mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-25 20:28:03 +00:00
Merge branch 'main' into allow-dynamic-models-nvidia
This commit is contained in:
commit
6173d7a308
71 changed files with 3107 additions and 2381 deletions
|
|
@ -3,16 +3,17 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import logging
|
||||
|
||||
from llama_stack.providers.remote.inference.llama_openai_compat.config import (
|
||||
LlamaCompatConfig,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
|
||||
LiteLLMOpenAIMixin,
|
||||
)
|
||||
from llama_api_client import AsyncLlamaAPIClient, NotFoundError
|
||||
|
||||
from llama_stack.providers.remote.inference.llama_openai_compat.config import LlamaCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LlamaCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
_config: LlamaCompatConfig
|
||||
|
|
@ -27,8 +28,32 @@ class LlamaCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
)
|
||||
self.config = config
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
Check if a specific model is available from Llama API.
|
||||
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
"""
|
||||
try:
|
||||
llama_api_client = self._get_llama_api_client()
|
||||
retrieved_model = await llama_api_client.models.retrieve(model)
|
||||
logger.info(f"Model {retrieved_model.id} is available from Llama API")
|
||||
return True
|
||||
|
||||
except NotFoundError:
|
||||
logger.error(f"Model {model} is not available from Llama API")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to check model availability from Llama API: {e}")
|
||||
return False
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
||||
def _get_llama_api_client(self) -> AsyncLlamaAPIClient:
|
||||
return AsyncLlamaAPIClient(api_key=self.get_api_key(), base_url=self.config.openai_compat_api_base)
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@
|
|||
import logging
|
||||
import warnings
|
||||
from collections.abc import AsyncIterator
|
||||
from functools import lru_cache
|
||||
from typing import Any
|
||||
|
||||
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
|
||||
|
|
@ -98,41 +97,21 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
# If we can't retrieve the model, it's not available
|
||||
return False
|
||||
|
||||
@lru_cache # noqa: B019
|
||||
def _get_client(self, provider_model_id: str | None = None) -> AsyncOpenAI:
|
||||
@property
|
||||
def _client(self) -> AsyncOpenAI:
|
||||
"""
|
||||
For hosted models, https://integrate.api.nvidia.com/v1 is the primary base_url. However,
|
||||
some models are hosted on different URLs. This function returns the appropriate client
|
||||
for the given provider_model_id.
|
||||
Returns an OpenAI client for the configured NVIDIA API endpoint.
|
||||
|
||||
This relies on lru_cache and self._default_client to avoid creating a new client for each request
|
||||
or for each model that is hosted on https://integrate.api.nvidia.com/v1.
|
||||
|
||||
:param provider_model_id: The provider model ID (optional, defaults to primary endpoint)
|
||||
:return: An OpenAI client
|
||||
"""
|
||||
|
||||
@lru_cache # noqa: B019
|
||||
def _get_client_for_base_url(base_url: str) -> AsyncOpenAI:
|
||||
"""
|
||||
Maintain a single OpenAI client per base_url.
|
||||
"""
|
||||
return AsyncOpenAI(
|
||||
base_url=base_url,
|
||||
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
|
||||
timeout=self._config.timeout,
|
||||
)
|
||||
|
||||
special_model_urls = {
|
||||
"meta/llama-3.2-11b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct",
|
||||
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
|
||||
}
|
||||
|
||||
base_url = f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
|
||||
|
||||
if provider_model_id and _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
|
||||
base_url = special_model_urls[provider_model_id]
|
||||
return _get_client_for_base_url(base_url)
|
||||
return AsyncOpenAI(
|
||||
base_url=base_url,
|
||||
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
|
||||
timeout=self._config.timeout,
|
||||
)
|
||||
|
||||
async def _get_provider_model_id(self, model_id: str) -> str:
|
||||
if not self.model_store:
|
||||
|
|
@ -174,7 +153,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
|
||||
try:
|
||||
response = await self._get_client(provider_model_id).completions.create(**request)
|
||||
response = await self._client.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
|
|
@ -227,7 +206,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
extra_body["input_type"] = task_type_options[task_type]
|
||||
|
||||
try:
|
||||
response = await self._get_client(provider_model_id).embeddings.create(
|
||||
response = await self._client.embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
|
|
@ -288,7 +267,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
|
||||
try:
|
||||
response = await self._get_client(provider_model_id).chat.completions.create(**request)
|
||||
response = await self._client.chat.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
|
|
@ -344,7 +323,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
|
||||
try:
|
||||
return await self._get_client(provider_model_id).completions.create(**params)
|
||||
return await self._client.completions.create(**params)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
|
|
@ -403,6 +382,6 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
|
||||
try:
|
||||
return await self._get_client(provider_model_id).chat.completions.create(**params)
|
||||
return await self._client.chat.completions.create(**params)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ import logging
|
|||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
from openai import AsyncOpenAI, NotFoundError
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletion,
|
||||
|
|
@ -60,6 +60,27 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
# litellm specific model names, an abstraction leak.
|
||||
self.is_openai_compat = True
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
Check if a specific model is available from OpenAI.
|
||||
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
"""
|
||||
try:
|
||||
openai_client = self._get_openai_client()
|
||||
retrieved_model = await openai_client.models.retrieve(model)
|
||||
logger.info(f"Model {retrieved_model.id} is available from OpenAI")
|
||||
return True
|
||||
|
||||
except NotFoundError:
|
||||
logger.error(f"Model {model} is not available from OpenAI")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to check model availability from OpenAI: {e}")
|
||||
return False
|
||||
|
||||
async def initialize(self) -> None:
|
||||
await super().initialize()
|
||||
|
||||
|
|
|
|||
|
|
@ -217,7 +217,6 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -17,7 +17,7 @@ class MilvusVectorIOConfig(BaseModel):
|
|||
uri: str = Field(description="The URI of the Milvus server")
|
||||
token: str | None = Field(description="The token of the Milvus server")
|
||||
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
|
||||
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
|
||||
|
||||
# This configuration allows additional fields to be passed through to the underlying Milvus client.
|
||||
# See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general.
|
||||
|
|
@ -25,4 +25,11 @@ class MilvusVectorIOConfig(BaseModel):
|
|||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {"uri": "${env.MILVUS_ENDPOINT}", "token": "${env.MILVUS_TOKEN}"}
|
||||
return {
|
||||
"uri": "${env.MILVUS_ENDPOINT}",
|
||||
"token": "${env.MILVUS_TOKEN}",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="milvus_remote_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ import re
|
|||
from typing import Any
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from pymilvus import DataType, MilvusClient
|
||||
from pymilvus import DataType, Function, FunctionType, MilvusClient
|
||||
|
||||
from llama_stack.apis.files.files import Files
|
||||
from llama_stack.apis.inference import Inference, InterleavedContent
|
||||
|
|
@ -74,12 +74,66 @@ class MilvusIndex(EmbeddingIndex):
|
|||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
||||
if not await asyncio.to_thread(self.client.has_collection, self.collection_name):
|
||||
logger.info(f"Creating new collection {self.collection_name} with nullable sparse field")
|
||||
# Create schema for vector search
|
||||
schema = self.client.create_schema()
|
||||
schema.add_field(
|
||||
field_name="chunk_id",
|
||||
datatype=DataType.VARCHAR,
|
||||
is_primary=True,
|
||||
max_length=100,
|
||||
)
|
||||
schema.add_field(
|
||||
field_name="content",
|
||||
datatype=DataType.VARCHAR,
|
||||
max_length=65535,
|
||||
enable_analyzer=True, # Enable text analysis for BM25
|
||||
)
|
||||
schema.add_field(
|
||||
field_name="vector",
|
||||
datatype=DataType.FLOAT_VECTOR,
|
||||
dim=len(embeddings[0]),
|
||||
)
|
||||
schema.add_field(
|
||||
field_name="chunk_content",
|
||||
datatype=DataType.JSON,
|
||||
)
|
||||
# Add sparse vector field for BM25 (required by the function)
|
||||
schema.add_field(
|
||||
field_name="sparse",
|
||||
datatype=DataType.SPARSE_FLOAT_VECTOR,
|
||||
)
|
||||
|
||||
# Create indexes
|
||||
index_params = self.client.prepare_index_params()
|
||||
index_params.add_index(
|
||||
field_name="vector",
|
||||
index_type="FLAT",
|
||||
metric_type="COSINE",
|
||||
)
|
||||
# Add index for sparse field (required by BM25 function)
|
||||
index_params.add_index(
|
||||
field_name="sparse",
|
||||
index_type="SPARSE_INVERTED_INDEX",
|
||||
metric_type="BM25",
|
||||
)
|
||||
|
||||
# Add BM25 function for full-text search
|
||||
bm25_function = Function(
|
||||
name="text_bm25_emb",
|
||||
input_field_names=["content"],
|
||||
output_field_names=["sparse"],
|
||||
function_type=FunctionType.BM25,
|
||||
)
|
||||
schema.add_function(bm25_function)
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.client.create_collection,
|
||||
self.collection_name,
|
||||
dimension=len(embeddings[0]),
|
||||
auto_id=True,
|
||||
schema=schema,
|
||||
index_params=index_params,
|
||||
consistency_level=self.consistency_level,
|
||||
)
|
||||
|
||||
|
|
@ -88,8 +142,10 @@ class MilvusIndex(EmbeddingIndex):
|
|||
data.append(
|
||||
{
|
||||
"chunk_id": chunk.chunk_id,
|
||||
"content": chunk.content,
|
||||
"vector": embedding,
|
||||
"chunk_content": chunk.model_dump(),
|
||||
# sparse field will be handled by BM25 function automatically
|
||||
}
|
||||
)
|
||||
try:
|
||||
|
|
@ -107,6 +163,7 @@ class MilvusIndex(EmbeddingIndex):
|
|||
self.client.search,
|
||||
collection_name=self.collection_name,
|
||||
data=[embedding],
|
||||
anns_field="vector",
|
||||
limit=k,
|
||||
output_fields=["*"],
|
||||
search_params={"params": {"radius": score_threshold}},
|
||||
|
|
@ -121,7 +178,64 @@ class MilvusIndex(EmbeddingIndex):
|
|||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Milvus")
|
||||
"""
|
||||
Perform BM25-based keyword search using Milvus's built-in full-text search.
|
||||
"""
|
||||
try:
|
||||
# Use Milvus's built-in BM25 search
|
||||
search_res = await asyncio.to_thread(
|
||||
self.client.search,
|
||||
collection_name=self.collection_name,
|
||||
data=[query_string], # Raw text query
|
||||
anns_field="sparse", # Use sparse field for BM25
|
||||
output_fields=["chunk_content"], # Output the chunk content
|
||||
limit=k,
|
||||
search_params={
|
||||
"params": {
|
||||
"drop_ratio_search": 0.2, # Ignore low-importance terms
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for res in search_res[0]:
|
||||
chunk = Chunk(**res["entity"]["chunk_content"])
|
||||
chunks.append(chunk)
|
||||
scores.append(res["distance"]) # BM25 score from Milvus
|
||||
|
||||
# Filter by score threshold
|
||||
filtered_chunks = [chunk for chunk, score in zip(chunks, scores, strict=False) if score >= score_threshold]
|
||||
filtered_scores = [score for score in scores if score >= score_threshold]
|
||||
|
||||
return QueryChunksResponse(chunks=filtered_chunks, scores=filtered_scores)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error performing BM25 search: {e}")
|
||||
# Fallback to simple text search
|
||||
return await self._fallback_keyword_search(query_string, k, score_threshold)
|
||||
|
||||
async def _fallback_keyword_search(
|
||||
self,
|
||||
query_string: str,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
"""
|
||||
Fallback to simple text search when BM25 search is not available.
|
||||
"""
|
||||
# Simple text search using content field
|
||||
search_res = await asyncio.to_thread(
|
||||
self.client.query,
|
||||
collection_name=self.collection_name,
|
||||
filter='content like "%{content}%"',
|
||||
filter_params={"content": query_string},
|
||||
output_fields=["*"],
|
||||
limit=k,
|
||||
)
|
||||
chunks = [Chunk(**res["chunk_content"]) for res in search_res]
|
||||
scores = [1.0] * len(chunks) # Simple binary score for text search
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
|
|
@ -247,6 +361,14 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
if params and params.get("mode") == "keyword":
|
||||
# Check if this is inline Milvus (Milvus-Lite)
|
||||
if hasattr(self.config, "db_path"):
|
||||
raise NotImplementedError(
|
||||
"Keyword search is not supported in Milvus-Lite. "
|
||||
"Please use a remote Milvus server for keyword search functionality."
|
||||
)
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
|
|
|
|||
|
|
@ -218,9 +218,6 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
# Persist vector DB metadata in the KV store
|
||||
assert self.kvstore is not None
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}"
|
||||
await self.kvstore.set(key=key, value=vector_db.model_dump_json())
|
||||
|
||||
# Upsert model metadata in Postgres
|
||||
upsert_models(self.conn, [(vector_db.identifier, vector_db)])
|
||||
|
||||
|
|
@ -273,16 +270,120 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
"""Save vector store file metadata to Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_store_files (
|
||||
store_id TEXT,
|
||||
file_id TEXT,
|
||||
metadata JSONB,
|
||||
PRIMARY KEY (store_id, file_id)
|
||||
)
|
||||
"""
|
||||
)
|
||||
cur.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_store_files_contents (
|
||||
store_id TEXT,
|
||||
file_id TEXT,
|
||||
contents JSONB,
|
||||
PRIMARY KEY (store_id, file_id)
|
||||
)
|
||||
"""
|
||||
)
|
||||
# Insert file metadata
|
||||
files_query = sql.SQL(
|
||||
"""
|
||||
INSERT INTO openai_vector_store_files (store_id, file_id, metadata)
|
||||
VALUES %s
|
||||
ON CONFLICT (store_id, file_id) DO UPDATE SET metadata = EXCLUDED.metadata
|
||||
"""
|
||||
)
|
||||
files_values = [(store_id, file_id, Json(file_info))]
|
||||
execute_values(cur, files_query, files_values, template="(%s, %s, %s)")
|
||||
# Insert file contents
|
||||
contents_query = sql.SQL(
|
||||
"""
|
||||
INSERT INTO openai_vector_store_files_contents (store_id, file_id, contents)
|
||||
VALUES %s
|
||||
ON CONFLICT (store_id, file_id) DO UPDATE SET contents = EXCLUDED.contents
|
||||
"""
|
||||
)
|
||||
contents_values = [(store_id, file_id, Json(file_contents))]
|
||||
execute_values(cur, contents_query, contents_values, template="(%s, %s, %s)")
|
||||
except Exception as e:
|
||||
log.error(f"Error saving openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
"""Load vector store file metadata from Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
"SELECT metadata FROM openai_vector_store_files WHERE store_id = %s AND file_id = %s",
|
||||
(store_id, file_id),
|
||||
)
|
||||
row = cur.fetchone()
|
||||
return row[0] if row and row[0] is not None else {}
|
||||
except Exception as e:
|
||||
log.error(f"Error loading openai vector store file {file_id} for store {store_id}: {e}")
|
||||
return {}
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
"""Load vector store file contents from Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
"SELECT contents FROM openai_vector_store_files_contents WHERE store_id = %s AND file_id = %s",
|
||||
(store_id, file_id),
|
||||
)
|
||||
row = cur.fetchone()
|
||||
return row[0] if row and row[0] is not None else []
|
||||
except Exception as e:
|
||||
log.error(f"Error loading openai vector store file contents for {file_id} in store {store_id}: {e}")
|
||||
return []
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
"""Update vector store file metadata in Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
query = sql.SQL(
|
||||
"""
|
||||
INSERT INTO openai_vector_store_files (store_id, file_id, metadata)
|
||||
VALUES %s
|
||||
ON CONFLICT (store_id, file_id) DO UPDATE SET metadata = EXCLUDED.metadata
|
||||
"""
|
||||
)
|
||||
values = [(store_id, file_id, Json(file_info))]
|
||||
execute_values(cur, query, values, template="(%s, %s, %s)")
|
||||
except Exception as e:
|
||||
log.error(f"Error updating openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
"""Delete vector store file metadata from Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
"DELETE FROM openai_vector_store_files WHERE store_id = %s AND file_id = %s",
|
||||
(store_id, file_id),
|
||||
)
|
||||
cur.execute(
|
||||
"DELETE FROM openai_vector_store_files_contents WHERE store_id = %s AND file_id = %s",
|
||||
(store_id, file_id),
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Error deleting openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
|
|
|||
|
|
@ -214,7 +214,6 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue