mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-03 05:22:17 +00:00
Merge-related changes.
This commit is contained in:
commit
60e9f46856
456 changed files with 38636 additions and 10892 deletions
|
|
@ -11,7 +11,7 @@ from llama_stack.providers.datatypes import Api
|
|||
from .config import RagToolRuntimeConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: RagToolRuntimeConfig, deps: Dict[str, Any]):
|
||||
async def get_provider_impl(config: RagToolRuntimeConfig, deps: Dict[Api, Any]):
|
||||
from .memory import MemoryToolRuntimeImpl
|
||||
|
||||
impl = MemoryToolRuntimeImpl(config, deps[Api.vector_io], deps[Api.inference], deps[Api.preprocessing])
|
||||
|
|
|
|||
|
|
@ -4,8 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class RagToolRuntimeConfig(BaseModel):
|
||||
pass
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {}
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ from pydantic import TypeAdapter
|
|||
from llama_stack.apis.common.content_types import (
|
||||
URL,
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
|
@ -27,10 +28,12 @@ from llama_stack.apis.preprocessing import (
|
|||
PreprocessorChainElement,
|
||||
)
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
RAGDocument,
|
||||
RAGQueryConfig,
|
||||
RAGQueryResult,
|
||||
RAGToolRuntime,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
|
|
@ -73,6 +76,12 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
async def shutdown(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
return
|
||||
|
||||
async def insert(
|
||||
self,
|
||||
documents: List[RAGDocument],
|
||||
|
|
@ -103,7 +112,7 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
|
||||
actual_chunks = [chunk.data_element_path_or_content for chunk in chunks]
|
||||
await self.vector_io_api.insert_chunks(
|
||||
chunks=actual_chunks,
|
||||
chunks=actual_chunks, # type: ignore
|
||||
vector_db_id=vector_db_id,
|
||||
)
|
||||
|
||||
|
|
@ -140,11 +149,11 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
return RAGQueryResult(content=None)
|
||||
|
||||
# sort by score
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False)
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False) # type: ignore
|
||||
chunks = chunks[: query_config.max_chunks]
|
||||
|
||||
tokens = 0
|
||||
picked = [
|
||||
picked: list[InterleavedContentItem] = [
|
||||
TextContentItem(
|
||||
text=f"knowledge_search tool found {len(chunks)} chunks:\nBEGIN of knowledge_search tool results.\n"
|
||||
)
|
||||
|
|
@ -173,27 +182,29 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
) -> List[ToolDef]:
|
||||
) -> ListToolDefsResponse:
|
||||
# Parameters are not listed since these methods are not yet invoked automatically
|
||||
# by the LLM. The method is only implemented so things like /tools can list without
|
||||
# encountering fatals.
|
||||
return [
|
||||
ToolDef(
|
||||
name="insert_into_memory",
|
||||
description="Insert documents into memory",
|
||||
),
|
||||
ToolDef(
|
||||
name="knowledge_search",
|
||||
description="Search for information in a database.",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to search for. Can be a natural language sentence or keywords.",
|
||||
parameter_type="string",
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
return ListToolDefsResponse(
|
||||
data=[
|
||||
ToolDef(
|
||||
name="insert_into_memory",
|
||||
description="Insert documents into memory",
|
||||
),
|
||||
ToolDef(
|
||||
name="knowledge_search",
|
||||
description="Search for information in a database.",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="query",
|
||||
description="The query to search for. Can be a natural language sentence or keywords.",
|
||||
parameter_type="string",
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
vector_db_ids = kwargs.get("vector_db_ids", [])
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue