Merge-related changes.

This commit is contained in:
ilya-kolchinsky 2025-04-02 19:56:44 +02:00
commit 60e9f46856
456 changed files with 38636 additions and 10892 deletions

View file

@ -14,7 +14,7 @@ Agents are configured using the `AgentConfig` class, which includes:
- **Safety Shields**: Guardrails to ensure responsible AI behavior
```python
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client import Agent
# Create the agent
@ -44,14 +44,14 @@ Each interaction with an agent is called a "turn" and consists of:
- **Output Message**: The agent's response
```python
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client import AgentEventLogger
# Create a turn with streaming response
turn_response = agent.create_turn(
session_id=session_id,
messages=[{"role": "user", "content": "Tell me about Llama models"}],
)
for log in EventLogger().log(turn_response):
for log in AgentEventLogger().log(turn_response):
log.print()
```
### Non-Streaming

View file

@ -67,9 +67,7 @@ sequenceDiagram
Each step in this process can be monitored and controlled through configurations. Here's an example that demonstrates monitoring the agent's execution:
```python
from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client import LlamaStackClient, Agent, AgentEventLogger
from rich.pretty import pprint
# Replace host and port
@ -113,7 +111,7 @@ response = agent.create_turn(
)
# Monitor each step of execution
for log in EventLogger().log(response):
for log in AgentEventLogger().log(response):
log.print()
# Using non-streaming API, the response contains input, steps, and output.

View file

@ -23,9 +23,7 @@ In this example, we will show you how to:
##### Building a Search Agent
```python
from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client import LlamaStackClient, Agent, AgentEventLogger
client = LlamaStackClient(base_url=f"http://{HOST}:{PORT}")
@ -54,7 +52,7 @@ for prompt in user_prompts:
session_id=session_id,
)
for log in EventLogger().log(response):
for log in AgentEventLogger().log(response):
log.print()
```

View file

@ -1,4 +1,4 @@
# Building AI Applications
# Building AI Applications (Examples)
Llama Stack provides all the building blocks needed to create sophisticated AI applications.

View file

@ -1,4 +1,4 @@
## Using Retrieval Augmented Generation (RAG)
## Retrieval Augmented Generation (RAG)
RAG enables your applications to reference and recall information from previous interactions or external documents.
@ -55,11 +55,11 @@ chunks_response = client.vector_io.query(
A better way to ingest documents is to use the RAG Tool. This tool allows you to ingest documents from URLs, files, etc. and automatically chunks them into smaller pieces.
```python
from llama_stack_client.types import Document
from llama_stack_client import RAGDocument
urls = ["memory_optimizations.rst", "chat.rst", "llama3.rst"]
documents = [
Document(
RAGDocument(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
@ -86,7 +86,7 @@ results = client.tool_runtime.rag_tool.query(
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
```python
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client import Agent
# Create agent with memory
agent = Agent(
@ -140,9 +140,9 @@ response = agent.create_turn(
You can print the response with below.
```python
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client import AgentEventLogger
for log in EventLogger().log(response):
for log in AgentEventLogger().log(response):
log.print()
```

View file

@ -45,19 +45,21 @@ Here's an example that sends telemetry signals to all three sink types. Your con
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
sinks: ['console', 'sqlite', 'otel']
otel_endpoint: "http://localhost:4318/v1/traces"
sinks: ['console', 'sqlite', 'otel_trace', 'otel_metric']
otel_trace_endpoint: "http://localhost:4318/v1/traces"
otel_metric_endpoint: "http://localhost:4318/v1/metrics"
sqlite_db_path: "/path/to/telemetry.db"
```
### Jaeger to visualize traces
The `otel` sink works with any service compatible with the OpenTelemetry collector. Let's use Jaeger to visualize this data.
The `otel` sink works with any service compatible with the OpenTelemetry collector, traces and metrics has two separate endpoints.
Let's use Jaeger to visualize this data.
Start a Jaeger instance with the OTLP HTTP endpoint at 4318 and the Jaeger UI at 16686 using the following command:
```bash
$ docker run --rm --name jaeger \
$ docker run --pull always --rm --name jaeger \
-p 16686:16686 -p 4318:4318 \
jaegertracing/jaeger:2.1.0
```

View file

@ -110,10 +110,18 @@ MCP tools are special tools that can interact with llama stack over model contex
Refer to [https://github.com/modelcontextprotocol/servers](https://github.com/modelcontextprotocol/servers) for available MCP servers.
```shell
# start your MCP server
mkdir /tmp/content
touch /tmp/content/foo
touch /tmp/content/bar
npx -y supergateway --port 8000 --stdio 'npx -y @modelcontextprotocol/server-filesystem /tmp/content'
```
Then register the MCP server as a tool group,
```python
# Register MCP tools
client.toolgroups.register(
toolgroup_id="builtin::filesystem",
toolgroup_id="mcp::filesystem",
provider_id="model-context-protocol",
mcp_endpoint=URL(uri="http://localhost:8000/sse"),
)
@ -181,7 +189,7 @@ group_tools = client.tools.list_tools(toolgroup_id="search_tools")
## Simple Example: Using an Agent with the Code-Interpreter Tool
```python
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client import Agent
# Instantiate the AI agent with the given configuration
agent = Agent(

View file

@ -55,7 +55,7 @@ llama stack run llama_stack/templates/open-benchmark/run.yaml
There are 3 necessary inputs to run a benchmark eval
- `list of benchmark_ids`: The list of benchmark ids to run evaluation on
- `model-id`: The model id to evaluate on
- `utput_dir`: Path to store the evaluate results
- `output_dir`: Path to store the evaluate results
```
llama-stack-client eval run-benchmark <benchmark_id_1> <benchmark_id_2> ... \
--model_id <model id to evaluate on> \
@ -69,7 +69,7 @@ llama-stack-client eval run-benchmark help
to see the description of all the flags that eval run-benchmark has
In the output log, you can find the file path that has your evaluation results. Open that file and you can see you aggrgate
In the output log, you can find the file path that has your evaluation results. Open that file and you can see you aggregate
evaluation results over there.

View file

@ -71,4 +71,4 @@ While there is a lot of flexibility to mix-and-match providers, often users will
**Locally Hosted Distro**: You may want to run Llama Stack on your own hardware. Typically though, you still need to use Inference via an external service. You can use providers like HuggingFace TGI, Fireworks, Together, etc. for this purpose. Or you may have access to GPUs and can run a [vLLM](https://github.com/vllm-project/vllm) or [NVIDIA NIM](https://build.nvidia.com/nim?filters=nimType%3Anim_type_run_anywhere&q=llama) instance. If you "just" have a regular desktop machine, you can use [Ollama](https://ollama.com/) for inference. To provide convenient quick access to these options, we provide a number of such pre-configured locally-hosted Distros.
**On-device Distro**: Finally, you may want to run Llama Stack directly on an edge device (mobile phone or a tablet.) We provide Distros for iOS and Android (coming soon.)
**On-device Distro**: To run Llama Stack directly on an edge device (mobile phone or a tablet), we provide Distros for [iOS](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/ios_sdk.html) and [Android](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/android_sdk.html)

View file

@ -16,6 +16,7 @@ from docutils import nodes
from pathlib import Path
import requests
import json
from datetime import datetime
# Read version from pyproject.toml
with Path(__file__).parent.parent.parent.joinpath("pyproject.toml").open("rb") as f:
@ -28,7 +29,7 @@ with Path(__file__).parent.parent.parent.joinpath("pyproject.toml").open("rb") a
llama_stack_version_link = f"<a href='{llama_stack_version_url}'>release notes</a>"
project = "llama-stack"
copyright = "2025, Meta"
copyright = f"{datetime.now().year}, Meta"
author = "Meta"
# -- General configuration ---------------------------------------------------
@ -37,6 +38,7 @@ author = "Meta"
extensions = [
"myst_parser",
"sphinx_rtd_theme",
"sphinx_rtd_dark_mode",
"sphinx_copybutton",
"sphinx_tabs.tabs",
"sphinx_design",
@ -103,6 +105,8 @@ source_suffix = {
# html_theme = "alabaster"
html_theme_options = {
"canonical_url": "https://github.com/meta-llama/llama-stack",
'collapse_navigation': False,
# "style_nav_header_background": "#c3c9d4",
}

View file

@ -1,14 +1,14 @@
# Contributing to Llama Stack
Start with the [Contributing Guide](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md) for some general tips. This section covers a few key topics in more detail.
```{include} ../../../CONTRIBUTING.md
```
See the [Adding a New API Provider](new_api_provider.md) which describes how to add new API providers to the Stack.
- [Adding a New API Provider](new_api_provider.md) describes adding new API providers to the Stack.
- [Testing Llama Stack](testing.md) provides details about the testing framework and how to test providers and distributions.
```{toctree}
:maxdepth: 1
:hidden:
new_api_provider
testing
```

View file

@ -6,7 +6,7 @@ This guide will walk you through the process of adding a new API provider to Lla
- Begin by reviewing the [core concepts](../concepts/index.md) of Llama Stack and choose the API your provider belongs to (Inference, Safety, VectorIO, etc.)
- Determine the provider type ({repopath}`Remote::llama_stack/providers/remote` or {repopath}`Inline::llama_stack/providers/inline`). Remote providers make requests to external services, while inline providers execute implementation locally.
- Add your provider to the appropriate {repopath}`Registry::llama_stack/providers/registry/`. Specify pip dependencies necessary.
- Update any distribution {repopath}`Templates::llama_stack/templates/` build.yaml and run.yaml files if they should include your provider by default. Run {repopath}`llama_stack/scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
- Update any distribution {repopath}`Templates::llama_stack/templates/` build.yaml and run.yaml files if they should include your provider by default. Run {repopath}`./scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
Here are some example PRs to help you get started:

View file

@ -67,7 +67,7 @@ options:
Image Type to use for the build. This can be either conda or container or venv. If not specified, will use the image type from the template config. (default:
conda)
--image-name IMAGE_NAME
[for image-type=conda|venv] Name of the conda or virtual environment to use for the build. If not specified, currently active Conda environment will be used if
[for image-type=conda|container|venv] Name of the conda or virtual environment to use for the build. If not specified, currently active Conda environment will be used if
found. (default: None)
--print-deps-only Print the dependencies for the stack only, without building the stack (default: False)
--run Run the stack after building using the same image type, name, and other applicable arguments (default: False)
@ -185,8 +185,12 @@ llama stack build --config llama_stack/templates/ollama/build.yaml
:::
:::{tab-item} Building Container
> [!TIP]
> Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
```{admonition} Podman Alternative
:class: tip
Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
```
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.

View file

@ -1,4 +1,4 @@
# Configuring a Stack
# Configuring a "Stack"
The Llama Stack runtime configuration is specified as a YAML file. Here is a simplified version of an example configuration file for the Ollama distribution:

View file

@ -1,10 +1,12 @@
# Using Llama Stack as a Library
If you are planning to use an external service for Inference (even Ollama or TGI counts as external), it is often easier to use Llama Stack as a library. This avoids the overhead of setting up a server.
## Setup Llama Stack without a Server
If you are planning to use an external service for Inference (even Ollama or TGI counts as external), it is often easier to use Llama Stack as a library.
This avoids the overhead of setting up a server.
```bash
# setup
uv pip install llama-stack
llama stack build --template together --image-type venv
llama stack build --template ollama --image-type venv
```
```python

View file

@ -1,34 +1,18 @@
# Starting a Llama Stack Server
# Distributions Overview
You can run a Llama Stack server in one of the following ways:
**As a Library**:
This is the simplest way to get started. Using Llama Stack as a library means you do not need to start a server. This is especially useful when you are not running inference locally and relying on an external inference service (eg. fireworks, together, groq, etc.) See [Using Llama Stack as a Library](importing_as_library)
**Container**:
Another simple way to start interacting with Llama Stack is to just spin up a container (via Docker or Podman) which is pre-built with all the providers you need. We provide a number of pre-built images so you can start a Llama Stack server instantly. You can also build your own custom container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](selection) for more details.
**Conda**:
If you have a custom or an advanced setup or you are developing on Llama Stack you can also build a custom Llama Stack server. Using `llama stack build` and `llama stack run` you can build/run a custom Llama Stack server containing the exact combination of providers you wish. We have also provided various templates to make getting started easier. See [Building a Custom Distribution](building_distro) for more details.
**Kubernetes**:
If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](kubernetes_deployment) for more details.
A distribution is a pre-packaged set of Llama Stack components that can be deployed together.
This section provides an overview of the distributions available in Llama Stack.
```{toctree}
:maxdepth: 1
:hidden:
:maxdepth: 3
importing_as_library
building_distro
configuration
selection
list_of_distributions
kubernetes_deployment
building_distro
on_device_distro
remote_hosted_distro
self_hosted_distro
```

View file

@ -1,6 +1,9 @@
# Kubernetes Deployment Guide
Instead of starting the Llama Stack and vLLM servers locally. We can deploy them in a Kubernetes cluster. In this guide, we'll use a local [Kind](https://kind.sigs.k8s.io/) cluster and a vLLM inference service in the same cluster for demonstration purposes.
Instead of starting the Llama Stack and vLLM servers locally. We can deploy them in a Kubernetes cluster.
### Prerequisites
In this guide, we'll use a local [Kind](https://kind.sigs.k8s.io/) cluster and a vLLM inference service in the same cluster for demonstration purposes.
First, create a local Kubernetes cluster via Kind:
@ -8,7 +11,7 @@ First, create a local Kubernetes cluster via Kind:
kind create cluster --image kindest/node:v1.32.0 --name llama-stack-test
```
Start vLLM server as a Kubernetes Pod and Service:
First, create a Kubernetes PVC and Secret for downloading and storing Hugging Face model:
```bash
cat <<EOF |kubectl apply -f -
@ -31,7 +34,13 @@ metadata:
type: Opaque
data:
token: $(HF_TOKEN)
---
```
Next, start the vLLM server as a Kubernetes Deployment and Service:
```bash
cat <<EOF |kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
@ -47,28 +56,23 @@ spec:
app.kubernetes.io/name: vllm
spec:
containers:
- name: llama-stack
image: $(VLLM_IMAGE)
command:
- bash
- -c
- |
MODEL="meta-llama/Llama-3.2-1B-Instruct"
MODEL_PATH=/app/model/$(basename $MODEL)
huggingface-cli login --token $HUGGING_FACE_HUB_TOKEN
huggingface-cli download $MODEL --local-dir $MODEL_PATH --cache-dir $MODEL_PATH
python3 -m vllm.entrypoints.openai.api_server --model $MODEL_PATH --served-model-name $MODEL --port 8000
- name: vllm
image: vllm/vllm-openai:latest
command: ["/bin/sh", "-c"]
args: [
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
volumeMounts:
- name: llama-storage
mountPath: /app/model
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
mountPath: /root/.cache/huggingface
volumes:
- name: llama-storage
persistentVolumeClaim:
@ -127,6 +131,7 @@ EOF
podman build -f /tmp/test-vllm-llama-stack/Containerfile.llama-stack-run-k8s -t llama-stack-run-k8s /tmp/test-vllm-llama-stack
```
### Deploying Llama Stack Server in Kubernetes
We can then start the Llama Stack server by deploying a Kubernetes Pod and Service:
@ -187,6 +192,7 @@ spec:
EOF
```
### Verifying the Deployment
We can check that the LlamaStack server has started:
```bash

View file

@ -1,4 +1,4 @@
# List of Distributions
# Available List of Distributions
Here are a list of distributions you can use to start a Llama Stack server that are provided out of the box.

View file

@ -8,12 +8,12 @@ Features:
- Remote Inferencing: Perform inferencing tasks remotely with Llama models hosted on a remote connection (or serverless localhost).
- Simple Integration: With easy-to-use APIs, a developer can quickly integrate Llama Stack in their Android app. The difference with local vs remote inferencing is also minimal.
Latest Release Notes: [v0.0.58](https://github.com/meta-llama/llama-stack-client-kotlin/releases/tag/v0.0.58)
Latest Release Notes: [link](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release)
*Tagged releases are stable versions of the project. While we strive to maintain a stable main branch, it's not guaranteed to be free of bugs or issues.*
## Android Demo App
Check out our demo app to see how to integrate Llama Stack into your Android app: [Android Demo App](https://github.com/meta-llama/llama-stack-apps/tree/android-kotlin-app-latest/examples/android_app)
Check out our demo app to see how to integrate Llama Stack into your Android app: [Android Demo App](https://github.com/meta-llama/llama-stack-client-kotlin/tree/examples/android_app)
The key files in the app are `ExampleLlamaStackLocalInference.kt`, `ExampleLlamaStackRemoteInference.kts`, and `MainActivity.java`. With encompassed business logic, the app shows how to use Llama Stack for both the environments.
@ -24,7 +24,7 @@ The key files in the app are `ExampleLlamaStackLocalInference.kt`, `ExampleLlama
Add the following dependency in your `build.gradle.kts` file:
```
dependencies {
implementation("com.llama.llamastack:llama-stack-client-kotlin:0.0.58")
implementation("com.llama.llamastack:llama-stack-client-kotlin:0.1.4.2")
}
```
This will download jar files in your gradle cache in a directory like `~/.gradle/caches/modules-2/files-2.1/com.llama.llamastack/`
@ -36,13 +36,13 @@ If you plan on doing remote inferencing this is sufficient to get started.
For local inferencing, it is required to include the ExecuTorch library into your app.
Include the ExecuTorch library by:
1. Download the `download-prebuilt-et-lib.sh` script file from the [llama-stack-client-kotlin-client-local](https://github.com/meta-llama/llama-stack-client-kotlin/blob/release/0.0.58/llama-stack-client-kotlin-client-local/download-prebuilt-et-lib.sh) directory to your local machine.
1. Download the `download-prebuilt-et-lib.sh` script file from the [llama-stack-client-kotlin-client-local](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release/llama-stack-client-kotlin-client-local/download-prebuilt-et-lib.sh) directory to your local machine.
2. Move the script to the top level of your Android app where the app directory resides:
<p align="center">
<img src="https://raw.githubusercontent.com/meta-llama/llama-stack-client-kotlin/refs/heads/release/0.0.58/doc/img/example_android_app_directory.png" style="width:300px">
<img src="https://github.com/meta-llama/llama-stack-client-kotlin/blob/latest-release/doc/img/example_android_app_directory.png" style="width:300px">
</p>
3. Run `sh download-prebuilt-et-lib.sh` to create an `app/libs` directory and download the `executorch.aar` in that path. This generates an ExecuTorch library for the XNNPACK delegate with commit: [0a12e33](https://github.com/pytorch/executorch/commit/0a12e33d22a3d44d1aa2af5f0d0673d45b962553).
3. Run `sh download-prebuilt-et-lib.sh` to create an `app/libs` directory and download the `executorch.aar` in that path. This generates an ExecuTorch library for the XNNPACK delegate.
4. Add the `executorch.aar` dependency in your `build.gradle.kts` file:
```
dependencies {
@ -60,10 +60,10 @@ Start a Llama Stack server on localhost. Here is an example of how you can do th
```
conda create -n stack-fireworks python=3.10
conda activate stack-fireworks
pip install llama-stack=0.0.58
pip install --no-cache llama-stack==0.1.4
llama stack build --template fireworks --image-type conda
export FIREWORKS_API_KEY=<SOME_KEY>
llama stack run /Users/<your_username>/.llama/distributions/llamastack-fireworks/fireworks-run.yaml --port=5050
llama stack run fireworks --port 5050
```
Ensure the Llama Stack server version is the same as the Kotlin SDK Library for maximum compatibility.
@ -146,7 +146,7 @@ The purpose of this section is to share more details with users that would like
### Prerequisite
You must complete the following steps:
1. Clone the repo (`git clone https://github.com/meta-llama/llama-stack-client-kotlin.git -b release/0.0.58`)
1. Clone the repo (`git clone https://github.com/meta-llama/llama-stack-client-kotlin.git -b latest-release`)
2. Port the appropriate ExecuTorch libraries over into your Llama Stack Kotlin library environment.
```
cd llama-stack-client-kotlin-client-local

View file

@ -1,9 +1,8 @@
# iOS SDK
We offer both remote and on-device use of Llama Stack in Swift via two components:
1. [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/)
2. [LocalInferenceImpl](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/ios/inference)
We offer both remote and on-device use of Llama Stack in Swift via a single SDK [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/) that contains two components:
1. LlamaStackClient for remote
2. Local Inference for on-device
```{image} ../../../_static/remote_or_local.gif
:alt: Seamlessly switching between local, on-device inference and remote hosted inference
@ -42,7 +41,7 @@ let request = Components.Schemas.CreateAgentTurnRequest(
// ...
```
Check out [iOSCalendarAssistant](https://github.com/meta-llama/llama-stack-apps/tree/main/examples/ios_calendar_assistant) for a complete app demo.
Check out [iOSCalendarAssistant](https://github.com/meta-llama/llama-stack-client-swift/tree/main/examples/ios_calendar_assistant) for a complete app demo.
## LocalInference
@ -58,7 +57,7 @@ let inference = LocalInference(queue: runnerQueue)
let agents = LocalAgents(inference: self.inference)
```
Check out [iOSCalendarAssistantWithLocalInf](https://github.com/meta-llama/llama-stack-apps/tree/main/examples/ios_calendar_assistant) for a complete app demo.
Check out [iOSCalendarAssistantWithLocalInf](https://github.com/meta-llama/llama-stack-client-swift/tree/main/examples/ios_calendar_assistant) for a complete app demo.
### Installation
@ -68,47 +67,6 @@ We're working on making LocalInference easier to set up. For now, you'll need t
1. Install [Cmake](https://cmake.org/) for the executorch build`
1. Drag `LocalInference.xcodeproj` into your project
1. Add `LocalInference` as a framework in your app target
1. Add a package dependency on https://github.com/pytorch/executorch (branch latest)
1. Add all the kernels / backends from executorch (but not exectuorch itself!) as frameworks in your app target:
- backend_coreml
- backend_mps
- backend_xnnpack
- kernels_custom
- kernels_optimized
- kernels_portable
- kernels_quantized
1. In "Build Settings" > "Other Linker Flags" > "Any iOS Simulator SDK", add:
```
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
```
1. In "Build Settings" > "Other Linker Flags" > "Any iOS SDK", add:
```
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
```
### Preparing a model

View file

@ -6,14 +6,15 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| datasetio | `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::nvidia` |
| post_training | `remote::nvidia` |
| preprocessing | `inline::basic`, `inline::simple_chunking` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| safety | `remote::nvidia` |
| scoring | `inline::basic` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| tool_runtime | `inline::rag-runtime` |
| vector_io | `inline::faiss` |
@ -21,8 +22,16 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
- `NVIDIA_USER_ID`: NVIDIA User ID (default: `llama-stack-user`)
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`)
- `NVIDIA_ACCESS_POLICIES`: NVIDIA Access Policies (default: `{}`)
- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`)
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`)
- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`)
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
### Models
@ -57,9 +66,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-nvidia \
@ -73,7 +83,7 @@ docker run \
```bash
llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
--env INFERENCE_MODEL=$INFERENCE_MODEL
```

View file

@ -29,7 +29,7 @@ The `llamastack/distribution-bedrock` distribution consists of the following pro
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
### Models
@ -54,9 +54,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-bedrock \
--port $LLAMA_STACK_PORT \

View file

@ -21,7 +21,7 @@ The `llamastack/distribution-cerebras` distribution consists of the following pr
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `CEREBRAS_API_KEY`: Cerebras API Key (default: ``)
### Models
@ -46,9 +46,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-cerebras \
@ -62,6 +63,6 @@ docker run \
```bash
llama stack build --template cerebras --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--port 8321 \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
```

View file

@ -53,7 +53,7 @@ docker compose down
#### Start Dell-TGI server locally
```
docker run -it --shm-size 1g -p 80:80 --gpus 4 \
docker run -it --pull always --shm-size 1g -p 80:80 --gpus 4 \
-e NUM_SHARD=4
-e MAX_BATCH_PREFILL_TOKENS=32768 \
-e MAX_INPUT_TOKENS=8000 \
@ -65,7 +65,7 @@ registry.dell.huggingface.co/enterprise-dell-inference-meta-llama-meta-llama-3.1
#### Start Llama Stack server pointing to TGI server
```
docker run --network host -it -p 8321:8321 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-tgi --yaml_config /root/my-run.yaml
docker run --pull always --network host -it -p 8321:8321 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-tgi --yaml_config /root/my-run.yaml
```
Make sure in you `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.

View file

@ -55,6 +55,7 @@ export CUDA_VISIBLE_DEVICES=0
export LLAMA_STACK_PORT=8321
docker run --rm -it \
--pull always \
--network host \
-v $HOME/.cache/huggingface:/data \
-e HF_TOKEN=$HF_TOKEN \
@ -78,6 +79,7 @@ export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run --rm -it \
--pull always \
--network host \
-v $HOME/.cache/huggingface:/data \
-e HF_TOKEN=$HF_TOKEN \
@ -120,6 +122,7 @@ This method allows you to get started quickly without having to build the distri
```bash
docker run -it \
--pull always \
--network host \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $HOME/.llama:/root/.llama \
@ -147,6 +150,7 @@ export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $HOME/.llama:/root/.llama \
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \

View file

@ -31,7 +31,7 @@ The `llamastack/distribution-fireworks` distribution consists of the following p
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `FIREWORKS_API_KEY`: Fireworks.AI API Key (default: ``)
### Models
@ -64,9 +64,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-fireworks \
--port $LLAMA_STACK_PORT \

View file

@ -31,7 +31,7 @@ The `llamastack/distribution-groq` distribution consists of the following provid
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `GROQ_API_KEY`: Groq API Key (default: ``)
### Models
@ -59,9 +59,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-groq \
--port $LLAMA_STACK_PORT \

View file

@ -33,7 +33,7 @@ Note that you need access to nvidia GPUs to run this distribution. This distribu
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `INFERENCE_MODEL`: Inference model loaded into the Meta Reference server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `INFERENCE_CHECKPOINT_DIR`: Directory containing the Meta Reference model checkpoint (default: `null`)
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
@ -78,9 +78,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-meta-reference-gpu \
@ -93,6 +94,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
```bash
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-meta-reference-gpu \
@ -108,7 +110,7 @@ Make sure you have done `uv pip install llama-stack` and have the Llama Stack CL
```bash
llama stack build --template meta-reference-gpu --image-type conda
llama stack run distributions/meta-reference-gpu/run.yaml \
--port 5001 \
--port 8321 \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
```
@ -116,7 +118,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run distributions/meta-reference-gpu/run-with-safety.yaml \
--port 5001 \
--port 8321 \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
```

View file

@ -35,7 +35,7 @@ Note that you need access to nvidia GPUs to run this distribution. This distribu
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `INFERENCE_MODEL`: Inference model loaded into the Meta Reference server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `INFERENCE_CHECKPOINT_DIR`: Directory containing the Meta Reference model checkpoint (default: `null`)
@ -78,9 +78,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-meta-reference-quantized-gpu \
@ -93,6 +94,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
```bash
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-meta-reference-quantized-gpu \

View file

@ -15,7 +15,7 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
### Models
@ -39,9 +39,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-nvidia \
@ -55,6 +56,6 @@ docker run \
```bash
llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
```

View file

@ -33,7 +33,7 @@ You should use this distribution if you have a regular desktop machine without v
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`)
- `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
@ -72,9 +72,10 @@ Now you are ready to run Llama Stack with Ollama as the inference provider. You
This method allows you to get started quickly without having to build the distribution code.
```bash
export LLAMA_STACK_PORT=5001
export LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-ollama \
@ -92,6 +93,7 @@ cd /path/to/llama-stack
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
@ -108,7 +110,7 @@ docker run \
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
export LLAMA_STACK_PORT=5001
export LLAMA_STACK_PORT=8321
llama stack build --template ollama --image-type conda
llama stack run ./run.yaml \

View file

@ -0,0 +1,42 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Passthrough Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-passthrough` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::passthrough`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `PASSTHROUGH_API_KEY`: Passthrough API Key (default: ``)
- `PASSTHROUGH_URL`: Passthrough URL (default: ``)
### Models
The following models are available by default:
- `llama3.1-8b-instruct `
- `llama3.2-11b-vision-instruct `

View file

@ -32,7 +32,7 @@ You can use this distribution if you have GPUs and want to run an independent vL
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `INFERENCE_MODEL`: Inference model loaded into the vLLM server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `VLLM_URL`: URL of the vLLM server with the main inference model (default: `http://host.docker.internal:5100/v1`)
- `MAX_TOKENS`: Maximum number of tokens for generation (default: `4096`)
@ -50,6 +50,7 @@ export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run \
--pull always \
--runtime nvidia \
--gpus $CUDA_VISIBLE_DEVICES \
-v ~/.cache/huggingface:/root/.cache/huggingface \
@ -62,6 +63,8 @@ docker run \
--port $INFERENCE_PORT
```
Note that you'll also need to set `--enable-auto-tool-choice` and `--tool-call-parser` to [enable tool calling in vLLM](https://docs.vllm.ai/en/latest/features/tool_calling.html).
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
```bash
@ -70,6 +73,7 @@ export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run \
--pull always \
--runtime nvidia \
--gpus $CUDA_VISIBLE_DEVICES \
-v ~/.cache/huggingface:/root/.cache/huggingface \
@ -93,12 +97,16 @@ This method allows you to get started quickly without having to build the distri
```bash
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export LLAMA_STACK_PORT=5001
export LLAMA_STACK_PORT=8321
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
-v ./llama_stack/templates/remote-vllm/run.yaml:/root/my-run.yaml \
llamastack/distribution-remote-vllm \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
@ -117,7 +125,7 @@ export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
cd /path/to/llama-stack
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/remote-vllm/run-with-safety.yaml:/root/my-run.yaml \
@ -138,7 +146,7 @@ Make sure you have done `uv pip install llama-stack` and have the Llama Stack CL
```bash
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export LLAMA_STACK_PORT=5001
export LLAMA_STACK_PORT=8321
cd distributions/remote-vllm
llama stack build --template remote-vllm --image-type conda

View file

@ -28,7 +28,7 @@ The `llamastack/distribution-sambanova` distribution consists of the following p
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `SAMBANOVA_API_KEY`: SambaNova.AI API Key (default: ``)
### Models
@ -60,9 +60,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-sambanova \
--port $LLAMA_STACK_PORT \

View file

@ -34,7 +34,7 @@ You can use this distribution if you have GPUs and want to run an independent TG
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080/v1`)
- `TGI_SAFETY_URL`: URL of the TGI server with the safety model (default: `http://127.0.0.1:8081/v1`)
@ -51,6 +51,7 @@ export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run --rm -it \
--pull always \
-v $HOME/.cache/huggingface:/data \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
@ -71,6 +72,7 @@ export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run --rm -it \
--pull always \
-v $HOME/.cache/huggingface:/data \
-p $SAFETY_PORT:$SAFETY_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
@ -91,9 +93,10 @@ Now you are ready to run Llama Stack with TGI as the inference provider. You can
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-tgi \
--port $LLAMA_STACK_PORT \
@ -110,6 +113,7 @@ cd /path/to/llama-stack
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \

View file

@ -31,7 +31,7 @@ The `llamastack/distribution-together` distribution consists of the following pr
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `TOGETHER_API_KEY`: Together.AI API Key (default: ``)
### Models
@ -65,9 +65,10 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-together \
--port $LLAMA_STACK_PORT \

View file

@ -0,0 +1,32 @@
# Starting a Llama Stack Server
You can run a Llama Stack server in one of the following ways:
**As a Library**:
This is the simplest way to get started. Using Llama Stack as a library means you do not need to start a server. This is especially useful when you are not running inference locally and relying on an external inference service (eg. fireworks, together, groq, etc.) See [Using Llama Stack as a Library](importing_as_library)
**Container**:
Another simple way to start interacting with Llama Stack is to just spin up a container (via Docker or Podman) which is pre-built with all the providers you need. We provide a number of pre-built images so you can start a Llama Stack server instantly. You can also build your own custom container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](selection) for more details.
**Conda**:
If you have a custom or an advanced setup or you are developing on Llama Stack you can also build a custom Llama Stack server. Using `llama stack build` and `llama stack run` you can build/run a custom Llama Stack server containing the exact combination of providers you wish. We have also provided various templates to make getting started easier. See [Building a Custom Distribution](building_distro) for more details.
**Kubernetes**:
If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](kubernetes_deployment) for more details.
```{toctree}
:maxdepth: 1
:hidden:
importing_as_library
configuration
kubernetes_deployment
```

View file

@ -1,10 +1,11 @@
# Quick Start
In this guide, we'll walk through how you can use the Llama Stack (server and client SDK) to test a simple RAG agent.
In this guide, we'll walk through how you can use the Llama Stack (server and client SDK) to build a simple [RAG (Retrieval Augmented Generation)](../building_applications/rag.md) agent.
A Llama Stack agent is a simple integrated system that can perform tasks by combining a Llama model for reasoning with tools (e.g., RAG, web search, code execution, etc.) for taking actions.
In Llama Stack, we provide a server exposing multiple APIs. These APIs are backed by implementations from different providers. For this guide, we will use [Ollama](https://ollama.com/) as the inference provider.
Ollama is an LLM runtime that allows you to run Llama models locally.
### 1. Start Ollama
@ -24,7 +25,7 @@ If you do not have ollama, you can install it from [here](https://ollama.com/dow
### 2. Pick a client environment
Llama Stack has a service-oriented architecture, so every interaction with the Stack happens through an REST interface. You can interact with the Stack in two ways:
Llama Stack has a service-oriented architecture, so every interaction with the Stack happens through a REST interface. You can interact with the Stack in two ways:
* Install the `llama-stack-client` PyPI package and point `LlamaStackClient` to a local or remote Llama Stack server.
* Or, install the `llama-stack` PyPI package and use the Stack as a library using `LlamaStackAsLibraryClient`.
@ -54,6 +55,7 @@ mkdir -p ~/.llama
Then you can start the server using the container tool of your choice. For example, if you are running Docker you can use the following command:
```bash
docker run -it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-ollama \
@ -74,6 +76,7 @@ Docker containers run in their own isolated network namespaces on Linux. To allo
Linux users having issues running the above command should instead try the following:
```bash
docker run -it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
--network=host \
@ -88,11 +91,19 @@ docker run -it \
:::{dropdown} Installing the Llama Stack client CLI and SDK
You can interact with the Llama Stack server using various client SDKs. We will use the Python SDK which you can install using the following command. Note that you must be using Python 3.10 or newer:
You can interact with the Llama Stack server using various client SDKs. Note that you must be using Python 3.10 or newer. We will use the Python SDK which you can install via `conda` or `virtualenv`.
For `conda`:
```bash
yes | conda create -n stack-client python=3.10
conda activate stack-client
pip install llama-stack-client
```
For `virtualenv`:
```bash
python -m venv stack-client
source stack-client/bin/activate
pip install llama-stack-client
```
@ -173,6 +184,13 @@ response = client.inference.chat_completion(
print(response.completion_message.content)
```
To run the above example, put the code in a file called `inference.py`, ensure your `conda` or `virtualenv` environment is active, and run the following:
```bash
pip install llama_stack
llama stack build --template ollama --image-type <conda|venv>
python inference.py
```
### 4. Your first RAG agent
Here is an example of a simple RAG (Retrieval Augmented Generation) chatbot agent which can answer questions about TorchTune documentation.
@ -182,9 +200,7 @@ import os
import uuid
from termcolor import cprint
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types import Document
from llama_stack_client import Agent, AgentEventLogger, RAGDocument
def create_http_client():
@ -210,7 +226,7 @@ client = (
# Documents to be used for RAG
urls = ["chat.rst", "llama3.rst", "memory_optimizations.rst", "lora_finetune.rst"]
documents = [
Document(
RAGDocument(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
@ -269,10 +285,17 @@ for prompt in user_prompts:
messages=[{"role": "user", "content": prompt}],
session_id=session_id,
)
for log in EventLogger().log(response):
for log in AgentEventLogger().log(response):
log.print()
```
To run the above example, put the code in a file called `rag.py`, ensure your `conda` or `virtualenv` environment is active, and run the following:
```bash
pip install llama_stack
llama stack build --template ollama --image-type <conda|venv>
python rag.py
```
## Next Steps
- Learn more about Llama Stack [Concepts](../concepts/index.md)

View file

@ -6,6 +6,7 @@ Llama Stack {{ llama_stack_version }} is now available! See the {{ llama_stack_v
# Llama Stack
## What is Llama Stack?
Llama Stack defines and standardizes the core building blocks needed to bring generative AI applications to market. It provides a unified set of APIs with implementations from leading service providers, enabling seamless transitions between development and production environments. More specifically, it provides
@ -15,8 +16,6 @@ Llama Stack defines and standardizes the core building blocks needed to bring ge
- **Multiple developer interfaces** like CLI and SDKs for Python, Node, iOS, and Android
- **Standalone applications** as examples for how to build production-grade AI applications with Llama Stack
We focus on making it easy to build production applications with the Llama model family - from the latest Llama 3.3 to specialized models like Llama Guard for safety.
```{image} ../_static/llama-stack.png
:alt: Llama Stack
:width: 400px
@ -24,6 +23,12 @@ We focus on making it easy to build production applications with the Llama model
Our goal is to provide pre-packaged implementations (aka "distributions") which can be run in a variety of deployment environments. LlamaStack can assist you in your entire app development lifecycle - start iterating on local, mobile or desktop and seamlessly transition to on-prem or public cloud deployments. At every point in this transition, the same set of APIs and the same developer experience is available.
## How does Llama Stack work?
Llama Stack consists of a [server](./distributions/index.md) (with multiple pluggable API [providers](./providers/index.md)) and [client SDKs](#available-sdks) meant to
be used in your applications. The server can be run in a variety of environments, including local (inline)
development, on-premises, and cloud. The client SDKs are available for Python, Swift, Node, and
Kotlin.
## Quick Links
- New to Llama Stack? Start with the [Introduction](introduction/index) to understand our motivation and vision.
@ -38,9 +43,9 @@ We have a number of client-side SDKs available for different languages.
| **Language** | **Client SDK** | **Package** |
| :----: | :----: | :----: |
| Python | [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python) | [![PyPI version](https://img.shields.io/pypi/v/llama_stack_client.svg)](https://pypi.org/project/llama_stack_client/)
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift) | [![Swift Package Index](https://img.shields.io/endpoint?url=https%3A%2F%2Fswiftpackageindex.com%2Fapi%2Fpackages%2Fmeta-llama%2Fllama-stack-client-swift%2Fbadge%3Ftype%3Dswift-versions)](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/tree/latest-release) | [![Swift Package Index](https://img.shields.io/endpoint?url=https%3A%2F%2Fswiftpackageindex.com%2Fapi%2Fpackages%2Fmeta-llama%2Fllama-stack-client-swift%2Fbadge%3Ftype%3Dswift-versions)](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
| Node | [llama-stack-client-node](https://github.com/meta-llama/llama-stack-client-node) | [![NPM version](https://img.shields.io/npm/v/llama-stack-client.svg)](https://npmjs.org/package/llama-stack-client)
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) | [![Maven version](https://img.shields.io/maven-central/v/com.llama.llamastack/llama-stack-client-kotlin)](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release) | [![Maven version](https://img.shields.io/maven-central/v/com.llama.llamastack/llama-stack-client-kotlin)](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)
## Supported Llama Stack Implementations
@ -61,6 +66,10 @@ A number of "adapters" are available for some popular Inference and Vector Store
| Groq | Hosted |
| SambaNova | Hosted |
| PyTorch ExecuTorch | On-device iOS, Android |
| OpenAI | Hosted |
| Anthropic | Hosted |
| Gemini | Hosted |
**Vector IO API**
| **Provider** | **Environments** |
@ -91,7 +100,6 @@ getting_started/index
concepts/index
providers/index
distributions/index
distributions/selection
building_applications/index
playground/index
contributing/index

View file

@ -48,7 +48,7 @@ Llama Stack addresses these challenges through a service-oriented, API-first app
**Robust Ecosystem**
- Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies).
- Ecosystem offers tailored infrastructure, software, and services for deploying Llama models.
- Ecosystem offers tailored infrastructure, software, and services for deploying a variety of models.
### Our Philosophy
@ -57,7 +57,6 @@ Llama Stack addresses these challenges through a service-oriented, API-first app
- **Composability**: Every component is independent but works together seamlessly
- **Production Ready**: Built for real-world applications, not just demos
- **Turnkey Solutions**: Easy to deploy built in solutions for popular deployment scenarios
- **Llama First**: Explicit focus on Meta's Llama models and partnering ecosystem
With Llama Stack, you can focus on building your application while we handle the infrastructure complexity, essential capabilities, and provider integrations.

View file

@ -3,21 +3,36 @@ orphan: true
---
# Qdrant
[Qdrant](https://qdrant.tech/documentation/) is a remote vector database provider for Llama Stack. It
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
That means you'll get fast and efficient vector retrieval.
> By default, Qdrant stores vectors in RAM, delivering incredibly fast access for datasets that fit comfortably in
> memory. But when your dataset exceeds RAM capacity, Qdrant offers Memmap as an alternative.
>
> \[[An Introduction to Vector Databases](https://qdrant.tech/articles/what-is-a-vector-database/)\]
## Features
- Easy to use
- Lightweight and easy to use
- Fully integrated with Llama Stack
- Apache 2.0 license terms
- Store embeddings and their metadata
- Supports search by
[Keyword](https://qdrant.tech/articles/qdrant-introduces-full-text-filters-and-indexes/)
and [Hybrid](https://qdrant.tech/articles/hybrid-search/#building-a-hybrid-search-system-in-qdrant) search
- [Multilingual and Multimodal retrieval](https://qdrant.tech/documentation/multimodal-search/)
- [Medatata filtering](https://qdrant.tech/articles/vector-search-filtering/)
- [GPU support](https://qdrant.tech/documentation/guides/running-with-gpu/)
## Usage
To use Qdrant in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use Faiss.
2. Configure your Llama Stack project to use Qdrant.
3. Start storing and querying vectors.
## Installation

View file

@ -10,11 +10,57 @@ That means you're not limited to storing vectors in memory or in a separate serv
## Features
- Lightweight and easy to use
- Fully integrated with Llama Stack
- Fully integrated with Llama Stacks
- Uses disk-based storage for persistence, allowing for larger vector storage
### Comparison to Faiss
The choice between Faiss and sqlite-vec should be made based on the needs of your application,
as they have different strengths.
#### Choosing the Right Provider
Scenario | Recommended Tool | Reason
-- |-----------------| --
Online Analytical Processing (OLAP) | Faiss | Fast, in-memory searches
Online Transaction Processing (OLTP) | sqlite-vec | Frequent writes and reads
Frequent writes | sqlite-vec | Efficient disk-based storage and incremental indexing
Large datasets | sqlite-vec | Disk-based storage for larger vector storage
Datasets that can fit in memory, frequent reads | Faiss | Optimized for speed, indexing, and GPU acceleration
#### Empirical Example
Consider the histogram below in which 10,000 randomly generated strings were inserted
in batches of 100 into both Faiss and sqlite-vec using `client.tool_runtime.rag_tool.insert()`.
```{image} ../../../../_static/providers/vector_io/write_time_comparison_sqlite-vec-faiss.png
:alt: Comparison of SQLite-Vec and Faiss write times
:width: 400px
```
You will notice that the average write time for `sqlite-vec` was 788ms, compared to
47,640ms for Faiss. While the number is jarring, if you look at the distribution, you can see that it is rather
uniformly spread across the [1500, 100000] interval.
Looking at each individual write in the order that the documents are inserted you'll see the increase in
write speed as Faiss reindexes the vectors after each write.
```{image} ../../../../_static/providers/vector_io/write_time_sequence_sqlite-vec-faiss.png
:alt: Comparison of SQLite-Vec and Faiss write times
:width: 400px
```
In comparison, the read times for Faiss was on average 10% faster than sqlite-vec.
The modes of the two distributions highlight the differences much further where Faiss
will likely yield faster read performance.
```{image} ../../../../_static/providers/vector_io/read_time_comparison_sqlite-vec-faiss.png
:alt: Comparison of SQLite-Vec and Faiss read times
:width: 400px
```
## Usage
To use SQLite-Vec in your Llama Stack project, follow these steps:
To use sqlite-vec in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use SQLite-Vec.

View file

@ -114,23 +114,17 @@ pprint(response)
simpleqa_dataset_id = "huggingface::simpleqa"
_ = client.datasets.register(
purpose="eval/messages-answer",
source={
"type": "uri",
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
},
dataset_id=simpleqa_dataset_id,
provider_id="huggingface",
url={"uri": "https://huggingface.co/datasets/llamastack/simpleqa"},
metadata={
"path": "llamastack/simpleqa",
"split": "train",
},
dataset_schema={
"input_query": {"type": "string"},
"expected_answer": {"type": "string"},
"chat_completion_input": {"type": "chat_completion_input"},
},
)
eval_rows = client.datasetio.get_rows_paginated(
eval_rows = client.datasets.iterrows(
dataset_id=simpleqa_dataset_id,
rows_in_page=5,
limit=5,
)
```
@ -143,7 +137,7 @@ client.benchmarks.register(
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
input_rows=eval_rows.data,
scoring_functions=["llm-as-judge::405b-simpleqa"],
benchmark_config={
"eval_candidate": {
@ -191,7 +185,7 @@ agent_config = {
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
input_rows=eval_rows.data,
scoring_functions=["llm-as-judge::405b-simpleqa"],
benchmark_config={
"eval_candidate": {

View file

@ -6,17 +6,32 @@ The `llama-stack-client` CLI allows you to query information about the distribut
### `llama-stack-client`
```bash
llama-stack-client -h
llama-stack-client
Usage: llama-stack-client [OPTIONS] COMMAND [ARGS]...
usage: llama-stack-client [-h] {models,memory_banks,shields} ...
Welcome to the LlamaStackClient CLI
Welcome to the LlamaStackClient CLI
Options:
--version Show the version and exit.
--endpoint TEXT Llama Stack distribution endpoint
--api-key TEXT Llama Stack distribution API key
--config TEXT Path to config file
--help Show this message and exit.
options:
-h, --help show this help message and exit
subcommands:
{models,memory_banks,shields}
Commands:
configure Configure Llama Stack Client CLI.
datasets Manage datasets.
eval Run evaluation tasks.
eval_tasks Manage evaluation tasks.
inference Inference (chat).
inspect Inspect server configuration.
models Manage GenAI models.
post_training Post-training.
providers Manage API providers.
scoring_functions Manage scoring functions.
shields Manage safety shield services.
toolgroups Manage available tool groups.
vector_dbs Manage vector databases.
```
### `llama-stack-client configure`
@ -127,11 +142,11 @@ llama-stack-client vector_dbs list
llama-stack-client vector_dbs register <vector-db-id> [--provider-id <provider-id>] [--provider-vector-db-id <provider-vector-db-id>] [--embedding-model <embedding-model>] [--embedding-dimension <embedding-dimension>]
```
Options:
- `--provider-id`: Optional. Provider ID for the vector db
- `--provider-vector-db-id`: Optional. Provider's vector db ID
- `--embedding-model`: Optional. Embedding model to use. Default: "all-MiniLM-L6-v2"
- `--embedding-dimension`: Optional. Dimension of embeddings. Default: 384
Optional arguments:
- `--provider-id`: Provider ID for the vector db
- `--provider-vector-db-id`: Provider's vector db ID
- `--embedding-model`: Embedding model to use. Default: "all-MiniLM-L6-v2"
- `--embedding-dimension`: Dimension of embeddings. Default: 384
### `llama-stack-client vector_dbs unregister`
```bash
@ -157,11 +172,13 @@ llama-stack-client shields list
llama-stack-client shields register --shield-id <shield-id> [--provider-id <provider-id>] [--provider-shield-id <provider-shield-id>] [--params <params>]
```
Options:
- `--shield-id`: Required. ID of the shield
- `--provider-id`: Optional. Provider ID for the shield
- `--provider-shield-id`: Optional. Provider's shield ID
- `--params`: Optional. JSON configuration parameters for the shield
Required arguments:
- `--shield-id`: ID of the shield
Optional arguments:
- `--provider-id`: Provider ID for the shield
- `--provider-shield-id`: Provider's shield ID
- `--params`: JSON configuration parameters for the shield
## Eval Task Management
@ -175,13 +192,15 @@ llama-stack-client benchmarks list
llama-stack-client benchmarks register --eval-task-id <eval-task-id> --dataset-id <dataset-id> --scoring-functions <function1> [<function2> ...] [--provider-id <provider-id>] [--provider-eval-task-id <provider-eval-task-id>] [--metadata <metadata>]
```
Options:
- `--eval-task-id`: Required. ID of the eval task
- `--dataset-id`: Required. ID of the dataset to evaluate
- `--scoring-functions`: Required. One or more scoring functions to use for evaluation
- `--provider-id`: Optional. Provider ID for the eval task
- `--provider-eval-task-id`: Optional. Provider's eval task ID
- `--metadata`: Optional. Metadata for the eval task in JSON format
Required arguments:
- `--eval-task-id`: ID of the eval task
- `--dataset-id`: ID of the dataset to evaluate
- `--scoring-functions`: One or more scoring functions to use for evaluation
Optional arguments:
- `--provider-id`: Provider ID for the eval task
- `--provider-eval-task-id`: Provider's eval task ID
- `--metadata`: Metadata for the eval task in JSON format
## Eval execution
### `llama-stack-client eval run-benchmark`
@ -189,11 +208,13 @@ Options:
llama-stack-client eval run-benchmark <eval-task-id1> [<eval-task-id2> ...] --eval-task-config <config-file> --output-dir <output-dir> [--num-examples <num>] [--visualize]
```
Options:
- `--eval-task-config`: Required. Path to the eval task config file in JSON format
- `--output-dir`: Required. Path to the directory where evaluation results will be saved
- `--num-examples`: Optional. Number of examples to evaluate (useful for debugging)
- `--visualize`: Optional flag. If set, visualizes evaluation results after completion
Required arguments:
- `--eval-task-config`: Path to the eval task config file in JSON format
- `--output-dir`: Path to the directory where evaluation results will be saved
Optional arguments:
- `--num-examples`: Number of examples to evaluate (useful for debugging)
- `--visualize`: If set, visualizes evaluation results after completion
Example benchmark_config.json:
```json
@ -214,11 +235,13 @@ Example benchmark_config.json:
llama-stack-client eval run-scoring <eval-task-id> --eval-task-config <config-file> --output-dir <output-dir> [--num-examples <num>] [--visualize]
```
Options:
- `--eval-task-config`: Required. Path to the eval task config file in JSON format
- `--output-dir`: Required. Path to the directory where scoring results will be saved
- `--num-examples`: Optional. Number of examples to evaluate (useful for debugging)
- `--visualize`: Optional flag. If set, visualizes scoring results after completion
Required arguments:
- `--eval-task-config`: Path to the eval task config file in JSON format
- `--output-dir`: Path to the directory where scoring results will be saved
Optional arguments:
- `--num-examples`: Number of examples to evaluate (useful for debugging)
- `--visualize`: If set, visualizes scoring results after completion
## Tool Group Management
@ -230,11 +253,11 @@ llama-stack-client toolgroups list
+---------------------------+------------------+------+---------------+
| identifier | provider_id | args | mcp_endpoint |
+===========================+==================+======+===============+
| builtin::code_interpreter | code-interpreter | None | None |
| builtin::code_interpreter | code-interpreter | None | None |
+---------------------------+------------------+------+---------------+
| builtin::rag | rag-runtime | None | None |
| builtin::rag | rag-runtime | None | None |
+---------------------------+------------------+------+---------------+
| builtin::websearch | tavily-search | None | None |
| builtin::websearch | tavily-search | None | None |
+---------------------------+------------------+------+---------------+
```
@ -250,11 +273,11 @@ Shows detailed information about a specific toolgroup. If the toolgroup is not f
llama-stack-client toolgroups register <toolgroup_id> [--provider-id <provider-id>] [--provider-toolgroup-id <provider-toolgroup-id>] [--mcp-config <mcp-config>] [--args <args>]
```
Options:
- `--provider-id`: Optional. Provider ID for the toolgroup
- `--provider-toolgroup-id`: Optional. Provider's toolgroup ID
- `--mcp-config`: Optional. JSON configuration for the MCP endpoint
- `--args`: Optional. JSON arguments for the toolgroup
Optional arguments:
- `--provider-id`: Provider ID for the toolgroup
- `--provider-toolgroup-id`: Provider's toolgroup ID
- `--mcp-config`: JSON configuration for the MCP endpoint
- `--args`: JSON arguments for the toolgroup
### `llama-stack-client toolgroups unregister`
```bash