feat: Add openAI compatible APIs to QDrant

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
Varsha Prasad Narsing 2025-06-17 16:38:02 -07:00
parent 0ddb293d77
commit 61bddfe70e
6 changed files with 100 additions and 13 deletions

View file

@ -4,14 +4,18 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import Api, ProviderSpec
from typing import Any
from llama_stack.providers.datatypes import Api
from .config import QdrantVectorIOConfig
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: dict[Api, ProviderSpec]):
async def get_provider_impl(config: QdrantVectorIOConfig, deps: dict[Api, Any]):
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
impl = QdrantVectorIOAdapter(config, deps[Api.inference])
assert isinstance(config, QdrantVectorIOConfig), f"Unexpected config type: {type(config)}"
files_api = deps.get(Api.files)
impl = QdrantVectorIOAdapter(config, deps[Api.inference], files_api)
await impl.initialize()
return impl

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from typing import Any
from typing import Any, Literal
from pydantic import BaseModel
@ -15,6 +15,7 @@ from llama_stack.schema_utils import json_schema_type
@json_schema_type
class QdrantVectorIOConfig(BaseModel):
path: str
distance_metric: Literal["COSINE", "DOT", "EUCLID", "MANHATTAN"] = "COSINE"
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]: