainless-llama-stack-spec.yaml
vendored
1153
docs/static/stainless-llama-stack-spec.yaml
vendored
File diff suppressed because it is too large
Load diff
|
|
@ -1,59 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: CI tests for Llama Stack
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::cerebras
|
||||
- provider_type: remote::ollama
|
||||
- provider_type: remote::vllm
|
||||
- provider_type: remote::tgi
|
||||
- provider_type: remote::fireworks
|
||||
- provider_type: remote::together
|
||||
- provider_type: remote::bedrock
|
||||
- provider_type: remote::nvidia
|
||||
- provider_type: remote::openai
|
||||
- provider_type: remote::anthropic
|
||||
- provider_type: remote::gemini
|
||||
- provider_type: remote::vertexai
|
||||
- provider_type: remote::groq
|
||||
- provider_type: remote::sambanova
|
||||
- provider_type: remote::azure
|
||||
- provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_type: inline::faiss
|
||||
- provider_type: inline::sqlite-vec
|
||||
- provider_type: inline::milvus
|
||||
- provider_type: remote::chromadb
|
||||
- provider_type: remote::pgvector
|
||||
- provider_type: remote::qdrant
|
||||
- provider_type: remote::weaviate
|
||||
files:
|
||||
- provider_type: inline::localfs
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
- provider_type: inline::code-scanner
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
post_training:
|
||||
- provider_type: inline::torchtune-cpu
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
- provider_type: remote::huggingface
|
||||
- provider_type: inline::localfs
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
- provider_type: inline::llm-as-judge
|
||||
- provider_type: inline::braintrust
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_type: inline::reference
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- asyncpg
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,281 +0,0 @@
|
|||
version: 2
|
||||
image_name: ci-tests
|
||||
apis:
|
||||
- agents
|
||||
- batches
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
- inference
|
||||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ${env.CEREBRAS_API_KEY:+cerebras}
|
||||
provider_type: remote::cerebras
|
||||
config:
|
||||
base_url: https://api.cerebras.ai
|
||||
api_key: ${env.CEREBRAS_API_KEY:=}
|
||||
- provider_id: ${env.OLLAMA_URL:+ollama}
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:=http://localhost:11434}
|
||||
- provider_id: ${env.VLLM_URL:+vllm}
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:=}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||
- provider_id: ${env.TGI_URL:+tgi}
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.TGI_URL:=}
|
||||
- provider_id: fireworks
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inference/v1
|
||||
api_key: ${env.FIREWORKS_API_KEY:=}
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: ${env.TOGETHER_API_KEY:=}
|
||||
- provider_id: bedrock
|
||||
provider_type: remote::bedrock
|
||||
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
|
||||
- provider_id: openai
|
||||
provider_type: remote::openai
|
||||
config:
|
||||
api_key: ${env.OPENAI_API_KEY:=}
|
||||
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
|
||||
- provider_id: anthropic
|
||||
provider_type: remote::anthropic
|
||||
config:
|
||||
api_key: ${env.ANTHROPIC_API_KEY:=}
|
||||
- provider_id: gemini
|
||||
provider_type: remote::gemini
|
||||
config:
|
||||
api_key: ${env.GEMINI_API_KEY:=}
|
||||
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
|
||||
provider_type: remote::vertexai
|
||||
config:
|
||||
project: ${env.VERTEX_AI_PROJECT:=}
|
||||
location: ${env.VERTEX_AI_LOCATION:=us-central1}
|
||||
- provider_id: groq
|
||||
provider_type: remote::groq
|
||||
config:
|
||||
url: https://api.groq.com
|
||||
api_key: ${env.GROQ_API_KEY:=}
|
||||
- provider_id: sambanova
|
||||
provider_type: remote::sambanova
|
||||
config:
|
||||
url: https://api.sambanova.ai/v1
|
||||
api_key: ${env.SAMBANOVA_API_KEY:=}
|
||||
- provider_id: ${env.AZURE_API_KEY:+azure}
|
||||
provider_type: remote::azure
|
||||
config:
|
||||
api_key: ${env.AZURE_API_KEY:=}
|
||||
api_base: ${env.AZURE_API_BASE:=}
|
||||
api_version: ${env.AZURE_API_VERSION:=}
|
||||
api_type: ${env.AZURE_API_TYPE:=}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
- provider_id: sqlite-vec
|
||||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sqlite_vec.db
|
||||
persistence:
|
||||
namespace: vector_io::sqlite_vec
|
||||
backend: kv_default
|
||||
- provider_id: ${env.MILVUS_URL:+milvus}
|
||||
provider_type: inline::milvus
|
||||
config:
|
||||
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/ci-tests}/milvus.db
|
||||
persistence:
|
||||
namespace: vector_io::milvus
|
||||
backend: kv_default
|
||||
- provider_id: ${env.CHROMADB_URL:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.PGVECTOR_DB:+pgvector}
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: ${env.PGVECTOR_HOST:=localhost}
|
||||
port: ${env.PGVECTOR_PORT:=5432}
|
||||
db: ${env.PGVECTOR_DB:=}
|
||||
user: ${env.PGVECTOR_USER:=}
|
||||
password: ${env.PGVECTOR_PASSWORD:=}
|
||||
persistence:
|
||||
namespace: vector_io::pgvector
|
||||
backend: kv_default
|
||||
- provider_id: ${env.QDRANT_URL:+qdrant}
|
||||
provider_type: remote::qdrant
|
||||
config:
|
||||
api_key: ${env.QDRANT_API_KEY:=}
|
||||
persistence:
|
||||
namespace: vector_io::qdrant_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
|
||||
provider_type: remote::weaviate
|
||||
config:
|
||||
weaviate_api_key: null
|
||||
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
|
||||
persistence:
|
||||
namespace: vector_io::weaviate
|
||||
backend: kv_default
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/ci-tests/files}
|
||||
metadata_store:
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
- provider_id: code-scanner
|
||||
provider_type: inline::code-scanner
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
post_training:
|
||||
- provider_id: torchtune-cpu
|
||||
provider_type: inline::torchtune-cpu
|
||||
config:
|
||||
checkpoint_format: meta
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_id: reference
|
||||
provider_type: inline::reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: batches
|
||||
backend: kv_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields:
|
||||
- shield_id: llama-guard
|
||||
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
||||
provider_shield_id: ${env.SAFETY_MODEL:=}
|
||||
- shield_id: code-scanner
|
||||
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
||||
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
safety:
|
||||
default_shield_id: llama-guard
|
||||
|
|
@ -1,33 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Dell's distribution of Llama Stack. TGI inference via Dell's custom
|
||||
container
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::tgi
|
||||
- provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_type: inline::faiss
|
||||
- provider_type: remote::chromadb
|
||||
- provider_type: remote::pgvector
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
- provider_type: remote::huggingface
|
||||
- provider_type: inline::localfs
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
- provider_type: inline::llm-as-judge
|
||||
- provider_type: inline::braintrust
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,144 +0,0 @@
|
|||
version: 2
|
||||
image_name: dell
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.DEH_URL}
|
||||
- provider_id: tgi1
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.DEH_SAFETY_URL}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_id: chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: tgi1
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: brave-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -1,135 +0,0 @@
|
|||
version: 2
|
||||
image_name: dell
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.DEH_URL}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_id: chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi0
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: brave-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -1,32 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Use Meta Reference for running LLM inference
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: inline::meta-reference
|
||||
vector_io:
|
||||
- provider_type: inline::faiss
|
||||
- provider_type: remote::chromadb
|
||||
- provider_type: remote::pgvector
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
- provider_type: remote::huggingface
|
||||
- provider_type: inline::localfs
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
- provider_type: inline::llm-as-judge
|
||||
- provider_type: inline::braintrust
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,157 +0,0 @@
|
|||
version: 2
|
||||
image_name: meta-reference-gpu
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta-reference-inference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.INFERENCE_MODEL}
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:=null}
|
||||
quantization:
|
||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||
max_batch_size: ${env.MAX_BATCH_SIZE:=1}
|
||||
max_seq_len: ${env.MAX_SEQ_LEN:=4096}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
- provider_id: meta-reference-safety
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.SAFETY_MODEL}
|
||||
checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:=null}
|
||||
quantization:
|
||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||
max_batch_size: ${env.MAX_BATCH_SIZE:=1}
|
||||
max_seq_len: ${env.MAX_SEQ_LEN:=4096}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: meta-reference-safety
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -1,142 +0,0 @@
|
|||
version: 2
|
||||
image_name: meta-reference-gpu
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta-reference-inference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.INFERENCE_MODEL}
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:=null}
|
||||
quantization:
|
||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||
max_batch_size: ${env.MAX_BATCH_SIZE:=1}
|
||||
max_seq_len: ${env.MAX_SEQ_LEN:=4096}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -1,29 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Use NVIDIA NIM for running LLM inference, evaluation and safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::nvidia
|
||||
vector_io:
|
||||
- provider_type: inline::faiss
|
||||
safety:
|
||||
- provider_type: remote::nvidia
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: remote::nvidia
|
||||
post_training:
|
||||
- provider_type: remote::nvidia
|
||||
datasetio:
|
||||
- provider_type: inline::localfs
|
||||
- provider_type: remote::nvidia
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
tool_runtime:
|
||||
- provider_type: inline::rag-runtime
|
||||
files:
|
||||
- provider_type: inline::localfs
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,140 +0,0 @@
|
|||
version: 2
|
||||
image_name: nvidia
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
- inference
|
||||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:=http://localhost:7331}
|
||||
config_id: ${env.NVIDIA_GUARDRAILS_CONFIG_ID:=self-check}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:=http://localhost:7331}
|
||||
config_id: ${env.NVIDIA_GUARDRAILS_CONFIG_ID:=self-check}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:=http://localhost:7331}
|
||||
post_training:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
|
||||
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
|
||||
customizer_url: ${env.NVIDIA_CUSTOMIZER_URL:=http://nemo.test}
|
||||
datasetio:
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
|
||||
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
|
||||
datasets_url: ${env.NVIDIA_DATASETS_URL:=http://nemo.test}
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
tool_runtime:
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files}
|
||||
metadata_store:
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: nvidia
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: nvidia
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: nvidia
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -1,119 +0,0 @@
|
|||
version: 2
|
||||
image_name: nvidia
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
- inference
|
||||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:=http://localhost:7331}
|
||||
config_id: ${env.NVIDIA_GUARDRAILS_CONFIG_ID:=self-check}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:=http://localhost:7331}
|
||||
post_training:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
|
||||
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
|
||||
customizer_url: ${env.NVIDIA_CUSTOMIZER_URL:=http://nemo.test}
|
||||
datasetio:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
|
||||
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
|
||||
datasets_url: ${env.NVIDIA_DATASETS_URL:=http://nemo.test}
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
tool_runtime:
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files}
|
||||
metadata_store:
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -1,36 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Distribution for running open benchmarks
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::openai
|
||||
- provider_type: remote::anthropic
|
||||
- provider_type: remote::gemini
|
||||
- provider_type: remote::groq
|
||||
- provider_type: remote::together
|
||||
vector_io:
|
||||
- provider_type: inline::sqlite-vec
|
||||
- provider_type: remote::chromadb
|
||||
- provider_type: remote::pgvector
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
- provider_type: remote::huggingface
|
||||
- provider_type: inline::localfs
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
- provider_type: inline::llm-as-judge
|
||||
- provider_type: inline::braintrust
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,255 +0,0 @@
|
|||
version: 2
|
||||
image_name: open-benchmark
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: openai
|
||||
provider_type: remote::openai
|
||||
config:
|
||||
api_key: ${env.OPENAI_API_KEY:=}
|
||||
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
|
||||
- provider_id: anthropic
|
||||
provider_type: remote::anthropic
|
||||
config:
|
||||
api_key: ${env.ANTHROPIC_API_KEY:=}
|
||||
- provider_id: gemini
|
||||
provider_type: remote::gemini
|
||||
config:
|
||||
api_key: ${env.GEMINI_API_KEY:=}
|
||||
- provider_id: groq
|
||||
provider_type: remote::groq
|
||||
config:
|
||||
url: https://api.groq.com
|
||||
api_key: ${env.GROQ_API_KEY:=}
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: ${env.TOGETHER_API_KEY:=}
|
||||
vector_io:
|
||||
- provider_id: sqlite-vec
|
||||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec.db
|
||||
persistence:
|
||||
namespace: vector_io::sqlite_vec
|
||||
backend: kv_default
|
||||
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.ENABLE_PGVECTOR:+pgvector}
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: ${env.PGVECTOR_HOST:=localhost}
|
||||
port: ${env.PGVECTOR_PORT:=5432}
|
||||
db: ${env.PGVECTOR_DB:=}
|
||||
user: ${env.PGVECTOR_USER:=}
|
||||
password: ${env.PGVECTOR_PASSWORD:=}
|
||||
persistence:
|
||||
namespace: vector_io::pgvector
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: gpt-4o
|
||||
provider_id: openai
|
||||
provider_model_id: gpt-4o
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: claude-3-5-sonnet-latest
|
||||
provider_id: anthropic
|
||||
provider_model_id: claude-3-5-sonnet-latest
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: gemini/gemini-1.5-flash
|
||||
provider_id: gemini
|
||||
provider_model_id: gemini/gemini-1.5-flash
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/llama-3.3-70b-versatile
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-405B-Instruct
|
||||
provider_id: together
|
||||
provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: meta-llama/Llama-Guard-3-8B
|
||||
vector_dbs: []
|
||||
datasets:
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/simpleqa?split=train
|
||||
metadata: {}
|
||||
dataset_id: simpleqa
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/mmlu_cot?split=test&name=all
|
||||
metadata: {}
|
||||
dataset_id: mmlu_cot
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/gpqa_0shot_cot?split=test&name=gpqa_main
|
||||
metadata: {}
|
||||
dataset_id: gpqa_cot
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/math_500?split=test
|
||||
metadata: {}
|
||||
dataset_id: math_500
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/IfEval?split=train
|
||||
metadata: {}
|
||||
dataset_id: ifeval
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/docvqa?split=val
|
||||
metadata: {}
|
||||
dataset_id: docvqa
|
||||
scoring_fns: []
|
||||
benchmarks:
|
||||
- dataset_id: simpleqa
|
||||
scoring_functions:
|
||||
- llm-as-judge::405b-simpleqa
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-simpleqa
|
||||
- dataset_id: mmlu_cot
|
||||
scoring_functions:
|
||||
- basic::regex_parser_multiple_choice_answer
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-mmlu-cot
|
||||
- dataset_id: gpqa_cot
|
||||
scoring_functions:
|
||||
- basic::regex_parser_multiple_choice_answer
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-gpqa-cot
|
||||
- dataset_id: math_500
|
||||
scoring_functions:
|
||||
- basic::regex_parser_math_response
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-math-500
|
||||
- dataset_id: ifeval
|
||||
scoring_functions:
|
||||
- basic::ifeval
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-ifeval
|
||||
- dataset_id: docvqa
|
||||
scoring_functions:
|
||||
- basic::docvqa
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-docvqa
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -1,23 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Quick start template for running Llama Stack with several popular providers
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::vllm
|
||||
- provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_type: remote::chromadb
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- asyncpg
|
||||
- psycopg2-binary
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,118 +0,0 @@
|
|||
version: 2
|
||||
image_name: postgres-demo
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- safety
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: vllm-inference
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:=http://localhost:8000/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
db: ${env.POSTGRES_DB:=llamastack}
|
||||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
|
||||
sql_default:
|
||||
type: sql_postgres
|
||||
host: ${env.POSTGRES_HOST:=localhost}
|
||||
port: ${env.POSTGRES_PORT:=5432}
|
||||
db: ${env.POSTGRES_DB:=llamastack}
|
||||
user: ${env.POSTGRES_USER:=llamastack}
|
||||
password: ${env.POSTGRES_PASSWORD:=llamastack}
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: vllm-inference
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: meta-llama/Llama-Guard-3-8B
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -1,60 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Quick start template for running Llama Stack with several popular providers.
|
||||
This distribution is intended for GPU-enabled environments.
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::cerebras
|
||||
- provider_type: remote::ollama
|
||||
- provider_type: remote::vllm
|
||||
- provider_type: remote::tgi
|
||||
- provider_type: remote::fireworks
|
||||
- provider_type: remote::together
|
||||
- provider_type: remote::bedrock
|
||||
- provider_type: remote::nvidia
|
||||
- provider_type: remote::openai
|
||||
- provider_type: remote::anthropic
|
||||
- provider_type: remote::gemini
|
||||
- provider_type: remote::vertexai
|
||||
- provider_type: remote::groq
|
||||
- provider_type: remote::sambanova
|
||||
- provider_type: remote::azure
|
||||
- provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_type: inline::faiss
|
||||
- provider_type: inline::sqlite-vec
|
||||
- provider_type: inline::milvus
|
||||
- provider_type: remote::chromadb
|
||||
- provider_type: remote::pgvector
|
||||
- provider_type: remote::qdrant
|
||||
- provider_type: remote::weaviate
|
||||
files:
|
||||
- provider_type: inline::localfs
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
- provider_type: inline::code-scanner
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
post_training:
|
||||
- provider_type: inline::huggingface-gpu
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
- provider_type: remote::huggingface
|
||||
- provider_type: inline::localfs
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
- provider_type: inline::llm-as-judge
|
||||
- provider_type: inline::braintrust
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_type: inline::reference
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- asyncpg
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,284 +0,0 @@
|
|||
version: 2
|
||||
image_name: starter-gpu
|
||||
apis:
|
||||
- agents
|
||||
- batches
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
- inference
|
||||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ${env.CEREBRAS_API_KEY:+cerebras}
|
||||
provider_type: remote::cerebras
|
||||
config:
|
||||
base_url: https://api.cerebras.ai
|
||||
api_key: ${env.CEREBRAS_API_KEY:=}
|
||||
- provider_id: ${env.OLLAMA_URL:+ollama}
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:=http://localhost:11434}
|
||||
- provider_id: ${env.VLLM_URL:+vllm}
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:=}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||
- provider_id: ${env.TGI_URL:+tgi}
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.TGI_URL:=}
|
||||
- provider_id: fireworks
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inference/v1
|
||||
api_key: ${env.FIREWORKS_API_KEY:=}
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: ${env.TOGETHER_API_KEY:=}
|
||||
- provider_id: bedrock
|
||||
provider_type: remote::bedrock
|
||||
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
|
||||
- provider_id: openai
|
||||
provider_type: remote::openai
|
||||
config:
|
||||
api_key: ${env.OPENAI_API_KEY:=}
|
||||
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
|
||||
- provider_id: anthropic
|
||||
provider_type: remote::anthropic
|
||||
config:
|
||||
api_key: ${env.ANTHROPIC_API_KEY:=}
|
||||
- provider_id: gemini
|
||||
provider_type: remote::gemini
|
||||
config:
|
||||
api_key: ${env.GEMINI_API_KEY:=}
|
||||
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
|
||||
provider_type: remote::vertexai
|
||||
config:
|
||||
project: ${env.VERTEX_AI_PROJECT:=}
|
||||
location: ${env.VERTEX_AI_LOCATION:=us-central1}
|
||||
- provider_id: groq
|
||||
provider_type: remote::groq
|
||||
config:
|
||||
url: https://api.groq.com
|
||||
api_key: ${env.GROQ_API_KEY:=}
|
||||
- provider_id: sambanova
|
||||
provider_type: remote::sambanova
|
||||
config:
|
||||
url: https://api.sambanova.ai/v1
|
||||
api_key: ${env.SAMBANOVA_API_KEY:=}
|
||||
- provider_id: ${env.AZURE_API_KEY:+azure}
|
||||
provider_type: remote::azure
|
||||
config:
|
||||
api_key: ${env.AZURE_API_KEY:=}
|
||||
api_base: ${env.AZURE_API_BASE:=}
|
||||
api_version: ${env.AZURE_API_VERSION:=}
|
||||
api_type: ${env.AZURE_API_TYPE:=}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
- provider_id: sqlite-vec
|
||||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sqlite_vec.db
|
||||
persistence:
|
||||
namespace: vector_io::sqlite_vec
|
||||
backend: kv_default
|
||||
- provider_id: ${env.MILVUS_URL:+milvus}
|
||||
provider_type: inline::milvus
|
||||
config:
|
||||
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter-gpu}/milvus.db
|
||||
persistence:
|
||||
namespace: vector_io::milvus
|
||||
backend: kv_default
|
||||
- provider_id: ${env.CHROMADB_URL:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.PGVECTOR_DB:+pgvector}
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: ${env.PGVECTOR_HOST:=localhost}
|
||||
port: ${env.PGVECTOR_PORT:=5432}
|
||||
db: ${env.PGVECTOR_DB:=}
|
||||
user: ${env.PGVECTOR_USER:=}
|
||||
password: ${env.PGVECTOR_PASSWORD:=}
|
||||
persistence:
|
||||
namespace: vector_io::pgvector
|
||||
backend: kv_default
|
||||
- provider_id: ${env.QDRANT_URL:+qdrant}
|
||||
provider_type: remote::qdrant
|
||||
config:
|
||||
api_key: ${env.QDRANT_API_KEY:=}
|
||||
persistence:
|
||||
namespace: vector_io::qdrant_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
|
||||
provider_type: remote::weaviate
|
||||
config:
|
||||
weaviate_api_key: null
|
||||
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
|
||||
persistence:
|
||||
namespace: vector_io::weaviate
|
||||
backend: kv_default
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter-gpu/files}
|
||||
metadata_store:
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
- provider_id: code-scanner
|
||||
provider_type: inline::code-scanner
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
post_training:
|
||||
- provider_id: huggingface-gpu
|
||||
provider_type: inline::huggingface-gpu
|
||||
config:
|
||||
checkpoint_format: huggingface
|
||||
distributed_backend: null
|
||||
device: cpu
|
||||
dpo_output_dir: ~/.llama/distributions/starter-gpu/dpo_output
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_id: reference
|
||||
provider_type: inline::reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: batches
|
||||
backend: kv_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields:
|
||||
- shield_id: llama-guard
|
||||
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
||||
provider_shield_id: ${env.SAFETY_MODEL:=}
|
||||
- shield_id: code-scanner
|
||||
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
||||
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
safety:
|
||||
default_shield_id: llama-guard
|
||||
|
|
@ -1,60 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Quick start template for running Llama Stack with several popular providers.
|
||||
This distribution is intended for CPU-only environments.
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::cerebras
|
||||
- provider_type: remote::ollama
|
||||
- provider_type: remote::vllm
|
||||
- provider_type: remote::tgi
|
||||
- provider_type: remote::fireworks
|
||||
- provider_type: remote::together
|
||||
- provider_type: remote::bedrock
|
||||
- provider_type: remote::nvidia
|
||||
- provider_type: remote::openai
|
||||
- provider_type: remote::anthropic
|
||||
- provider_type: remote::gemini
|
||||
- provider_type: remote::vertexai
|
||||
- provider_type: remote::groq
|
||||
- provider_type: remote::sambanova
|
||||
- provider_type: remote::azure
|
||||
- provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_type: inline::faiss
|
||||
- provider_type: inline::sqlite-vec
|
||||
- provider_type: inline::milvus
|
||||
- provider_type: remote::chromadb
|
||||
- provider_type: remote::pgvector
|
||||
- provider_type: remote::qdrant
|
||||
- provider_type: remote::weaviate
|
||||
files:
|
||||
- provider_type: inline::localfs
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
- provider_type: inline::code-scanner
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
post_training:
|
||||
- provider_type: inline::torchtune-cpu
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
- provider_type: remote::huggingface
|
||||
- provider_type: inline::localfs
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
- provider_type: inline::llm-as-judge
|
||||
- provider_type: inline::braintrust
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_type: inline::reference
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- asyncpg
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,281 +0,0 @@
|
|||
version: 2
|
||||
image_name: starter
|
||||
apis:
|
||||
- agents
|
||||
- batches
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
- inference
|
||||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ${env.CEREBRAS_API_KEY:+cerebras}
|
||||
provider_type: remote::cerebras
|
||||
config:
|
||||
base_url: https://api.cerebras.ai
|
||||
api_key: ${env.CEREBRAS_API_KEY:=}
|
||||
- provider_id: ${env.OLLAMA_URL:+ollama}
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:=http://localhost:11434}
|
||||
- provider_id: ${env.VLLM_URL:+vllm}
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:=}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||
- provider_id: ${env.TGI_URL:+tgi}
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.TGI_URL:=}
|
||||
- provider_id: fireworks
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inference/v1
|
||||
api_key: ${env.FIREWORKS_API_KEY:=}
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: ${env.TOGETHER_API_KEY:=}
|
||||
- provider_id: bedrock
|
||||
provider_type: remote::bedrock
|
||||
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:=}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
|
||||
- provider_id: openai
|
||||
provider_type: remote::openai
|
||||
config:
|
||||
api_key: ${env.OPENAI_API_KEY:=}
|
||||
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
|
||||
- provider_id: anthropic
|
||||
provider_type: remote::anthropic
|
||||
config:
|
||||
api_key: ${env.ANTHROPIC_API_KEY:=}
|
||||
- provider_id: gemini
|
||||
provider_type: remote::gemini
|
||||
config:
|
||||
api_key: ${env.GEMINI_API_KEY:=}
|
||||
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
|
||||
provider_type: remote::vertexai
|
||||
config:
|
||||
project: ${env.VERTEX_AI_PROJECT:=}
|
||||
location: ${env.VERTEX_AI_LOCATION:=us-central1}
|
||||
- provider_id: groq
|
||||
provider_type: remote::groq
|
||||
config:
|
||||
url: https://api.groq.com
|
||||
api_key: ${env.GROQ_API_KEY:=}
|
||||
- provider_id: sambanova
|
||||
provider_type: remote::sambanova
|
||||
config:
|
||||
url: https://api.sambanova.ai/v1
|
||||
api_key: ${env.SAMBANOVA_API_KEY:=}
|
||||
- provider_id: ${env.AZURE_API_KEY:+azure}
|
||||
provider_type: remote::azure
|
||||
config:
|
||||
api_key: ${env.AZURE_API_KEY:=}
|
||||
api_base: ${env.AZURE_API_BASE:=}
|
||||
api_version: ${env.AZURE_API_VERSION:=}
|
||||
api_type: ${env.AZURE_API_TYPE:=}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
- provider_id: sqlite-vec
|
||||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
|
||||
persistence:
|
||||
namespace: vector_io::sqlite_vec
|
||||
backend: kv_default
|
||||
- provider_id: ${env.MILVUS_URL:+milvus}
|
||||
provider_type: inline::milvus
|
||||
config:
|
||||
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter}/milvus.db
|
||||
persistence:
|
||||
namespace: vector_io::milvus
|
||||
backend: kv_default
|
||||
- provider_id: ${env.CHROMADB_URL:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.PGVECTOR_DB:+pgvector}
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: ${env.PGVECTOR_HOST:=localhost}
|
||||
port: ${env.PGVECTOR_PORT:=5432}
|
||||
db: ${env.PGVECTOR_DB:=}
|
||||
user: ${env.PGVECTOR_USER:=}
|
||||
password: ${env.PGVECTOR_PASSWORD:=}
|
||||
persistence:
|
||||
namespace: vector_io::pgvector
|
||||
backend: kv_default
|
||||
- provider_id: ${env.QDRANT_URL:+qdrant}
|
||||
provider_type: remote::qdrant
|
||||
config:
|
||||
api_key: ${env.QDRANT_API_KEY:=}
|
||||
persistence:
|
||||
namespace: vector_io::qdrant_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
|
||||
provider_type: remote::weaviate
|
||||
config:
|
||||
weaviate_api_key: null
|
||||
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
|
||||
persistence:
|
||||
namespace: vector_io::weaviate
|
||||
backend: kv_default
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
|
||||
metadata_store:
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
- provider_id: code-scanner
|
||||
provider_type: inline::code-scanner
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
post_training:
|
||||
- provider_id: torchtune-cpu
|
||||
provider_type: inline::torchtune-cpu
|
||||
config:
|
||||
checkpoint_format: meta
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_id: reference
|
||||
provider_type: inline::reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: batches
|
||||
backend: kv_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields:
|
||||
- shield_id: llama-guard
|
||||
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
||||
provider_shield_id: ${env.SAFETY_MODEL:=}
|
||||
- shield_id: code-scanner
|
||||
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
||||
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
safety:
|
||||
default_shield_id: llama-guard
|
||||
|
|
@ -1,33 +0,0 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Use watsonx for running LLM inference
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::watsonx
|
||||
- provider_type: inline::sentence-transformers
|
||||
vector_io:
|
||||
- provider_type: inline::faiss
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
- provider_type: remote::huggingface
|
||||
- provider_type: inline::localfs
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
- provider_type: inline::llm-as-judge
|
||||
- provider_type: inline::braintrust
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
files:
|
||||
- provider_type: inline::localfs
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
@ -1,136 +0,0 @@
|
|||
version: 2
|
||||
image_name: watsonx
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: watsonx
|
||||
provider_type: remote::watsonx
|
||||
config:
|
||||
url: ${env.WATSONX_BASE_URL:=https://us-south.ml.cloud.ibm.com}
|
||||
api_key: ${env.WATSONX_API_KEY:=}
|
||||
project_id: ${env.WATSONX_PROJECT_ID:=}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/watsonx/files}
|
||||
metadata_store:
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -7,7 +7,7 @@ required-version = ">=0.7.0"
|
|||
|
||||
[project]
|
||||
name = "llama_stack"
|
||||
version = "0.3.0"
|
||||
version = "0.4.0.dev0"
|
||||
authors = [{ name = "Meta Llama", email = "llama-oss@meta.com" }]
|
||||
description = "Llama Stack"
|
||||
readme = "README.md"
|
||||
|
|
@ -71,11 +71,40 @@ dev = [
|
|||
"nbval", # For notebook testing
|
||||
"black",
|
||||
"ruff",
|
||||
"types-requests",
|
||||
"types-setuptools",
|
||||
"mypy",
|
||||
"pre-commit",
|
||||
"ruamel.yaml", # needed for openapi generator
|
||||
]
|
||||
# Type checking dependencies - includes type stubs and optional runtime dependencies
|
||||
# needed for complete mypy coverage across all optional features
|
||||
type_checking = [
|
||||
"types-requests",
|
||||
"types-setuptools",
|
||||
"types-jsonschema",
|
||||
"pandas-stubs",
|
||||
"types-psutil",
|
||||
"types-tqdm",
|
||||
"boto3-stubs[s3]",
|
||||
"streamlit",
|
||||
"streamlit-option-menu",
|
||||
"pandas",
|
||||
"anthropic",
|
||||
"databricks-sdk",
|
||||
"fairscale",
|
||||
"torchtune",
|
||||
"trl",
|
||||
"peft",
|
||||
"datasets",
|
||||
"together",
|
||||
"nest-asyncio",
|
||||
"pymongo",
|
||||
"torchvision",
|
||||
"sqlite-vec",
|
||||
"faiss-cpu",
|
||||
"lm-format-enforcer",
|
||||
"mcp",
|
||||
"ollama",
|
||||
]
|
||||
# These are the dependencies required for running unit tests.
|
||||
unit = [
|
||||
"anthropic",
|
||||
|
|
@ -255,7 +284,6 @@ exclude = [
|
|||
"^src/llama_stack/models/llama/llama3/interface\\.py$",
|
||||
"^src/llama_stack/models/llama/llama3/tokenizer\\.py$",
|
||||
"^src/llama_stack/models/llama/llama3/tool_utils\\.py$",
|
||||
"^src/llama_stack/providers/inline/agents/meta_reference/",
|
||||
"^src/llama_stack/providers/inline/datasetio/localfs/",
|
||||
"^src/llama_stack/providers/inline/eval/meta_reference/eval\\.py$",
|
||||
"^src/llama_stack/providers/inline/inference/meta_reference/inference\\.py$",
|
||||
|
|
@ -316,7 +344,17 @@ exclude = [
|
|||
|
||||
[[tool.mypy.overrides]]
|
||||
# packages that lack typing annotations, do not have stubs, or are unavailable.
|
||||
module = ["yaml", "fire"]
|
||||
module = [
|
||||
"yaml",
|
||||
"fire",
|
||||
"torchtune.*",
|
||||
"fairscale.*",
|
||||
"torchvision.*",
|
||||
"datasets",
|
||||
"nest_asyncio",
|
||||
"streamlit_option_menu",
|
||||
"lmformatenforcer.*",
|
||||
]
|
||||
ignore_missing_imports = true
|
||||
|
||||
[tool.pydantic-mypy]
|
||||
|
|
|
|||
|
|
@ -55,7 +55,7 @@ def process_distro(distro_dir: Path, progress, change_tracker: ChangedPathTracke
|
|||
if template_func := getattr(module, "get_distribution_template", None):
|
||||
distro = template_func()
|
||||
|
||||
yaml_output_dir = REPO_ROOT / "llama_stack" / "distributions" / distro.name
|
||||
yaml_output_dir = REPO_ROOT / "src" / "llama_stack" / "distributions" / distro.name
|
||||
doc_output_dir = REPO_ROOT / "docs/docs/distributions" / f"{distro.distro_type}_distro"
|
||||
change_tracker.add_paths(yaml_output_dir, doc_output_dir)
|
||||
distro.save_distribution(
|
||||
|
|
|
|||
|
|
@ -215,6 +215,16 @@ build_image() {
|
|||
--build-arg "LLAMA_STACK_DIR=/workspace"
|
||||
)
|
||||
|
||||
# Pass UV index configuration for release branches
|
||||
if [[ -n "${UV_EXTRA_INDEX_URL:-}" ]]; then
|
||||
echo "Adding UV_EXTRA_INDEX_URL to docker build: $UV_EXTRA_INDEX_URL"
|
||||
build_cmd+=(--build-arg "UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL")
|
||||
fi
|
||||
if [[ -n "${UV_INDEX_STRATEGY:-}" ]]; then
|
||||
echo "Adding UV_INDEX_STRATEGY to docker build: $UV_INDEX_STRATEGY"
|
||||
build_cmd+=(--build-arg "UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY")
|
||||
fi
|
||||
|
||||
if ! "${build_cmd[@]}"; then
|
||||
echo "❌ Failed to build Docker image"
|
||||
exit 1
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@ COLLECT_ONLY=false
|
|||
|
||||
# Function to display usage
|
||||
usage() {
|
||||
cat << EOF
|
||||
cat <<EOF
|
||||
Usage: $0 [OPTIONS]
|
||||
|
||||
Options:
|
||||
|
|
@ -102,7 +102,6 @@ while [[ $# -gt 0 ]]; do
|
|||
esac
|
||||
done
|
||||
|
||||
|
||||
# Validate required parameters
|
||||
if [[ -z "$STACK_CONFIG" && "$COLLECT_ONLY" == false ]]; then
|
||||
echo "Error: --stack-config is required"
|
||||
|
|
@ -177,21 +176,45 @@ cd $ROOT_DIR
|
|||
# check if "llama" and "pytest" are available. this script does not use `uv run` given
|
||||
# it can be used in a pre-release environment where we have not been able to tell
|
||||
# uv about pre-release dependencies properly (yet).
|
||||
if [[ "$COLLECT_ONLY" == false ]] && ! command -v llama &> /dev/null; then
|
||||
if [[ "$COLLECT_ONLY" == false ]] && ! command -v llama &>/dev/null; then
|
||||
echo "llama could not be found, ensure llama-stack is installed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v pytest &> /dev/null; then
|
||||
if ! command -v pytest &>/dev/null; then
|
||||
echo "pytest could not be found, ensure pytest is installed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Helper function to find next available port
|
||||
find_available_port() {
|
||||
local start_port=$1
|
||||
local port=$start_port
|
||||
for ((i=0; i<100; i++)); do
|
||||
if ! lsof -Pi :$port -sTCP:LISTEN -t >/dev/null 2>&1; then
|
||||
echo $port
|
||||
return 0
|
||||
fi
|
||||
((port++))
|
||||
done
|
||||
echo "Failed to find available port starting from $start_port" >&2
|
||||
return 1
|
||||
}
|
||||
|
||||
# Start Llama Stack Server if needed
|
||||
if [[ "$STACK_CONFIG" == *"server:"* && "$COLLECT_ONLY" == false ]]; then
|
||||
# Find an available port for the server
|
||||
LLAMA_STACK_PORT=$(find_available_port 8321)
|
||||
if [[ $? -ne 0 ]]; then
|
||||
echo "Error: $LLAMA_STACK_PORT"
|
||||
exit 1
|
||||
fi
|
||||
export LLAMA_STACK_PORT
|
||||
echo "Will use port: $LLAMA_STACK_PORT"
|
||||
|
||||
stop_server() {
|
||||
echo "Stopping Llama Stack Server..."
|
||||
pids=$(lsof -i :8321 | awk 'NR>1 {print $2}')
|
||||
pids=$(lsof -i :$LLAMA_STACK_PORT | awk 'NR>1 {print $2}')
|
||||
if [[ -n "$pids" ]]; then
|
||||
echo "Killing Llama Stack Server processes: $pids"
|
||||
kill -9 $pids
|
||||
|
|
@ -201,20 +224,25 @@ if [[ "$STACK_CONFIG" == *"server:"* && "$COLLECT_ONLY" == false ]]; then
|
|||
echo "Llama Stack Server stopped"
|
||||
}
|
||||
|
||||
# check if server is already running
|
||||
if curl -s http://localhost:8321/v1/health 2>/dev/null | grep -q "OK"; then
|
||||
echo "Llama Stack Server is already running, skipping start"
|
||||
else
|
||||
echo "=== Starting Llama Stack Server ==="
|
||||
export LLAMA_STACK_LOG_WIDTH=120
|
||||
|
||||
# Configure telemetry collector for server mode
|
||||
# Use a fixed port for the OTEL collector so the server can connect to it
|
||||
COLLECTOR_PORT=4317
|
||||
export LLAMA_STACK_TEST_COLLECTOR_PORT="${COLLECTOR_PORT}"
|
||||
export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:${COLLECTOR_PORT}"
|
||||
export OTEL_EXPORTER_OTLP_PROTOCOL="http/protobuf"
|
||||
export OTEL_BSP_SCHEDULE_DELAY="200"
|
||||
export OTEL_BSP_EXPORT_TIMEOUT="2000"
|
||||
|
||||
# remove "server:" from STACK_CONFIG
|
||||
stack_config=$(echo "$STACK_CONFIG" | sed 's/^server://')
|
||||
nohup llama stack run $stack_config > server.log 2>&1 &
|
||||
nohup llama stack run $stack_config >server.log 2>&1 &
|
||||
|
||||
echo "Waiting for Llama Stack Server to start..."
|
||||
echo "Waiting for Llama Stack Server to start on port $LLAMA_STACK_PORT..."
|
||||
for i in {1..30}; do
|
||||
if curl -s http://localhost:8321/v1/health 2>/dev/null | grep -q "OK"; then
|
||||
if curl -s http://localhost:$LLAMA_STACK_PORT/v1/health 2>/dev/null | grep -q "OK"; then
|
||||
echo "✅ Llama Stack Server started successfully"
|
||||
break
|
||||
fi
|
||||
|
|
@ -227,7 +255,6 @@ if [[ "$STACK_CONFIG" == *"server:"* && "$COLLECT_ONLY" == false ]]; then
|
|||
sleep 1
|
||||
done
|
||||
echo ""
|
||||
fi
|
||||
|
||||
trap stop_server EXIT ERR INT TERM
|
||||
fi
|
||||
|
|
@ -239,7 +266,7 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then
|
|||
container_name="llama-stack-test-$DISTRO"
|
||||
if docker ps -a --format '{{.Names}}' | grep -q "^${container_name}$"; then
|
||||
echo "Dumping container logs before stopping..."
|
||||
docker logs "$container_name" > "docker-${DISTRO}-${INFERENCE_MODE}.log" 2>&1 || true
|
||||
docker logs "$container_name" >"docker-${DISTRO}-${INFERENCE_MODE}.log" 2>&1 || true
|
||||
echo "Stopping and removing container: $container_name"
|
||||
docker stop "$container_name" 2>/dev/null || true
|
||||
docker rm "$container_name" 2>/dev/null || true
|
||||
|
|
@ -251,7 +278,14 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then
|
|||
|
||||
# Extract distribution name from docker:distro format
|
||||
DISTRO=$(echo "$STACK_CONFIG" | sed 's/^docker://')
|
||||
export LLAMA_STACK_PORT=8321
|
||||
# Find an available port for the docker container
|
||||
LLAMA_STACK_PORT=$(find_available_port 8321)
|
||||
if [[ $? -ne 0 ]]; then
|
||||
echo "Error: $LLAMA_STACK_PORT"
|
||||
exit 1
|
||||
fi
|
||||
export LLAMA_STACK_PORT
|
||||
echo "Will use port: $LLAMA_STACK_PORT"
|
||||
|
||||
echo "=== Building Docker Image for distribution: $DISTRO ==="
|
||||
containerfile="$ROOT_DIR/containers/Containerfile"
|
||||
|
|
@ -271,6 +305,16 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then
|
|||
--build-arg "LLAMA_STACK_DIR=/workspace"
|
||||
)
|
||||
|
||||
# Pass UV index configuration for release branches
|
||||
if [[ -n "${UV_EXTRA_INDEX_URL:-}" ]]; then
|
||||
echo "Adding UV_EXTRA_INDEX_URL to docker build: $UV_EXTRA_INDEX_URL"
|
||||
build_cmd+=(--build-arg "UV_EXTRA_INDEX_URL=$UV_EXTRA_INDEX_URL")
|
||||
fi
|
||||
if [[ -n "${UV_INDEX_STRATEGY:-}" ]]; then
|
||||
echo "Adding UV_INDEX_STRATEGY to docker build: $UV_INDEX_STRATEGY"
|
||||
build_cmd+=(--build-arg "UV_INDEX_STRATEGY=$UV_INDEX_STRATEGY")
|
||||
fi
|
||||
|
||||
if ! "${build_cmd[@]}"; then
|
||||
echo "❌ Failed to build Docker image"
|
||||
exit 1
|
||||
|
|
@ -284,10 +328,15 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then
|
|||
docker stop "$container_name" 2>/dev/null || true
|
||||
docker rm "$container_name" 2>/dev/null || true
|
||||
|
||||
# Configure telemetry collector port shared between host and container
|
||||
COLLECTOR_PORT=4317
|
||||
export LLAMA_STACK_TEST_COLLECTOR_PORT="${COLLECTOR_PORT}"
|
||||
|
||||
# Build environment variables for docker run
|
||||
DOCKER_ENV_VARS=""
|
||||
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e LLAMA_STACK_TEST_INFERENCE_MODE=$INFERENCE_MODE"
|
||||
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e LLAMA_STACK_TEST_STACK_CONFIG_TYPE=server"
|
||||
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:${COLLECTOR_PORT}"
|
||||
|
||||
# Pass through API keys if they exist
|
||||
[ -n "${TOGETHER_API_KEY:-}" ] && DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e TOGETHER_API_KEY=$TOGETHER_API_KEY"
|
||||
|
|
@ -308,8 +357,20 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then
|
|||
fi
|
||||
echo "Using image: $IMAGE_NAME"
|
||||
|
||||
docker run -d --network host --name "$container_name" \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
# On macOS/Darwin, --network host doesn't work as expected due to Docker running in a VM
|
||||
# Use regular port mapping instead
|
||||
NETWORK_MODE=""
|
||||
PORT_MAPPINGS=""
|
||||
if [[ "$(uname)" != "Darwin" ]] && [[ "$(uname)" != *"MINGW"* ]]; then
|
||||
NETWORK_MODE="--network host"
|
||||
else
|
||||
# On non-Linux (macOS, Windows), need explicit port mappings for both app and telemetry
|
||||
PORT_MAPPINGS="-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT -p $COLLECTOR_PORT:$COLLECTOR_PORT"
|
||||
echo "Using bridge networking with port mapping (non-Linux)"
|
||||
fi
|
||||
|
||||
docker run -d $NETWORK_MODE --name "$container_name" \
|
||||
$PORT_MAPPINGS \
|
||||
$DOCKER_ENV_VARS \
|
||||
"$IMAGE_NAME" \
|
||||
--port $LLAMA_STACK_PORT
|
||||
|
|
@ -411,17 +472,13 @@ elif [ $exit_code -eq 5 ]; then
|
|||
else
|
||||
echo "❌ Tests failed"
|
||||
echo ""
|
||||
echo "=== Dumping last 100 lines of logs for debugging ==="
|
||||
|
||||
# Output server or container logs based on stack config
|
||||
if [[ "$STACK_CONFIG" == *"server:"* && -f "server.log" ]]; then
|
||||
echo "--- Last 100 lines of server.log ---"
|
||||
tail -100 server.log
|
||||
echo "--- Server side failures can be located inside server.log (available from artifacts on CI) ---"
|
||||
elif [[ "$STACK_CONFIG" == *"docker:"* ]]; then
|
||||
docker_log_file="docker-${DISTRO}-${INFERENCE_MODE}.log"
|
||||
if [[ -f "$docker_log_file" ]]; then
|
||||
echo "--- Last 100 lines of $docker_log_file ---"
|
||||
tail -100 "$docker_log_file"
|
||||
echo "--- Server side failures can be located inside $docker_log_file (available from artifacts on CI) ---"
|
||||
fi
|
||||
fi
|
||||
|
||||
|
|
|
|||
42
scripts/uv-run-with-index.sh
Executable file
42
scripts/uv-run-with-index.sh
Executable file
|
|
@ -0,0 +1,42 @@
|
|||
#!/bin/bash
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
# Detect current branch and target branch
|
||||
# In GitHub Actions, use GITHUB_REF/GITHUB_BASE_REF
|
||||
if [[ -n "${GITHUB_REF:-}" ]]; then
|
||||
BRANCH="${GITHUB_REF#refs/heads/}"
|
||||
else
|
||||
BRANCH=$(git rev-parse --abbrev-ref HEAD 2>/dev/null || echo "")
|
||||
fi
|
||||
|
||||
# For PRs, check the target branch
|
||||
if [[ -n "${GITHUB_BASE_REF:-}" ]]; then
|
||||
TARGET_BRANCH="${GITHUB_BASE_REF}"
|
||||
else
|
||||
TARGET_BRANCH=$(git rev-parse --abbrev-ref HEAD@{upstream} 2>/dev/null | sed 's|origin/||' || echo "")
|
||||
fi
|
||||
|
||||
# Check if on a release branch or targeting one, or LLAMA_STACK_RELEASE_MODE is set
|
||||
IS_RELEASE=false
|
||||
if [[ "$BRANCH" =~ ^release-[0-9]+\.[0-9]+\.x$ ]]; then
|
||||
IS_RELEASE=true
|
||||
elif [[ "$TARGET_BRANCH" =~ ^release-[0-9]+\.[0-9]+\.x$ ]]; then
|
||||
IS_RELEASE=true
|
||||
elif [[ "${LLAMA_STACK_RELEASE_MODE:-}" == "true" ]]; then
|
||||
IS_RELEASE=true
|
||||
fi
|
||||
|
||||
# On release branches, use test.pypi as extra index for RC versions
|
||||
if [[ "$IS_RELEASE" == "true" ]]; then
|
||||
export UV_EXTRA_INDEX_URL="https://test.pypi.org/simple/"
|
||||
export UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
fi
|
||||
|
||||
# Run uv with all arguments passed through
|
||||
exec uv "$@"
|
||||
|
|
@ -38,6 +38,7 @@ from .openai_responses import (
|
|||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponsePrompt,
|
||||
OpenAIResponseText,
|
||||
)
|
||||
|
||||
|
|
@ -490,13 +491,6 @@ class Agents(Protocol):
|
|||
|
||||
APIs for creating and interacting with agentic systems."""
|
||||
|
||||
@webmethod(
|
||||
route="/agents",
|
||||
method="POST",
|
||||
descriptive_name="create_agent",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents",
|
||||
method="POST",
|
||||
|
|
@ -514,13 +508,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn",
|
||||
method="POST",
|
||||
descriptive_name="create_agent_turn",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn",
|
||||
method="POST",
|
||||
|
|
@ -551,13 +538,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume",
|
||||
method="POST",
|
||||
descriptive_name="resume_agent_turn",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume",
|
||||
method="POST",
|
||||
|
|
@ -585,12 +565,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}",
|
||||
method="GET",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}",
|
||||
method="GET",
|
||||
|
|
@ -611,12 +585,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}",
|
||||
method="GET",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}",
|
||||
method="GET",
|
||||
|
|
@ -639,13 +607,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session",
|
||||
method="POST",
|
||||
descriptive_name="create_agent_session",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session",
|
||||
method="POST",
|
||||
|
|
@ -665,12 +626,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}",
|
||||
method="GET",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}",
|
||||
method="GET",
|
||||
|
|
@ -691,12 +646,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}",
|
||||
method="DELETE",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}",
|
||||
method="DELETE",
|
||||
|
|
@ -714,12 +663,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}",
|
||||
method="DELETE",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/agents/{agent_id}", method="DELETE", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def delete_agent(
|
||||
self,
|
||||
|
|
@ -731,7 +674,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/agents", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def list_agents(self, start_index: int | None = None, limit: int | None = None) -> PaginatedResponse:
|
||||
"""List all agents.
|
||||
|
|
@ -742,12 +684,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}",
|
||||
method="GET",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/agents/{agent_id}", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def get_agent(self, agent_id: str) -> Agent:
|
||||
"""Describe an agent by its ID.
|
||||
|
|
@ -757,12 +693,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/sessions",
|
||||
method="GET",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/agents/{agent_id}/sessions", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def list_agent_sessions(
|
||||
self,
|
||||
|
|
@ -786,12 +716,6 @@ class Agents(Protocol):
|
|||
#
|
||||
# Both of these APIs are inherently stateful.
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/responses/{response_id}",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(route="/responses/{response_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_openai_response(
|
||||
self,
|
||||
|
|
@ -804,12 +728,12 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/responses", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
prompt: OpenAIResponsePrompt | None = None,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
conversation: str | None = None,
|
||||
|
|
@ -831,6 +755,7 @@ class Agents(Protocol):
|
|||
|
||||
:param input: Input message(s) to create the response.
|
||||
:param model: The underlying LLM used for completions.
|
||||
:param prompt: (Optional) Prompt object with ID, version, and variables.
|
||||
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
|
||||
:param conversation: (Optional) The ID of a conversation to add the response to. Must begin with 'conv_'. Input and output messages will be automatically added to the conversation.
|
||||
:param include: (Optional) Additional fields to include in the response.
|
||||
|
|
@ -839,7 +764,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/responses", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_openai_responses(
|
||||
self,
|
||||
|
|
@ -858,9 +782,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/responses/{response_id}/input_items", method="GET", level=LLAMA_STACK_API_V1, deprecated=True
|
||||
)
|
||||
@webmethod(route="/responses/{response_id}/input_items", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_openai_response_input_items(
|
||||
self,
|
||||
|
|
@ -883,7 +804,6 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}", method="DELETE", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/responses/{response_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def delete_openai_response(self, response_id: str) -> OpenAIDeleteResponseObject:
|
||||
"""Delete a response.
|
||||
|
|
|
|||
|
|
@ -4,9 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import Sequence
|
||||
from typing import Annotated, Any, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from llama_stack.apis.vector_io import SearchRankingOptions as FileSearchRankingOptions
|
||||
|
|
@ -46,23 +47,66 @@ class OpenAIResponseInputMessageContentImage(BaseModel):
|
|||
|
||||
:param detail: Level of detail for image processing, can be "low", "high", or "auto"
|
||||
:param type: Content type identifier, always "input_image"
|
||||
:param file_id: (Optional) The ID of the file to be sent to the model.
|
||||
:param image_url: (Optional) URL of the image content
|
||||
"""
|
||||
|
||||
detail: Literal["low"] | Literal["high"] | Literal["auto"] = "auto"
|
||||
type: Literal["input_image"] = "input_image"
|
||||
# TODO: handle file_id
|
||||
file_id: str | None = None
|
||||
image_url: str | None = None
|
||||
|
||||
|
||||
# TODO: handle file content types
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputMessageContentFile(BaseModel):
|
||||
"""File content for input messages in OpenAI response format.
|
||||
|
||||
:param type: The type of the input item. Always `input_file`.
|
||||
:param file_data: The data of the file to be sent to the model.
|
||||
:param file_id: (Optional) The ID of the file to be sent to the model.
|
||||
:param file_url: The URL of the file to be sent to the model.
|
||||
:param filename: The name of the file to be sent to the model.
|
||||
"""
|
||||
|
||||
type: Literal["input_file"] = "input_file"
|
||||
file_data: str | None = None
|
||||
file_id: str | None = None
|
||||
file_url: str | None = None
|
||||
filename: str | None = None
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_file_source(self) -> "OpenAIResponseInputMessageContentFile":
|
||||
if not any([self.file_data, self.file_id, self.file_url, self.filename]):
|
||||
raise ValueError(
|
||||
"At least one of 'file_data', 'file_id', 'file_url', or 'filename' must be provided for file content"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
OpenAIResponseInputMessageContent = Annotated[
|
||||
OpenAIResponseInputMessageContentText | OpenAIResponseInputMessageContentImage,
|
||||
OpenAIResponseInputMessageContentText
|
||||
| OpenAIResponseInputMessageContentImage
|
||||
| OpenAIResponseInputMessageContentFile,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMessageContent")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponsePrompt(BaseModel):
|
||||
"""OpenAI compatible Prompt object that is used in OpenAI responses.
|
||||
|
||||
:param id: Unique identifier of the prompt template
|
||||
:param variables: Dictionary of variable names to OpenAIResponseInputMessageContent structure for template substitution. The substitution values can either be strings, or other Response input types
|
||||
like images or files.
|
||||
:param version: Version number of the prompt to use (defaults to latest if not specified)
|
||||
"""
|
||||
|
||||
id: str
|
||||
variables: dict[str, OpenAIResponseInputMessageContent] | None = None
|
||||
version: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseAnnotationFileCitation(BaseModel):
|
||||
"""File citation annotation for referencing specific files in response content.
|
||||
|
|
@ -159,7 +203,7 @@ class OpenAIResponseMessage(BaseModel):
|
|||
scenarios.
|
||||
"""
|
||||
|
||||
content: str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent]
|
||||
content: str | Sequence[OpenAIResponseInputMessageContent] | Sequence[OpenAIResponseOutputMessageContent]
|
||||
role: Literal["system"] | Literal["developer"] | Literal["user"] | Literal["assistant"]
|
||||
type: Literal["message"] = "message"
|
||||
|
||||
|
|
@ -211,10 +255,10 @@ class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
|
|||
"""
|
||||
|
||||
id: str
|
||||
queries: list[str]
|
||||
queries: Sequence[str]
|
||||
status: str
|
||||
type: Literal["file_search_call"] = "file_search_call"
|
||||
results: list[OpenAIResponseOutputMessageFileSearchToolCallResults] | None = None
|
||||
results: Sequence[OpenAIResponseOutputMessageFileSearchToolCallResults] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -538,6 +582,7 @@ class OpenAIResponseObject(BaseModel):
|
|||
:param output: List of generated output items (messages, tool calls, etc.)
|
||||
:param parallel_tool_calls: Whether tool calls can be executed in parallel
|
||||
:param previous_response_id: (Optional) ID of the previous response in a conversation
|
||||
:param prompt: (Optional) Reference to a prompt template and its variables.
|
||||
:param status: Current status of the response generation
|
||||
:param temperature: (Optional) Sampling temperature used for generation
|
||||
:param text: Text formatting configuration for the response
|
||||
|
|
@ -553,16 +598,17 @@ class OpenAIResponseObject(BaseModel):
|
|||
id: str
|
||||
model: str
|
||||
object: Literal["response"] = "response"
|
||||
output: list[OpenAIResponseOutput]
|
||||
output: Sequence[OpenAIResponseOutput]
|
||||
parallel_tool_calls: bool = False
|
||||
previous_response_id: str | None = None
|
||||
prompt: OpenAIResponsePrompt | None = None
|
||||
status: str
|
||||
temperature: float | None = None
|
||||
# Default to text format to avoid breaking the loading of old responses
|
||||
# before the field was added. New responses will have this set always.
|
||||
text: OpenAIResponseText = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text"))
|
||||
top_p: float | None = None
|
||||
tools: list[OpenAIResponseTool] | None = None
|
||||
tools: Sequence[OpenAIResponseTool] | None = None
|
||||
truncation: str | None = None
|
||||
usage: OpenAIResponseUsage | None = None
|
||||
instructions: str | None = None
|
||||
|
|
@ -1270,7 +1316,7 @@ class ListOpenAIResponseInputItem(BaseModel):
|
|||
:param object: Object type identifier, always "list"
|
||||
"""
|
||||
|
||||
data: list[OpenAIResponseInput]
|
||||
data: Sequence[OpenAIResponseInput]
|
||||
object: Literal["list"] = "list"
|
||||
|
||||
|
||||
|
|
@ -1281,7 +1327,7 @@ class OpenAIResponseObjectWithInput(OpenAIResponseObject):
|
|||
:param input: List of input items that led to this response
|
||||
"""
|
||||
|
||||
input: list[OpenAIResponseInput]
|
||||
input: Sequence[OpenAIResponseInput]
|
||||
|
||||
def to_response_object(self) -> OpenAIResponseObject:
|
||||
"""Convert to OpenAIResponseObject by excluding input field."""
|
||||
|
|
@ -1299,7 +1345,7 @@ class ListOpenAIResponseObject(BaseModel):
|
|||
:param object: Object type identifier, always "list"
|
||||
"""
|
||||
|
||||
data: list[OpenAIResponseObjectWithInput]
|
||||
data: Sequence[OpenAIResponseObjectWithInput]
|
||||
has_more: bool
|
||||
first_id: str
|
||||
last_id: str
|
||||
|
|
|
|||
|
|
@ -43,7 +43,6 @@ class Batches(Protocol):
|
|||
Note: This API is currently under active development and may undergo changes.
|
||||
"""
|
||||
|
||||
@webmethod(route="/openai/v1/batches", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/batches", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def create_batch(
|
||||
self,
|
||||
|
|
@ -64,7 +63,6 @@ class Batches(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches/{batch_id}", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/batches/{batch_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def retrieve_batch(self, batch_id: str) -> BatchObject:
|
||||
"""Retrieve information about a specific batch.
|
||||
|
|
@ -74,7 +72,6 @@ class Batches(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches/{batch_id}/cancel", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/batches/{batch_id}/cancel", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def cancel_batch(self, batch_id: str) -> BatchObject:
|
||||
"""Cancel a batch that is in progress.
|
||||
|
|
@ -84,7 +81,6 @@ class Batches(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/batches", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_batches(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ from typing import Any, Literal, Protocol, runtime_checkable
|
|||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
|
|
@ -54,7 +54,6 @@ class ListBenchmarksResponse(BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class Benchmarks(Protocol):
|
||||
@webmethod(route="/eval/benchmarks", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/eval/benchmarks", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def list_benchmarks(self) -> ListBenchmarksResponse:
|
||||
"""List all benchmarks.
|
||||
|
|
@ -63,7 +62,6 @@ class Benchmarks(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def get_benchmark(
|
||||
self,
|
||||
|
|
@ -76,7 +74,6 @@ class Benchmarks(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/eval/benchmarks", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def register_benchmark(
|
||||
self,
|
||||
|
|
@ -98,7 +95,6 @@ class Benchmarks(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="DELETE", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="DELETE", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
"""Unregister a benchmark.
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ from typing import Any, Protocol, runtime_checkable
|
|||
|
||||
from llama_stack.apis.common.responses import PaginatedResponse
|
||||
from llama_stack.apis.datasets import Dataset
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1BETA
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1BETA
|
||||
from llama_stack.schema_utils import webmethod
|
||||
|
||||
|
||||
|
|
@ -21,7 +21,6 @@ class DatasetIO(Protocol):
|
|||
# keeping for aligning with inference/safety, but this is not used
|
||||
dataset_store: DatasetStore
|
||||
|
||||
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET", level=LLAMA_STACK_API_V1BETA)
|
||||
async def iterrows(
|
||||
self,
|
||||
|
|
@ -46,9 +45,6 @@ class DatasetIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/datasetio/append-rows/{dataset_id:path}", method="POST", deprecated=True, level=LLAMA_STACK_API_V1
|
||||
)
|
||||
@webmethod(route="/datasetio/append-rows/{dataset_id:path}", method="POST", level=LLAMA_STACK_API_V1BETA)
|
||||
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
|
||||
"""Append rows to a dataset.
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from typing import Annotated, Any, Literal, Protocol
|
|||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1BETA
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1BETA
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
|
|
@ -146,7 +146,6 @@ class ListDatasetsResponse(BaseModel):
|
|||
|
||||
|
||||
class Datasets(Protocol):
|
||||
@webmethod(route="/datasets", method="POST", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets", method="POST", level=LLAMA_STACK_API_V1BETA)
|
||||
async def register_dataset(
|
||||
self,
|
||||
|
|
@ -216,7 +215,6 @@ class Datasets(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="GET", level=LLAMA_STACK_API_V1BETA)
|
||||
async def get_dataset(
|
||||
self,
|
||||
|
|
@ -229,7 +227,6 @@ class Datasets(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets", method="GET", level=LLAMA_STACK_API_V1BETA)
|
||||
async def list_datasets(self) -> ListDatasetsResponse:
|
||||
"""List all datasets.
|
||||
|
|
@ -238,7 +235,6 @@ class Datasets(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE", level=LLAMA_STACK_API_V1BETA)
|
||||
async def unregister_dataset(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ from llama_stack.apis.common.job_types import Job
|
|||
from llama_stack.apis.inference import SamplingParams, SystemMessage
|
||||
from llama_stack.apis.scoring import ScoringResult
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
|
|
@ -86,7 +86,6 @@ class Eval(Protocol):
|
|||
|
||||
Llama Stack Evaluation API for running evaluations on model and agent candidates."""
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def run_eval(
|
||||
self,
|
||||
|
|
@ -101,9 +100,6 @@ class Eval(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST", level=LLAMA_STACK_API_V1, deprecated=True
|
||||
)
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
|
|
@ -122,9 +118,6 @@ class Eval(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET", level=LLAMA_STACK_API_V1, deprecated=True
|
||||
)
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
|
||||
"""Get the status of a job.
|
||||
|
|
@ -135,12 +128,6 @@ class Eval(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}",
|
||||
method="DELETE",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="DELETE", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
|
||||
"""Cancel a job.
|
||||
|
|
@ -150,12 +137,6 @@ class Eval(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result", method="GET", level=LLAMA_STACK_API_V1ALPHA
|
||||
)
|
||||
|
|
|
|||
|
|
@ -110,7 +110,6 @@ class Files(Protocol):
|
|||
"""
|
||||
|
||||
# OpenAI Files API Endpoints
|
||||
@webmethod(route="/openai/v1/files", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/files", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_upload_file(
|
||||
self,
|
||||
|
|
@ -134,7 +133,6 @@ class Files(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/files", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/files", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_list_files(
|
||||
self,
|
||||
|
|
@ -155,7 +153,6 @@ class Files(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/files/{file_id}", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/files/{file_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_retrieve_file(
|
||||
self,
|
||||
|
|
@ -170,7 +167,6 @@ class Files(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/files/{file_id}", method="DELETE", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/files/{file_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def openai_delete_file(
|
||||
self,
|
||||
|
|
@ -183,7 +179,6 @@ class Files(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/files/{file_id}/content", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/files/{file_id}/content", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_retrieve_file_content(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -1189,7 +1189,6 @@ class InferenceProvider(Protocol):
|
|||
raise NotImplementedError("Reranking is not implemented")
|
||||
return # this is so mypy's safe-super rule will consider the method concrete
|
||||
|
||||
@webmethod(route="/openai/v1/completions", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_completion(
|
||||
self,
|
||||
|
|
@ -1202,7 +1201,6 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/chat/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
|
|
@ -1215,7 +1213,6 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/embeddings", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/embeddings", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
|
|
@ -1240,7 +1237,6 @@ class Inference(InferenceProvider):
|
|||
- Rerank models: these models reorder the documents based on their relevance to a query.
|
||||
"""
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/chat/completions", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_chat_completions(
|
||||
self,
|
||||
|
|
@ -1259,9 +1255,6 @@ class Inference(InferenceProvider):
|
|||
"""
|
||||
raise NotImplementedError("List chat completions is not implemented")
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/chat/completions/{completion_id}", method="GET", level=LLAMA_STACK_API_V1, deprecated=True
|
||||
)
|
||||
@webmethod(route="/chat/completions/{completion_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_chat_completion(self, completion_id: str) -> OpenAICompletionWithInputMessages:
|
||||
"""Get chat completion.
|
||||
|
|
|
|||
|
|
@ -4,14 +4,21 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Protocol, runtime_checkable
|
||||
from typing import Literal, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.apis.version import (
|
||||
LLAMA_STACK_API_V1,
|
||||
)
|
||||
from llama_stack.providers.datatypes import HealthStatus
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
# Valid values for the route filter parameter.
|
||||
# Actual API levels: v1, v1alpha, v1beta (filters by level, excludes deprecated)
|
||||
# Special filter value: "deprecated" (shows deprecated routes regardless of level)
|
||||
ApiFilter = Literal["v1", "v1alpha", "v1beta", "deprecated"]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RouteInfo(BaseModel):
|
||||
|
|
@ -64,11 +71,12 @@ class Inspect(Protocol):
|
|||
"""
|
||||
|
||||
@webmethod(route="/inspect/routes", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_routes(self) -> ListRoutesResponse:
|
||||
async def list_routes(self, api_filter: ApiFilter | None = None) -> ListRoutesResponse:
|
||||
"""List routes.
|
||||
|
||||
List all available API routes with their methods and implementing providers.
|
||||
|
||||
:param api_filter: Optional filter to control which routes are returned. Can be an API level ('v1', 'v1alpha', 'v1beta') to show non-deprecated routes at that level, or 'deprecated' to show deprecated routes across all levels. If not specified, returns only non-deprecated v1 routes.
|
||||
:returns: Response containing information about all available routes.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -90,12 +90,14 @@ class OpenAIModel(BaseModel):
|
|||
:object: The object type, which will be "model"
|
||||
:created: The Unix timestamp in seconds when the model was created
|
||||
:owned_by: The owner of the model
|
||||
:custom_metadata: Llama Stack-specific metadata including model_type, provider info, and additional metadata
|
||||
"""
|
||||
|
||||
id: str
|
||||
object: Literal["model"] = "model"
|
||||
created: int
|
||||
owned_by: str
|
||||
custom_metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class OpenAIListModelsResponse(BaseModel):
|
||||
|
|
@ -105,7 +107,6 @@ class OpenAIListModelsResponse(BaseModel):
|
|||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class Models(Protocol):
|
||||
@webmethod(route="/models", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_models(self) -> ListModelsResponse:
|
||||
"""List all models.
|
||||
|
||||
|
|
@ -113,7 +114,7 @@ class Models(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/models", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/models", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_list_models(self) -> OpenAIListModelsResponse:
|
||||
"""List models using the OpenAI API.
|
||||
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ from pydantic import BaseModel, Field
|
|||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.common.job_types import JobStatus
|
||||
from llama_stack.apis.common.training_types import Checkpoint
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
|
|
@ -284,7 +284,6 @@ class PostTrainingJobArtifactsResponse(BaseModel):
|
|||
|
||||
|
||||
class PostTraining(Protocol):
|
||||
@webmethod(route="/post-training/supervised-fine-tune", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/post-training/supervised-fine-tune", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def supervised_fine_tune(
|
||||
self,
|
||||
|
|
@ -312,7 +311,6 @@ class PostTraining(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/post-training/preference-optimize", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/post-training/preference-optimize", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def preference_optimize(
|
||||
self,
|
||||
|
|
@ -335,7 +333,6 @@ class PostTraining(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/post-training/jobs", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/post-training/jobs", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
|
||||
"""Get all training jobs.
|
||||
|
|
@ -344,7 +341,6 @@ class PostTraining(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/post-training/job/status", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/post-training/job/status", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse:
|
||||
"""Get the status of a training job.
|
||||
|
|
@ -354,7 +350,6 @@ class PostTraining(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/post-training/job/cancel", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/post-training/job/cancel", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def cancel_training_job(self, job_uuid: str) -> None:
|
||||
"""Cancel a training job.
|
||||
|
|
@ -363,7 +358,6 @@ class PostTraining(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/post-training/job/artifacts", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/post-training/job/artifacts", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse:
|
||||
"""Get the artifacts of a training job.
|
||||
|
|
|
|||
|
|
@ -121,7 +121,6 @@ class Safety(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/moderations", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/moderations", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
|
||||
"""Create moderation.
|
||||
|
|
|
|||
|
|
@ -1,7 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .synthetic_data_generation import *
|
||||
|
|
@ -1,77 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Protocol
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
class FilteringFunction(Enum):
|
||||
"""The type of filtering function.
|
||||
|
||||
:cvar none: No filtering applied, accept all generated synthetic data
|
||||
:cvar random: Random sampling of generated data points
|
||||
:cvar top_k: Keep only the top-k highest scoring synthetic data samples
|
||||
:cvar top_p: Nucleus-style filtering, keep samples exceeding cumulative score threshold
|
||||
:cvar top_k_top_p: Combined top-k and top-p filtering strategy
|
||||
:cvar sigmoid: Apply sigmoid function for probability-based filtering
|
||||
"""
|
||||
|
||||
none = "none"
|
||||
random = "random"
|
||||
top_k = "top_k"
|
||||
top_p = "top_p"
|
||||
top_k_top_p = "top_k_top_p"
|
||||
sigmoid = "sigmoid"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SyntheticDataGenerationRequest(BaseModel):
|
||||
"""Request to generate synthetic data. A small batch of prompts and a filtering function
|
||||
|
||||
:param dialogs: List of conversation messages to use as input for synthetic data generation
|
||||
:param filtering_function: Type of filtering to apply to generated synthetic data samples
|
||||
:param model: (Optional) The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint
|
||||
"""
|
||||
|
||||
dialogs: list[Message]
|
||||
filtering_function: FilteringFunction = FilteringFunction.none
|
||||
model: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SyntheticDataGenerationResponse(BaseModel):
|
||||
"""Response from the synthetic data generation. Batch of (prompt, response, score) tuples that pass the threshold.
|
||||
|
||||
:param synthetic_data: List of generated synthetic data samples that passed the filtering criteria
|
||||
:param statistics: (Optional) Statistical information about the generation process and filtering results
|
||||
"""
|
||||
|
||||
synthetic_data: list[dict[str, Any]]
|
||||
statistics: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class SyntheticDataGeneration(Protocol):
|
||||
@webmethod(route="/synthetic-data-generation/generate", level=LLAMA_STACK_API_V1)
|
||||
def synthetic_data_generate(
|
||||
self,
|
||||
dialogs: list[Message],
|
||||
filtering_function: FilteringFunction = FilteringFunction.none,
|
||||
model: str | None = None,
|
||||
) -> SyntheticDataGenerationResponse:
|
||||
"""Generate synthetic data based on input dialogs and apply filtering.
|
||||
|
||||
:param dialogs: List of conversation messages to use as input for synthetic data generation
|
||||
:param filtering_function: Type of filtering to apply to generated synthetic data samples
|
||||
:param model: (Optional) The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint
|
||||
:returns: Response containing filtered synthetic data samples and optional statistics
|
||||
"""
|
||||
...
|
||||
|
|
@ -8,7 +8,6 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import uuid
|
||||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from fastapi import Body
|
||||
|
|
@ -18,7 +17,6 @@ from llama_stack.apis.inference import InterleavedContent
|
|||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
from llama_stack.strong_typing.schema import register_schema
|
||||
|
||||
|
|
@ -61,38 +59,19 @@ class Chunk(BaseModel):
|
|||
"""
|
||||
A chunk of content that can be inserted into a vector database.
|
||||
:param content: The content of the chunk, which can be interleaved text, images, or other types.
|
||||
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
|
||||
:param chunk_id: Unique identifier for the chunk. Must be provided explicitly.
|
||||
:param metadata: Metadata associated with the chunk that will be used in the model context during inference.
|
||||
:param stored_chunk_id: The chunk ID that is stored in the vector database. Used for backend functionality.
|
||||
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
|
||||
:param chunk_metadata: Metadata for the chunk that will NOT be used in the context during inference.
|
||||
The `chunk_metadata` is required backend functionality.
|
||||
"""
|
||||
|
||||
content: InterleavedContent
|
||||
chunk_id: str
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
embedding: list[float] | None = None
|
||||
# The alias parameter serializes the field as "chunk_id" in JSON but keeps the internal name as "stored_chunk_id"
|
||||
stored_chunk_id: str | None = Field(default=None, alias="chunk_id")
|
||||
chunk_metadata: ChunkMetadata | None = None
|
||||
|
||||
model_config = {"populate_by_name": True}
|
||||
|
||||
def model_post_init(self, __context):
|
||||
# Extract chunk_id from metadata if present
|
||||
if self.metadata and "chunk_id" in self.metadata:
|
||||
self.stored_chunk_id = self.metadata.pop("chunk_id")
|
||||
|
||||
@property
|
||||
def chunk_id(self) -> str:
|
||||
"""Returns the chunk ID, which is either an input `chunk_id` or a generated one if not set."""
|
||||
if self.stored_chunk_id:
|
||||
return self.stored_chunk_id
|
||||
|
||||
if "document_id" in self.metadata:
|
||||
return generate_chunk_id(self.metadata["document_id"], str(self.content))
|
||||
|
||||
return generate_chunk_id(str(uuid.uuid4()), str(self.content))
|
||||
|
||||
@property
|
||||
def document_id(self) -> str | None:
|
||||
"""Returns the document_id from either metadata or chunk_metadata, with metadata taking precedence."""
|
||||
|
|
@ -566,7 +545,6 @@ class VectorIO(Protocol):
|
|||
...
|
||||
|
||||
# OpenAI Vector Stores API endpoints
|
||||
@webmethod(route="/openai/v1/vector_stores", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/vector_stores", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
|
|
@ -579,7 +557,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/vector_stores", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/vector_stores", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
|
|
@ -598,9 +575,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}", method="GET", level=LLAMA_STACK_API_V1, deprecated=True
|
||||
)
|
||||
@webmethod(route="/vector_stores/{vector_store_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
|
|
@ -613,9 +587,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}", method="POST", level=LLAMA_STACK_API_V1, deprecated=True
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}",
|
||||
method="POST",
|
||||
|
|
@ -638,9 +609,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}", method="DELETE", level=LLAMA_STACK_API_V1, deprecated=True
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}",
|
||||
method="DELETE",
|
||||
|
|
@ -657,12 +625,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/search",
|
||||
method="POST",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/search",
|
||||
method="POST",
|
||||
|
|
@ -695,12 +657,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files",
|
||||
method="POST",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/files",
|
||||
method="POST",
|
||||
|
|
@ -723,12 +679,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/files",
|
||||
method="GET",
|
||||
|
|
@ -755,12 +705,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/files/{file_id}",
|
||||
method="GET",
|
||||
|
|
@ -779,12 +723,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}/content",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/files/{file_id}/content",
|
||||
method="GET",
|
||||
|
|
@ -803,12 +741,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}",
|
||||
method="POST",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/files/{file_id}",
|
||||
method="POST",
|
||||
|
|
@ -829,12 +761,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}",
|
||||
method="DELETE",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/files/{file_id}",
|
||||
method="DELETE",
|
||||
|
|
@ -858,12 +784,6 @@ class VectorIO(Protocol):
|
|||
method="POST",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/file_batches",
|
||||
method="POST",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
async def openai_create_vector_store_file_batch(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
|
@ -882,12 +802,6 @@ class VectorIO(Protocol):
|
|||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/file_batches/{batch_id}",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
async def openai_retrieve_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
|
|
@ -901,12 +815,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
|
||||
method="GET",
|
||||
|
|
@ -935,12 +843,6 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/openai/v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
|
||||
method="POST",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
deprecated=True,
|
||||
)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
|
||||
method="POST",
|
||||
|
|
|
|||
|
|
@ -8,16 +8,30 @@ import argparse
|
|||
import os
|
||||
import ssl
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import uvicorn
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.cli.stack.utils import ImageType
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.core.datatypes import StackRunConfig
|
||||
from llama_stack.core.datatypes import Api, Provider, StackRunConfig
|
||||
from llama_stack.core.distribution import get_provider_registry
|
||||
from llama_stack.core.stack import cast_image_name_to_string, replace_env_vars
|
||||
from llama_stack.core.storage.datatypes import (
|
||||
InferenceStoreReference,
|
||||
KVStoreReference,
|
||||
ServerStoresConfig,
|
||||
SqliteKVStoreConfig,
|
||||
SqliteSqlStoreConfig,
|
||||
SqlStoreReference,
|
||||
StorageConfig,
|
||||
)
|
||||
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
|
||||
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
|
||||
from llama_stack.core.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.log import LoggingConfig, get_logger
|
||||
|
||||
REPO_ROOT = Path(__file__).parent.parent.parent.parent
|
||||
|
|
@ -68,6 +82,12 @@ class StackRun(Subcommand):
|
|||
action="store_true",
|
||||
help="Start the UI server",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--providers",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Run a stack with only a list of providers. This list is formatted like: api1=provider1,api1=provider2,api2=provider3. Where there can be multiple providers per API.",
|
||||
)
|
||||
|
||||
def _run_stack_run_cmd(self, args: argparse.Namespace) -> None:
|
||||
import yaml
|
||||
|
|
@ -93,6 +113,55 @@ class StackRun(Subcommand):
|
|||
config_file = resolve_config_or_distro(args.config, Mode.RUN)
|
||||
except ValueError as e:
|
||||
self.parser.error(str(e))
|
||||
elif args.providers:
|
||||
provider_list: dict[str, list[Provider]] = dict()
|
||||
for api_provider in args.providers.split(","):
|
||||
if "=" not in api_provider:
|
||||
cprint(
|
||||
"Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
api, provider_type = api_provider.split("=")
|
||||
providers_for_api = get_provider_registry().get(Api(api), None)
|
||||
if providers_for_api is None:
|
||||
cprint(
|
||||
f"{api} is not a valid API.",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
if provider_type in providers_for_api:
|
||||
config_type = instantiate_class_type(providers_for_api[provider_type].config_class)
|
||||
if config_type is not None and hasattr(config_type, "sample_run_config"):
|
||||
config = config_type.sample_run_config(__distro_dir__="~/.llama/distributions/providers-run")
|
||||
else:
|
||||
config = {}
|
||||
provider = Provider(
|
||||
provider_type=provider_type,
|
||||
config=config,
|
||||
provider_id=provider_type.split("::")[1],
|
||||
)
|
||||
provider_list.setdefault(api, []).append(provider)
|
||||
else:
|
||||
cprint(
|
||||
f"{provider} is not a valid provider for the {api} API.",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
run_config = self._generate_run_config_from_providers(providers=provider_list)
|
||||
config_dict = run_config.model_dump(mode="json")
|
||||
|
||||
# Write config to disk in providers-run directory
|
||||
distro_dir = DISTRIBS_BASE_DIR / "providers-run"
|
||||
config_file = distro_dir / "run.yaml"
|
||||
|
||||
logger.info(f"Writing generated config to: {config_file}")
|
||||
with open(config_file, "w") as f:
|
||||
yaml.dump(config_dict, f, default_flow_style=False, sort_keys=False)
|
||||
|
||||
else:
|
||||
config_file = None
|
||||
|
||||
|
|
@ -106,7 +175,8 @@ class StackRun(Subcommand):
|
|||
|
||||
try:
|
||||
config = parse_and_maybe_upgrade_config(config_dict)
|
||||
if not os.path.exists(str(config.external_providers_dir)):
|
||||
# Create external_providers_dir if it's specified and doesn't exist
|
||||
if config.external_providers_dir and not os.path.exists(str(config.external_providers_dir)):
|
||||
os.makedirs(str(config.external_providers_dir), exist_ok=True)
|
||||
except AttributeError as e:
|
||||
self.parser.error(f"failed to parse config file '{config_file}':\n {e}")
|
||||
|
|
@ -127,7 +197,7 @@ class StackRun(Subcommand):
|
|||
config = StackRunConfig(**cast_image_name_to_string(replace_env_vars(config_contents)))
|
||||
|
||||
port = args.port or config.server.port
|
||||
host = config.server.host or ["::", "0.0.0.0"]
|
||||
host = config.server.host or "0.0.0.0"
|
||||
|
||||
# Set the config file in environment so create_app can find it
|
||||
os.environ["LLAMA_STACK_CONFIG"] = str(config_file)
|
||||
|
|
@ -139,6 +209,7 @@ class StackRun(Subcommand):
|
|||
"lifespan": "on",
|
||||
"log_level": logger.getEffectiveLevel(),
|
||||
"log_config": logger_config,
|
||||
"workers": config.server.workers,
|
||||
}
|
||||
|
||||
keyfile = config.server.tls_keyfile
|
||||
|
|
@ -168,7 +239,7 @@ class StackRun(Subcommand):
|
|||
# Another approach would be to ignore SIGINT entirely - let uvicorn handle it through its own
|
||||
# signal handling but this is quite intrusive and not worth the effort.
|
||||
try:
|
||||
uvicorn.run("llama_stack.core.server.server:create_app", **uvicorn_config)
|
||||
uvicorn.run("llama_stack.core.server.server:create_app", **uvicorn_config) # type: ignore[arg-type]
|
||||
except (KeyboardInterrupt, SystemExit):
|
||||
logger.info("Received interrupt signal, shutting down gracefully...")
|
||||
|
||||
|
|
@ -212,3 +283,44 @@ class StackRun(Subcommand):
|
|||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start UI development server in {ui_dir}: {e}")
|
||||
|
||||
def _generate_run_config_from_providers(self, providers: dict[str, list[Provider]]):
|
||||
apis = list(providers.keys())
|
||||
distro_dir = DISTRIBS_BASE_DIR / "providers-run"
|
||||
# need somewhere to put the storage.
|
||||
os.makedirs(distro_dir, exist_ok=True)
|
||||
storage = StorageConfig(
|
||||
backends={
|
||||
"kv_default": SqliteKVStoreConfig(
|
||||
db_path=f"${{env.SQLITE_STORE_DIR:={distro_dir}}}/kvstore.db",
|
||||
),
|
||||
"sql_default": SqliteSqlStoreConfig(
|
||||
db_path=f"${{env.SQLITE_STORE_DIR:={distro_dir}}}/sql_store.db",
|
||||
),
|
||||
},
|
||||
stores=ServerStoresConfig(
|
||||
metadata=KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="registry",
|
||||
),
|
||||
inference=InferenceStoreReference(
|
||||
backend="sql_default",
|
||||
table_name="inference_store",
|
||||
),
|
||||
conversations=SqlStoreReference(
|
||||
backend="sql_default",
|
||||
table_name="openai_conversations",
|
||||
),
|
||||
prompts=KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="prompts",
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
return StackRunConfig(
|
||||
image_name="providers-run",
|
||||
apis=apis,
|
||||
providers=providers,
|
||||
storage=storage,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -17,7 +17,6 @@ from llama_stack.core.distribution import (
|
|||
get_provider_registry,
|
||||
)
|
||||
from llama_stack.core.stack import cast_image_name_to_string, replace_env_vars
|
||||
from llama_stack.core.utils.config_dirs import EXTERNAL_PROVIDERS_DIR
|
||||
from llama_stack.core.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.core.utils.prompt_for_config import prompt_for_config
|
||||
from llama_stack.log import get_logger
|
||||
|
|
@ -194,19 +193,11 @@ def upgrade_from_routing_table(
|
|||
|
||||
|
||||
def parse_and_maybe_upgrade_config(config_dict: dict[str, Any]) -> StackRunConfig:
|
||||
version = config_dict.get("version", None)
|
||||
if version == LLAMA_STACK_RUN_CONFIG_VERSION:
|
||||
processed_config_dict = replace_env_vars(config_dict)
|
||||
return StackRunConfig(**cast_image_name_to_string(processed_config_dict))
|
||||
|
||||
if "routing_table" in config_dict:
|
||||
logger.info("Upgrading config...")
|
||||
config_dict = upgrade_from_routing_table(config_dict)
|
||||
|
||||
config_dict["version"] = LLAMA_STACK_RUN_CONFIG_VERSION
|
||||
|
||||
if not config_dict.get("external_providers_dir", None):
|
||||
config_dict["external_providers_dir"] = EXTERNAL_PROVIDERS_DIR
|
||||
|
||||
processed_config_dict = replace_env_vars(config_dict)
|
||||
return StackRunConfig(**cast_image_name_to_string(processed_config_dict))
|
||||
|
|
|
|||
|
|
@ -473,6 +473,10 @@ class ServerConfig(BaseModel):
|
|||
"- true: Enable localhost CORS for development\n"
|
||||
"- {allow_origins: [...], allow_methods: [...], ...}: Full configuration",
|
||||
)
|
||||
workers: int = Field(
|
||||
default=1,
|
||||
description="Number of workers to use for the server",
|
||||
)
|
||||
|
||||
|
||||
class StackRunConfig(BaseModel):
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ from llama_stack.apis.inspect import (
|
|||
RouteInfo,
|
||||
VersionInfo,
|
||||
)
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.core.datatypes import StackRunConfig
|
||||
from llama_stack.core.external import load_external_apis
|
||||
from llama_stack.core.server.routes import get_all_api_routes
|
||||
|
|
@ -39,9 +40,21 @@ class DistributionInspectImpl(Inspect):
|
|||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def list_routes(self) -> ListRoutesResponse:
|
||||
async def list_routes(self, api_filter: str | None = None) -> ListRoutesResponse:
|
||||
run_config: StackRunConfig = self.config.run_config
|
||||
|
||||
# Helper function to determine if a route should be included based on api_filter
|
||||
def should_include_route(webmethod) -> bool:
|
||||
if api_filter is None:
|
||||
# Default: only non-deprecated v1 APIs
|
||||
return not webmethod.deprecated and webmethod.level == LLAMA_STACK_API_V1
|
||||
elif api_filter == "deprecated":
|
||||
# Special filter: show deprecated routes regardless of their actual level
|
||||
return bool(webmethod.deprecated)
|
||||
else:
|
||||
# Filter by API level (non-deprecated routes only)
|
||||
return not webmethod.deprecated and webmethod.level == api_filter
|
||||
|
||||
ret = []
|
||||
external_apis = load_external_apis(run_config)
|
||||
all_endpoints = get_all_api_routes(external_apis)
|
||||
|
|
@ -55,8 +68,8 @@ class DistributionInspectImpl(Inspect):
|
|||
method=next(iter([m for m in e.methods if m != "HEAD"])),
|
||||
provider_types=[], # These APIs don't have "real" providers - they're internal to the stack
|
||||
)
|
||||
for e, _ in endpoints
|
||||
if e.methods is not None
|
||||
for e, webmethod in endpoints
|
||||
if e.methods is not None and should_include_route(webmethod)
|
||||
]
|
||||
)
|
||||
else:
|
||||
|
|
@ -69,8 +82,8 @@ class DistributionInspectImpl(Inspect):
|
|||
method=next(iter([m for m in e.methods if m != "HEAD"])),
|
||||
provider_types=[p.provider_type for p in providers],
|
||||
)
|
||||
for e, _ in endpoints
|
||||
if e.methods is not None
|
||||
for e, webmethod in endpoints
|
||||
if e.methods is not None and should_include_route(webmethod)
|
||||
]
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import asyncio
|
||||
import time
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from collections.abc import AsyncIterator
|
||||
from datetime import UTC, datetime
|
||||
from typing import Annotated, Any
|
||||
|
||||
|
|
@ -15,20 +15,10 @@ from openai.types.chat import ChatCompletionToolChoiceOptionParam as OpenAIChatC
|
|||
from openai.types.chat import ChatCompletionToolParam as OpenAIChatCompletionToolParam
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
Inference,
|
||||
ListOpenAIChatCompletionResponse,
|
||||
Message,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
|
|
@ -45,15 +35,13 @@ from llama_stack.apis.inference import (
|
|||
OpenAIMessageParam,
|
||||
Order,
|
||||
RerankResponse,
|
||||
StopReason,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.core.telemetry.telemetry import MetricEvent, MetricInResponse
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.telemetry.telemetry import MetricEvent
|
||||
from llama_stack.core.telemetry.tracing import enqueue_event, get_current_span
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat
|
||||
|
|
@ -110,7 +98,8 @@ class InferenceRouter(Inference):
|
|||
prompt_tokens: int,
|
||||
completion_tokens: int,
|
||||
total_tokens: int,
|
||||
model: Model,
|
||||
fully_qualified_model_id: str,
|
||||
provider_id: str,
|
||||
) -> list[MetricEvent]:
|
||||
"""Constructs a list of MetricEvent objects containing token usage metrics.
|
||||
|
||||
|
|
@ -118,7 +107,8 @@ class InferenceRouter(Inference):
|
|||
prompt_tokens: Number of tokens in the prompt
|
||||
completion_tokens: Number of tokens in the completion
|
||||
total_tokens: Total number of tokens used
|
||||
model: Model object containing model_id and provider_id
|
||||
fully_qualified_model_id:
|
||||
provider_id: The provider identifier
|
||||
|
||||
Returns:
|
||||
List of MetricEvent objects with token usage metrics
|
||||
|
|
@ -144,48 +134,32 @@ class InferenceRouter(Inference):
|
|||
timestamp=datetime.now(UTC),
|
||||
unit="tokens",
|
||||
attributes={
|
||||
"model_id": model.model_id,
|
||||
"provider_id": model.provider_id,
|
||||
"model_id": fully_qualified_model_id,
|
||||
"provider_id": provider_id,
|
||||
},
|
||||
)
|
||||
)
|
||||
return metric_events
|
||||
|
||||
async def _compute_and_log_token_usage(
|
||||
self,
|
||||
prompt_tokens: int,
|
||||
completion_tokens: int,
|
||||
total_tokens: int,
|
||||
model: Model,
|
||||
) -> list[MetricInResponse]:
|
||||
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
|
||||
if self.telemetry_enabled:
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
|
||||
|
||||
async def _count_tokens(
|
||||
self,
|
||||
messages: list[Message] | InterleavedContent,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
) -> int | None:
|
||||
if not hasattr(self, "formatter") or self.formatter is None:
|
||||
return None
|
||||
|
||||
if isinstance(messages, list):
|
||||
encoded = self.formatter.encode_dialog_prompt(messages, tool_prompt_format)
|
||||
else:
|
||||
encoded = self.formatter.encode_content(messages)
|
||||
return len(encoded.tokens) if encoded and encoded.tokens else 0
|
||||
|
||||
async def _get_model(self, model_id: str, expected_model_type: str) -> Model:
|
||||
"""takes a model id and gets model after ensuring that it is accessible and of the correct type"""
|
||||
model = await self.routing_table.get_model(model_id)
|
||||
if model is None:
|
||||
raise ModelNotFoundError(model_id)
|
||||
async def _get_model_provider(self, model_id: str, expected_model_type: str) -> tuple[Inference, str]:
|
||||
model = await self.routing_table.get_object_by_identifier("model", model_id)
|
||||
if model:
|
||||
if model.model_type != expected_model_type:
|
||||
raise ModelTypeError(model_id, model.model_type, expected_model_type)
|
||||
return model
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(model.identifier)
|
||||
return provider, model.provider_resource_id
|
||||
|
||||
splits = model_id.split("/", maxsplit=1)
|
||||
if len(splits) != 2:
|
||||
raise ModelNotFoundError(model_id)
|
||||
|
||||
provider_id, provider_resource_id = splits
|
||||
if provider_id not in self.routing_table.impls_by_provider_id:
|
||||
logger.warning(f"Provider {provider_id} not found for model {model_id}")
|
||||
raise ModelNotFoundError(model_id)
|
||||
|
||||
return self.routing_table.impls_by_provider_id[provider_id], provider_resource_id
|
||||
|
||||
async def rerank(
|
||||
self,
|
||||
|
|
@ -195,14 +169,8 @@ class InferenceRouter(Inference):
|
|||
max_num_results: int | None = None,
|
||||
) -> RerankResponse:
|
||||
logger.debug(f"InferenceRouter.rerank: {model}")
|
||||
model_obj = await self._get_model(model, ModelType.rerank)
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
return await provider.rerank(
|
||||
model=model_obj.identifier,
|
||||
query=query,
|
||||
items=items,
|
||||
max_num_results=max_num_results,
|
||||
)
|
||||
provider, provider_resource_id = await self._get_model_provider(model, ModelType.rerank)
|
||||
return await provider.rerank(provider_resource_id, query, items, max_num_results)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
|
|
@ -211,24 +179,24 @@ class InferenceRouter(Inference):
|
|||
logger.debug(
|
||||
f"InferenceRouter.openai_completion: model={params.model}, stream={params.stream}, prompt={params.prompt}",
|
||||
)
|
||||
model_obj = await self._get_model(params.model, ModelType.llm)
|
||||
request_model_id = params.model
|
||||
provider, provider_resource_id = await self._get_model_provider(params.model, ModelType.llm)
|
||||
params.model = provider_resource_id
|
||||
|
||||
# Update params with the resolved model identifier
|
||||
params.model = model_obj.identifier
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
if params.stream:
|
||||
return await provider.openai_completion(params)
|
||||
# TODO: Metrics do NOT work with openai_completion stream=True due to the fact
|
||||
# that we do not return an AsyncIterator, our tests expect a stream of chunks we cannot intercept currently.
|
||||
|
||||
response = await provider.openai_completion(params)
|
||||
response.model = request_model_id
|
||||
if self.telemetry_enabled:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
completion_tokens=response.usage.completion_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
model=model_obj,
|
||||
fully_qualified_model_id=request_model_id,
|
||||
provider_id=provider.__provider_id__,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
|
|
@ -246,7 +214,9 @@ class InferenceRouter(Inference):
|
|||
logger.debug(
|
||||
f"InferenceRouter.openai_chat_completion: model={params.model}, stream={params.stream}, messages={params.messages}",
|
||||
)
|
||||
model_obj = await self._get_model(params.model, ModelType.llm)
|
||||
request_model_id = params.model
|
||||
provider, provider_resource_id = await self._get_model_provider(params.model, ModelType.llm)
|
||||
params.model = provider_resource_id
|
||||
|
||||
# Use the OpenAI client for a bit of extra input validation without
|
||||
# exposing the OpenAI client itself as part of our API surface
|
||||
|
|
@ -264,10 +234,6 @@ class InferenceRouter(Inference):
|
|||
params.tool_choice = None
|
||||
params.tools = None
|
||||
|
||||
# Update params with the resolved model identifier
|
||||
params.model = model_obj.identifier
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
if params.stream:
|
||||
response_stream = await provider.openai_chat_completion(params)
|
||||
|
||||
|
|
@ -275,11 +241,13 @@ class InferenceRouter(Inference):
|
|||
# We need to add metrics to each chunk and store the final completion
|
||||
return self.stream_tokens_and_compute_metrics_openai_chat(
|
||||
response=response_stream,
|
||||
model=model_obj,
|
||||
fully_qualified_model_id=request_model_id,
|
||||
provider_id=provider.__provider_id__,
|
||||
messages=params.messages,
|
||||
)
|
||||
|
||||
response = await self._nonstream_openai_chat_completion(provider, params)
|
||||
response.model = request_model_id
|
||||
|
||||
# Store the response with the ID that will be returned to the client
|
||||
if self.store:
|
||||
|
|
@ -290,7 +258,8 @@ class InferenceRouter(Inference):
|
|||
prompt_tokens=response.usage.prompt_tokens,
|
||||
completion_tokens=response.usage.completion_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
model=model_obj,
|
||||
fully_qualified_model_id=request_model_id,
|
||||
provider_id=provider.__provider_id__,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
|
|
@ -307,13 +276,13 @@ class InferenceRouter(Inference):
|
|||
logger.debug(
|
||||
f"InferenceRouter.openai_embeddings: model={params.model}, input_type={type(params.input)}, encoding_format={params.encoding_format}, dimensions={params.dimensions}",
|
||||
)
|
||||
model_obj = await self._get_model(params.model, ModelType.embedding)
|
||||
request_model_id = params.model
|
||||
provider, provider_resource_id = await self._get_model_provider(params.model, ModelType.embedding)
|
||||
params.model = provider_resource_id
|
||||
|
||||
# Update model to use resolved identifier
|
||||
params.model = model_obj.identifier
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
return await provider.openai_embeddings(params)
|
||||
response = await provider.openai_embeddings(params)
|
||||
response.model = request_model_id
|
||||
return response
|
||||
|
||||
async def list_chat_completions(
|
||||
self,
|
||||
|
|
@ -365,119 +334,11 @@ class InferenceRouter(Inference):
|
|||
)
|
||||
return health_statuses
|
||||
|
||||
async def stream_tokens_and_compute_metrics(
|
||||
self,
|
||||
response,
|
||||
prompt_tokens,
|
||||
model,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None] | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
completion_text = ""
|
||||
async for chunk in response:
|
||||
complete = False
|
||||
if hasattr(chunk, "event"): # only ChatCompletions have .event
|
||||
if chunk.event.event_type == ChatCompletionResponseEventType.progress:
|
||||
if chunk.event.delta.type == "text":
|
||||
completion_text += chunk.event.delta.text
|
||||
if chunk.event.event_type == ChatCompletionResponseEventType.complete:
|
||||
complete = True
|
||||
completion_tokens = await self._count_tokens(
|
||||
[
|
||||
CompletionMessage(
|
||||
content=completion_text,
|
||||
stop_reason=StopReason.end_of_turn,
|
||||
)
|
||||
],
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
)
|
||||
else:
|
||||
if hasattr(chunk, "delta"):
|
||||
completion_text += chunk.delta
|
||||
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry_enabled:
|
||||
complete = True
|
||||
completion_tokens = await self._count_tokens(completion_text)
|
||||
# if we are done receiving tokens
|
||||
if complete:
|
||||
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
|
||||
|
||||
# Create a separate span for streaming completion metrics
|
||||
if self.telemetry_enabled:
|
||||
# Log metrics in the new span context
|
||||
completion_metrics = self._construct_metrics(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=total_tokens,
|
||||
model=model,
|
||||
)
|
||||
for metric in completion_metrics:
|
||||
if metric.metric in [
|
||||
"completion_tokens",
|
||||
"total_tokens",
|
||||
]: # Only log completion and total tokens
|
||||
enqueue_event(metric)
|
||||
|
||||
# Return metrics in response
|
||||
async_metrics = [
|
||||
MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics
|
||||
]
|
||||
chunk.metrics = async_metrics if chunk.metrics is None else chunk.metrics + async_metrics
|
||||
else:
|
||||
# Fallback if no telemetry
|
||||
completion_metrics = self._construct_metrics(
|
||||
prompt_tokens or 0,
|
||||
completion_tokens or 0,
|
||||
total_tokens,
|
||||
model,
|
||||
)
|
||||
async_metrics = [
|
||||
MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics
|
||||
]
|
||||
chunk.metrics = async_metrics if chunk.metrics is None else chunk.metrics + async_metrics
|
||||
yield chunk
|
||||
|
||||
async def count_tokens_and_compute_metrics(
|
||||
self,
|
||||
response: ChatCompletionResponse | CompletionResponse,
|
||||
prompt_tokens,
|
||||
model,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
):
|
||||
if isinstance(response, ChatCompletionResponse):
|
||||
content = [response.completion_message]
|
||||
else:
|
||||
content = response.content
|
||||
completion_tokens = await self._count_tokens(messages=content, tool_prompt_format=tool_prompt_format)
|
||||
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
|
||||
|
||||
# Create a separate span for completion metrics
|
||||
if self.telemetry_enabled:
|
||||
# Log metrics in the new span context
|
||||
completion_metrics = self._construct_metrics(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=total_tokens,
|
||||
model=model,
|
||||
)
|
||||
for metric in completion_metrics:
|
||||
if metric.metric in ["completion_tokens", "total_tokens"]: # Only log completion and total tokens
|
||||
enqueue_event(metric)
|
||||
|
||||
# Return metrics in response
|
||||
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics]
|
||||
|
||||
# Fallback if no telemetry
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens or 0,
|
||||
completion_tokens or 0,
|
||||
total_tokens,
|
||||
model,
|
||||
)
|
||||
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
|
||||
|
||||
async def stream_tokens_and_compute_metrics_openai_chat(
|
||||
self,
|
||||
response: AsyncIterator[OpenAIChatCompletionChunk],
|
||||
model: Model,
|
||||
fully_qualified_model_id: str,
|
||||
provider_id: str,
|
||||
messages: list[OpenAIMessageParam] | None = None,
|
||||
) -> AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""Stream OpenAI chat completion chunks, compute metrics, and store the final completion."""
|
||||
|
|
@ -497,6 +358,8 @@ class InferenceRouter(Inference):
|
|||
if created is None and chunk.created:
|
||||
created = chunk.created
|
||||
|
||||
chunk.model = fully_qualified_model_id
|
||||
|
||||
# Accumulate choice data for final assembly
|
||||
if chunk.choices:
|
||||
for choice_delta in chunk.choices:
|
||||
|
|
@ -553,7 +416,8 @@ class InferenceRouter(Inference):
|
|||
prompt_tokens=chunk.usage.prompt_tokens,
|
||||
completion_tokens=chunk.usage.completion_tokens,
|
||||
total_tokens=chunk.usage.total_tokens,
|
||||
model=model,
|
||||
model_id=fully_qualified_model_id,
|
||||
provider_id=provider_id,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
|
|
@ -601,7 +465,7 @@ class InferenceRouter(Inference):
|
|||
id=id,
|
||||
choices=assembled_choices,
|
||||
created=created or int(time.time()),
|
||||
model=model.identifier,
|
||||
model=fully_qualified_model_id,
|
||||
object="chat.completion",
|
||||
)
|
||||
logger.debug(f"InferenceRouter.completion_response: {final_response}")
|
||||
|
|
|
|||
|
|
@ -13,6 +13,8 @@ from llama_stack.core.datatypes import (
|
|||
ModelWithOwner,
|
||||
RegistryEntrySource,
|
||||
)
|
||||
from llama_stack.core.request_headers import PROVIDER_DATA_VAR, NeedsRequestProviderData
|
||||
from llama_stack.core.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from .common import CommonRoutingTableImpl, lookup_model
|
||||
|
|
@ -42,19 +44,104 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
|
||||
await self.update_registered_models(provider_id, models)
|
||||
|
||||
async def _get_dynamic_models_from_provider_data(self) -> list[Model]:
|
||||
"""
|
||||
Fetch models from providers that have credentials in the current request's provider_data.
|
||||
|
||||
This allows users to see models available to them from providers that require
|
||||
per-request API keys (via X-LlamaStack-Provider-Data header).
|
||||
|
||||
Returns models with fully qualified identifiers (provider_id/model_id) but does NOT
|
||||
cache them in the registry since they are user-specific.
|
||||
"""
|
||||
provider_data = PROVIDER_DATA_VAR.get()
|
||||
if not provider_data:
|
||||
return []
|
||||
|
||||
dynamic_models = []
|
||||
|
||||
for provider_id, provider in self.impls_by_provider_id.items():
|
||||
# Check if this provider supports provider_data
|
||||
if not isinstance(provider, NeedsRequestProviderData):
|
||||
continue
|
||||
|
||||
# Check if provider has a validator (some providers like ollama don't need per-request credentials)
|
||||
spec = getattr(provider, "__provider_spec__", None)
|
||||
if not spec or not getattr(spec, "provider_data_validator", None):
|
||||
continue
|
||||
|
||||
# Validate provider_data silently - we're speculatively checking all providers
|
||||
# so validation failures are expected when user didn't provide keys for this provider
|
||||
try:
|
||||
validator = instantiate_class_type(spec.provider_data_validator)
|
||||
validator(**provider_data)
|
||||
except Exception:
|
||||
# User didn't provide credentials for this provider - skip silently
|
||||
continue
|
||||
|
||||
# Validation succeeded! User has credentials for this provider
|
||||
# Now try to list models
|
||||
try:
|
||||
models = await provider.list_models()
|
||||
if not models:
|
||||
continue
|
||||
|
||||
# Ensure models have fully qualified identifiers with provider_id prefix
|
||||
for model in models:
|
||||
# Only add prefix if model identifier doesn't already have it
|
||||
if not model.identifier.startswith(f"{provider_id}/"):
|
||||
model.identifier = f"{provider_id}/{model.provider_resource_id}"
|
||||
|
||||
dynamic_models.append(model)
|
||||
|
||||
logger.debug(f"Fetched {len(models)} models from provider {provider_id} using provider_data")
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to list models from provider {provider_id} with provider_data: {e}")
|
||||
continue
|
||||
|
||||
return dynamic_models
|
||||
|
||||
async def list_models(self) -> ListModelsResponse:
|
||||
return ListModelsResponse(data=await self.get_all_with_type("model"))
|
||||
# Get models from registry
|
||||
registry_models = await self.get_all_with_type("model")
|
||||
|
||||
# Get additional models available via provider_data (user-specific, not cached)
|
||||
dynamic_models = await self._get_dynamic_models_from_provider_data()
|
||||
|
||||
# Combine, avoiding duplicates (registry takes precedence)
|
||||
registry_identifiers = {m.identifier for m in registry_models}
|
||||
unique_dynamic_models = [m for m in dynamic_models if m.identifier not in registry_identifiers]
|
||||
|
||||
return ListModelsResponse(data=registry_models + unique_dynamic_models)
|
||||
|
||||
async def openai_list_models(self) -> OpenAIListModelsResponse:
|
||||
models = await self.get_all_with_type("model")
|
||||
# Get models from registry
|
||||
registry_models = await self.get_all_with_type("model")
|
||||
|
||||
# Get additional models available via provider_data (user-specific, not cached)
|
||||
dynamic_models = await self._get_dynamic_models_from_provider_data()
|
||||
|
||||
# Combine, avoiding duplicates (registry takes precedence)
|
||||
registry_identifiers = {m.identifier for m in registry_models}
|
||||
unique_dynamic_models = [m for m in dynamic_models if m.identifier not in registry_identifiers]
|
||||
|
||||
all_models = registry_models + unique_dynamic_models
|
||||
|
||||
openai_models = [
|
||||
OpenAIModel(
|
||||
id=model.identifier,
|
||||
object="model",
|
||||
created=int(time.time()),
|
||||
owned_by="llama_stack",
|
||||
custom_metadata={
|
||||
"model_type": model.model_type,
|
||||
"provider_id": model.provider_id,
|
||||
"provider_resource_id": model.provider_resource_id,
|
||||
**model.metadata,
|
||||
},
|
||||
)
|
||||
for model in models
|
||||
for model in all_models
|
||||
]
|
||||
return OpenAIListModelsResponse(data=openai_models)
|
||||
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import ssl
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any
|
||||
from urllib.parse import parse_qs, urljoin, urlparse
|
||||
|
||||
import httpx
|
||||
|
|
@ -143,14 +144,21 @@ class OAuth2TokenAuthProvider(AuthProvider):
|
|||
if self.config.jwks and self.config.jwks.token:
|
||||
headers["Authorization"] = f"Bearer {self.config.jwks.token}"
|
||||
|
||||
self._jwks_client = jwt.PyJWKClient(
|
||||
self.config.jwks.uri if self.config.jwks else None,
|
||||
cache_keys=True,
|
||||
max_cached_keys=10,
|
||||
lifespan=self.config.jwks.key_recheck_period if self.config.jwks else None,
|
||||
headers=headers,
|
||||
ssl_context=ssl_context,
|
||||
)
|
||||
# Ensure uri is not None for PyJWKClient
|
||||
if not self.config.jwks or not self.config.jwks.uri:
|
||||
raise ValueError("JWKS configuration requires a valid URI")
|
||||
|
||||
# Build kwargs conditionally to avoid passing None values
|
||||
jwks_kwargs: dict[str, Any] = {
|
||||
"cache_keys": True,
|
||||
"max_cached_keys": 10,
|
||||
"headers": headers,
|
||||
"ssl_context": ssl_context,
|
||||
}
|
||||
if self.config.jwks.key_recheck_period is not None:
|
||||
jwks_kwargs["lifespan"] = self.config.jwks.key_recheck_period
|
||||
|
||||
self._jwks_client = jwt.PyJWKClient(self.config.jwks.uri, **jwks_kwargs)
|
||||
return self._jwks_client
|
||||
|
||||
async def validate_jwt_token(self, token: str, scope: dict | None = None) -> User:
|
||||
|
|
@ -197,23 +205,31 @@ class OAuth2TokenAuthProvider(AuthProvider):
|
|||
if self.config.introspection is None:
|
||||
raise ValueError("Introspection is not configured")
|
||||
|
||||
# ssl_ctxt can be None, bool, str, or SSLContext - httpx accepts all
|
||||
ssl_ctxt: ssl.SSLContext | bool = False # Default to no verification if no cafile
|
||||
if self.config.tls_cafile:
|
||||
ssl_ctxt = ssl.create_default_context(cafile=self.config.tls_cafile.as_posix())
|
||||
|
||||
# Build post kwargs conditionally based on auth method
|
||||
post_kwargs: dict[str, Any] = {
|
||||
"url": self.config.introspection.url,
|
||||
"data": form,
|
||||
"timeout": 10.0,
|
||||
}
|
||||
|
||||
if self.config.introspection.send_secret_in_body:
|
||||
form["client_id"] = self.config.introspection.client_id
|
||||
form["client_secret"] = self.config.introspection.client_secret
|
||||
auth = None
|
||||
else:
|
||||
auth = (self.config.introspection.client_id, self.config.introspection.client_secret)
|
||||
ssl_ctxt = None
|
||||
if self.config.tls_cafile:
|
||||
ssl_ctxt = ssl.create_default_context(cafile=self.config.tls_cafile.as_posix())
|
||||
# httpx auth parameter expects tuple[str | bytes, str | bytes]
|
||||
post_kwargs["auth"] = (
|
||||
self.config.introspection.client_id,
|
||||
self.config.introspection.client_secret,
|
||||
)
|
||||
|
||||
try:
|
||||
async with httpx.AsyncClient(verify=ssl_ctxt) as client:
|
||||
response = await client.post(
|
||||
self.config.introspection.url,
|
||||
data=form,
|
||||
auth=auth,
|
||||
timeout=10.0, # Add a reasonable timeout
|
||||
)
|
||||
response = await client.post(**post_kwargs)
|
||||
if response.status_code != httpx.codes.OK:
|
||||
logger.warning(f"Token introspection failed with status code: {response.status_code}")
|
||||
raise ValueError(f"Token introspection failed: {response.status_code}")
|
||||
|
|
|
|||
|
|
@ -68,8 +68,9 @@ def get_all_api_routes(
|
|||
else:
|
||||
http_method = hdrs.METH_POST
|
||||
routes.append(
|
||||
(Route(path=path, methods=[http_method], name=name, endpoint=None), webmethod)
|
||||
) # setting endpoint to None since don't use a Router object
|
||||
# setting endpoint to None since don't use a Router object
|
||||
(Route(path=path, methods=[http_method], name=name, endpoint=None), webmethod) # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
apis[api] = routes
|
||||
|
||||
|
|
@ -98,7 +99,7 @@ def initialize_route_impls(impls, external_apis: dict[Api, ExternalApiSpec] | No
|
|||
impl = impls[api]
|
||||
func = getattr(impl, route.name)
|
||||
# Get the first (and typically only) method from the set, filtering out HEAD
|
||||
available_methods = [m for m in route.methods if m != "HEAD"]
|
||||
available_methods = [m for m in (route.methods or []) if m != "HEAD"]
|
||||
if not available_methods:
|
||||
continue # Skip if only HEAD method is available
|
||||
method = available_methods[0].lower()
|
||||
|
|
|
|||
|
|
@ -14,6 +14,7 @@ from typing import Any
|
|||
import yaml
|
||||
|
||||
from llama_stack.apis.agents import Agents
|
||||
from llama_stack.apis.batches import Batches
|
||||
from llama_stack.apis.benchmarks import Benchmarks
|
||||
from llama_stack.apis.conversations import Conversations
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
|
|
@ -30,7 +31,6 @@ from llama_stack.apis.safety import Safety
|
|||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
from llama_stack.apis.shields import Shields
|
||||
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
|
||||
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl
|
||||
|
|
@ -63,8 +63,8 @@ class LlamaStack(
|
|||
Providers,
|
||||
Inference,
|
||||
Agents,
|
||||
Batches,
|
||||
Safety,
|
||||
SyntheticDataGeneration,
|
||||
Datasets,
|
||||
PostTraining,
|
||||
VectorIO,
|
||||
|
|
|
|||
|
|
@ -6,12 +6,14 @@
|
|||
|
||||
import os
|
||||
import threading
|
||||
from collections.abc import Mapping, Sequence
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import (
|
||||
Annotated,
|
||||
Any,
|
||||
Literal,
|
||||
cast,
|
||||
)
|
||||
|
||||
from opentelemetry import metrics, trace
|
||||
|
|
@ -30,6 +32,10 @@ from llama_stack.schema_utils import json_schema_type, register_schema
|
|||
|
||||
ROOT_SPAN_MARKERS = ["__root__", "__root_span__"]
|
||||
|
||||
# Type alias for OpenTelemetry attribute values (excludes None)
|
||||
AttributeValue = str | bool | int | float | Sequence[str] | Sequence[bool] | Sequence[int] | Sequence[float]
|
||||
Attributes = Mapping[str, AttributeValue]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SpanStatus(Enum):
|
||||
|
|
@ -428,6 +434,13 @@ _TRACER_PROVIDER = None
|
|||
logger = get_logger(name=__name__, category="telemetry")
|
||||
|
||||
|
||||
def _clean_attributes(attrs: dict[str, Any] | None) -> Attributes | None:
|
||||
"""Remove None values from attributes dict to match OpenTelemetry's expected type."""
|
||||
if attrs is None:
|
||||
return None
|
||||
return {k: v for k, v in attrs.items() if v is not None}
|
||||
|
||||
|
||||
def is_tracing_enabled(tracer):
|
||||
with tracer.start_as_current_span("check_tracing") as span:
|
||||
return span.is_recording()
|
||||
|
|
@ -456,7 +469,7 @@ class Telemetry:
|
|||
# https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
|
||||
span_exporter = OTLPSpanExporter()
|
||||
span_processor = BatchSpanProcessor(span_exporter)
|
||||
trace.get_tracer_provider().add_span_processor(span_processor)
|
||||
cast(TracerProvider, trace.get_tracer_provider()).add_span_processor(span_processor)
|
||||
|
||||
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
|
||||
metric_provider = MeterProvider(metric_readers=[metric_reader])
|
||||
|
|
@ -474,7 +487,7 @@ class Telemetry:
|
|||
|
||||
async def shutdown(self) -> None:
|
||||
if self.is_otel_endpoint_set:
|
||||
trace.get_tracer_provider().force_flush()
|
||||
cast(TracerProvider, trace.get_tracer_provider()).force_flush()
|
||||
|
||||
async def log_event(self, event: Event, ttl_seconds: int = 604800) -> None:
|
||||
if isinstance(event, UnstructuredLogEvent):
|
||||
|
|
@ -515,7 +528,7 @@ class Telemetry:
|
|||
unit=unit,
|
||||
description=f"Counter for {name}",
|
||||
)
|
||||
return _GLOBAL_STORAGE["counters"][name]
|
||||
return cast(metrics.Counter, _GLOBAL_STORAGE["counters"][name])
|
||||
|
||||
def _get_or_create_gauge(self, name: str, unit: str) -> metrics.ObservableGauge:
|
||||
assert self.meter is not None
|
||||
|
|
@ -525,7 +538,7 @@ class Telemetry:
|
|||
unit=unit,
|
||||
description=f"Gauge for {name}",
|
||||
)
|
||||
return _GLOBAL_STORAGE["gauges"][name]
|
||||
return cast(metrics.ObservableGauge, _GLOBAL_STORAGE["gauges"][name])
|
||||
|
||||
def _log_metric(self, event: MetricEvent) -> None:
|
||||
# Add metric as an event to the current span
|
||||
|
|
@ -560,10 +573,10 @@ class Telemetry:
|
|||
return
|
||||
if isinstance(event.value, int):
|
||||
counter = self._get_or_create_counter(event.metric, event.unit)
|
||||
counter.add(event.value, attributes=event.attributes)
|
||||
counter.add(event.value, attributes=_clean_attributes(event.attributes))
|
||||
elif isinstance(event.value, float):
|
||||
up_down_counter = self._get_or_create_up_down_counter(event.metric, event.unit)
|
||||
up_down_counter.add(event.value, attributes=event.attributes)
|
||||
up_down_counter.add(event.value, attributes=_clean_attributes(event.attributes))
|
||||
|
||||
def _get_or_create_up_down_counter(self, name: str, unit: str) -> metrics.UpDownCounter:
|
||||
assert self.meter is not None
|
||||
|
|
@ -573,7 +586,7 @@ class Telemetry:
|
|||
unit=unit,
|
||||
description=f"UpDownCounter for {name}",
|
||||
)
|
||||
return _GLOBAL_STORAGE["up_down_counters"][name]
|
||||
return cast(metrics.UpDownCounter, _GLOBAL_STORAGE["up_down_counters"][name])
|
||||
|
||||
def _log_structured(self, event: StructuredLogEvent, ttl_seconds: int) -> None:
|
||||
with self._lock:
|
||||
|
|
@ -601,6 +614,7 @@ class Telemetry:
|
|||
if event.payload.parent_span_id:
|
||||
parent_span_id = int(event.payload.parent_span_id, 16)
|
||||
parent_span = _GLOBAL_STORAGE["active_spans"].get(parent_span_id)
|
||||
if parent_span:
|
||||
context = trace.set_span_in_context(parent_span)
|
||||
elif traceparent:
|
||||
carrier = {
|
||||
|
|
@ -612,15 +626,17 @@ class Telemetry:
|
|||
span = tracer.start_span(
|
||||
name=event.payload.name,
|
||||
context=context,
|
||||
attributes=event.attributes or {},
|
||||
attributes=_clean_attributes(event.attributes),
|
||||
)
|
||||
_GLOBAL_STORAGE["active_spans"][span_id] = span
|
||||
|
||||
elif isinstance(event.payload, SpanEndPayload):
|
||||
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
|
||||
span = _GLOBAL_STORAGE["active_spans"].get(span_id) # type: ignore[assignment]
|
||||
if span:
|
||||
if event.attributes:
|
||||
span.set_attributes(event.attributes)
|
||||
cleaned_attrs = _clean_attributes(event.attributes)
|
||||
if cleaned_attrs:
|
||||
span.set_attributes(cleaned_attrs)
|
||||
|
||||
status = (
|
||||
trace.Status(status_code=trace.StatusCode.OK)
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ from llama_stack.core.ui.modules.api import llama_stack_api
|
|||
def models():
|
||||
# Models Section
|
||||
st.header("Models")
|
||||
models_info = {m.identifier: m.to_dict() for m in llama_stack_api.client.models.list()}
|
||||
models_info = {m.id: m.model_dump() for m in llama_stack_api.client.models.list()}
|
||||
|
||||
selected_model = st.selectbox("Select a model", list(models_info.keys()))
|
||||
st.json(models_info[selected_model])
|
||||
|
|
|
|||
|
|
@ -12,7 +12,11 @@ from llama_stack.core.ui.modules.api import llama_stack_api
|
|||
with st.sidebar:
|
||||
st.header("Configuration")
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
available_models = [
|
||||
model.id
|
||||
for model in available_models
|
||||
if model.custom_metadata and model.custom_metadata.get("model_type") == "llm"
|
||||
]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
available_models,
|
||||
|
|
|
|||
|
|
@ -152,6 +152,37 @@ docker run \
|
|||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
### Via Docker with Custom Run Configuration
|
||||
|
||||
You can also run the Docker container with a custom run configuration file by mounting it into the container:
|
||||
|
||||
```bash
|
||||
# Set the path to your custom run.yaml file
|
||||
CUSTOM_RUN_CONFIG=/path/to/your/custom-run.yaml
|
||||
|
||||
docker run -it \
|
||||
--pull always \
|
||||
--network host \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v $HOME/.llama:/root/.llama \
|
||||
-v $CUSTOM_RUN_CONFIG:/app/custom-run.yaml \
|
||||
-e RUN_CONFIG_PATH=/app/custom-run.yaml \
|
||||
-e INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
-e DEH_URL=$DEH_URL \
|
||||
-e CHROMA_URL=$CHROMA_URL \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
**Note**: The run configuration must be mounted into the container before it can be used. The `-v` flag mounts your local file into the container, and the `RUN_CONFIG_PATH` environment variable tells the entrypoint script which configuration to use.
|
||||
|
||||
{% if run_configs %}
|
||||
Available run configurations for this distribution:
|
||||
{% for config in run_configs %}
|
||||
- `{{ config }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
|
|
|||
|
|
@ -109,6 +109,9 @@ storage:
|
|||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
|
|
|
|||
|
|
@ -68,6 +68,36 @@ docker run \
|
|||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
### Via Docker with Custom Run Configuration
|
||||
|
||||
You can also run the Docker container with a custom run configuration file by mounting it into the container:
|
||||
|
||||
```bash
|
||||
# Set the path to your custom run.yaml file
|
||||
CUSTOM_RUN_CONFIG=/path/to/your/custom-run.yaml
|
||||
LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
--gpu all \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v $CUSTOM_RUN_CONFIG:/app/custom-run.yaml \
|
||||
-e RUN_CONFIG_PATH=/app/custom-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
**Note**: The run configuration must be mounted into the container before it can be used. The `-v` flag mounts your local file into the container, and the `RUN_CONFIG_PATH` environment variable tells the entrypoint script which configuration to use.
|
||||
|
||||
{% if run_configs %}
|
||||
Available run configurations for this distribution:
|
||||
{% for config in run_configs %}
|
||||
- `{{ config }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
### Via venv
|
||||
|
||||
Make sure you have the Llama Stack CLI available.
|
||||
|
|
|
|||
|
|
@ -122,6 +122,9 @@ storage:
|
|||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
|
|
|
|||
|
|
@ -117,13 +117,42 @@ docker run \
|
|||
-it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-e NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
### Via Docker with Custom Run Configuration
|
||||
|
||||
You can also run the Docker container with a custom run configuration file by mounting it into the container:
|
||||
|
||||
```bash
|
||||
# Set the path to your custom run.yaml file
|
||||
CUSTOM_RUN_CONFIG=/path/to/your/custom-run.yaml
|
||||
LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v $CUSTOM_RUN_CONFIG:/app/custom-run.yaml \
|
||||
-e RUN_CONFIG_PATH=/app/custom-run.yaml \
|
||||
-e NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--port $LLAMA_STACK_PORT
|
||||
```
|
||||
|
||||
**Note**: The run configuration must be mounted into the container before it can be used. The `-v` flag mounts your local file into the container, and the `RUN_CONFIG_PATH` environment variable tells the entrypoint script which configuration to use.
|
||||
|
||||
{% if run_configs %}
|
||||
Available run configurations for this distribution:
|
||||
{% for config in run_configs %}
|
||||
- `{{ config }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
### Via venv
|
||||
|
||||
If you've set up your local development environment, you can also install the distribution dependencies using your local virtual environment.
|
||||
|
|
|
|||
|
|
@ -111,6 +111,9 @@ storage:
|
|||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue