mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-03 01:52:16 +00:00
Merge-related changes.
This commit is contained in:
commit
60e9f46856
456 changed files with 38636 additions and 10892 deletions
|
|
@ -69,7 +69,7 @@ def popen_not_allowed(*args, **kwargs):
|
|||
)
|
||||
|
||||
|
||||
_subprocess.Popen = popen_not_allowed
|
||||
_subprocess.Popen = popen_not_allowed # type: ignore
|
||||
|
||||
|
||||
import atexit as _atexit
|
||||
|
|
@ -104,7 +104,7 @@ def _open_connections():
|
|||
return _NETWORK_CONNECTIONS
|
||||
|
||||
|
||||
_builtins._open_connections = _open_connections
|
||||
_builtins._open_connections = _open_connections # type: ignore
|
||||
|
||||
|
||||
@_atexit.register
|
||||
|
|
|
|||
|
|
@ -76,6 +76,7 @@ class CodeExecutionRequest:
|
|||
only_last_cell_fail: bool = True
|
||||
seed: int = 0
|
||||
strip_fpaths_in_stderr: bool = True
|
||||
use_bwrap: bool = True
|
||||
|
||||
|
||||
class CodeExecutor:
|
||||
|
|
@ -103,8 +104,6 @@ _set_seeds()\
|
|||
|
||||
script = "\n\n".join([seeds_prefix] + [CODE_ENV_PREFIX] + scripts)
|
||||
with tempfile.TemporaryDirectory() as dpath:
|
||||
bwrap_prefix = "bwrap " + generate_bwrap_command(bind_dirs=[dpath])
|
||||
cmd = [*bwrap_prefix.split(), sys.executable, "-c", script]
|
||||
code_fpath = os.path.join(dpath, "code.py")
|
||||
with open(code_fpath, "w") as f:
|
||||
f.write(script)
|
||||
|
|
@ -118,6 +117,13 @@ _set_seeds()\
|
|||
MPLBACKEND="module://matplotlib_custom_backend",
|
||||
PYTHONPATH=f"{DIRNAME}:{python_path}",
|
||||
)
|
||||
|
||||
if req.use_bwrap:
|
||||
bwrap_prefix = "bwrap " + generate_bwrap_command(bind_dirs=[dpath])
|
||||
cmd = [*bwrap_prefix.split(), sys.executable, "-c", script]
|
||||
else:
|
||||
cmd = [sys.executable, "-c", script]
|
||||
|
||||
stdout, stderr, returncode = do_subprocess(
|
||||
cmd=cmd,
|
||||
env=env,
|
||||
|
|
@ -155,14 +161,14 @@ _set_seeds()\
|
|||
def process_matplotlib_response(response, matplotlib_dump_dir: str):
|
||||
image_data = response["image_data"]
|
||||
# Convert the base64 string to a bytes object
|
||||
images = [base64.b64decode(d["image_base64"]) for d in image_data]
|
||||
images_raw = [base64.b64decode(d["image_base64"]) for d in image_data]
|
||||
# Create a list of PIL images from the bytes objects
|
||||
images = [Image.open(BytesIO(img)) for img in images]
|
||||
images = [Image.open(BytesIO(img)) for img in images_raw]
|
||||
# Create a list of image paths
|
||||
image_paths = []
|
||||
for i, img in enumerate(images):
|
||||
# create new directory for each day to better organize data:
|
||||
dump_dname = datetime.today().strftime("%Y-%m-%d")
|
||||
dump_dname = datetime.today().strftime("%Y-%m-%d") # noqa: DTZ002 - we don't care about timezones here since we are displaying the date
|
||||
dump_dpath = Path(matplotlib_dump_dir, dump_dname)
|
||||
dump_dpath.mkdir(parents=True, exist_ok=True)
|
||||
# save image into a file
|
||||
|
|
|
|||
|
|
@ -5,12 +5,15 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolInvocationResult,
|
||||
|
|
@ -36,7 +39,7 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
|
|||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool):
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
|
|
@ -44,25 +47,29 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
|
|||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
) -> List[ToolDef]:
|
||||
return [
|
||||
ToolDef(
|
||||
name="code_interpreter",
|
||||
description="Execute code",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="code",
|
||||
description="The code to execute",
|
||||
parameter_type="string",
|
||||
),
|
||||
],
|
||||
)
|
||||
]
|
||||
) -> ListToolDefsResponse:
|
||||
return ListToolDefsResponse(
|
||||
data=[
|
||||
ToolDef(
|
||||
name="code_interpreter",
|
||||
description="Execute code",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="code",
|
||||
description="The code to execute",
|
||||
parameter_type="string",
|
||||
),
|
||||
],
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
script = kwargs["code"]
|
||||
req = CodeExecutionRequest(scripts=[script])
|
||||
res = self.code_executor.execute(req)
|
||||
# Use environment variable to control bwrap usage
|
||||
force_disable_bwrap = os.environ.get("DISABLE_CODE_SANDBOX", "").lower() in ("1", "true", "yes")
|
||||
req = CodeExecutionRequest(scripts=[script], use_bwrap=not force_disable_bwrap)
|
||||
res = await asyncio.to_thread(self.code_executor.execute, req)
|
||||
pieces = [res["process_status"]]
|
||||
for out_type in ["stdout", "stderr"]:
|
||||
res_out = res[out_type]
|
||||
|
|
|
|||
|
|
@ -4,8 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class CodeInterpreterToolConfig(BaseModel):
|
||||
pass
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {}
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ from llama_stack.providers.datatypes import Api
|
|||
from .config import RagToolRuntimeConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: RagToolRuntimeConfig, deps: Dict[str, Any]):
|
||||
async def get_provider_impl(config: RagToolRuntimeConfig, deps: Dict[Api, Any]):
|
||||
from .memory import MemoryToolRuntimeImpl
|
||||
|
||||
impl = MemoryToolRuntimeImpl(config, deps[Api.vector_io], deps[Api.inference], deps[Api.preprocessing])
|
||||
|
|
|
|||
|
|
@ -4,8 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class RagToolRuntimeConfig(BaseModel):
|
||||
pass
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {}
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ from pydantic import TypeAdapter
|
|||
from llama_stack.apis.common.content_types import (
|
||||
URL,
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
|
@ -27,10 +28,12 @@ from llama_stack.apis.preprocessing import (
|
|||
PreprocessorChainElement,
|
||||
)
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
RAGDocument,
|
||||
RAGQueryConfig,
|
||||
RAGQueryResult,
|
||||
RAGToolRuntime,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
|
|
@ -73,6 +76,12 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
async def shutdown(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
return
|
||||
|
||||
async def insert(
|
||||
self,
|
||||
documents: List[RAGDocument],
|
||||
|
|
@ -103,7 +112,7 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
|
||||
actual_chunks = [chunk.data_element_path_or_content for chunk in chunks]
|
||||
await self.vector_io_api.insert_chunks(
|
||||
chunks=actual_chunks,
|
||||
chunks=actual_chunks, # type: ignore
|
||||
vector_db_id=vector_db_id,
|
||||
)
|
||||
|
||||
|
|
@ -140,11 +149,11 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
return RAGQueryResult(content=None)
|
||||
|
||||
# sort by score
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False)
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False) # type: ignore
|
||||
chunks = chunks[: query_config.max_chunks]
|
||||
|
||||
tokens = 0
|
||||
picked = [
|
||||
picked: list[InterleavedContentItem] = [
|
||||
TextContentItem(
|
||||
text=f"knowledge_search tool found {len(chunks)} chunks:\nBEGIN of knowledge_search tool results.\n"
|
||||
)
|
||||
|
|
@ -173,27 +182,29 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
) -> List[ToolDef]:
|
||||
) -> ListToolDefsResponse:
|
||||
# Parameters are not listed since these methods are not yet invoked automatically
|
||||
# by the LLM. The method is only implemented so things like /tools can list without
|
||||
# encountering fatals.
|
||||
return [
|
||||
ToolDef(
|
||||
name="insert_into_memory",
|
||||
description="Insert documents into memory",
|
||||
),
|
||||
ToolDef(
|
||||
name="knowledge_search",
|
||||
description="Search for information in a database.",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to search for. Can be a natural language sentence or keywords.",
|
||||
parameter_type="string",
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
return ListToolDefsResponse(
|
||||
data=[
|
||||
ToolDef(
|
||||
name="insert_into_memory",
|
||||
description="Insert documents into memory",
|
||||
),
|
||||
ToolDef(
|
||||
name="knowledge_search",
|
||||
description="Search for information in a database.",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to search for. Can be a natural language sentence or keywords.",
|
||||
parameter_type="string",
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
vector_db_ids = kwargs.get("vector_db_ids", [])
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue