add model type

This commit is contained in:
Dinesh Yeduguru 2024-12-09 12:45:11 -08:00
parent e0d5be41fe
commit 62890b3171
6 changed files with 77 additions and 13 deletions

View file

@ -89,6 +89,7 @@ class VectorMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
embedding_model: str
chunk_size_in_tokens: int
embedding_dimension: Optional[int] = 384 # default to minilm-l6-v2
overlap_size_in_tokens: Optional[int] = None

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
@ -20,6 +21,11 @@ class CommonModelFields(BaseModel):
)
class ModelType(Enum):
llm_model = "llm_model"
embedding_model = "embedding_model"
@json_schema_type
class Model(CommonModelFields, Resource):
type: Literal[ResourceType.model.value] = ResourceType.model.value
@ -34,11 +40,14 @@ class Model(CommonModelFields, Resource):
model_config = ConfigDict(protected_namespaces=())
model_type: ModelType = Field(default=ModelType.llm_model)
class ModelInput(CommonModelFields):
model_id: str
provider_id: Optional[str] = None
provider_model_id: Optional[str] = None
model_type: Optional[ModelType] = ModelType.llm_model
model_config = ConfigDict(protected_namespaces=())
@ -59,6 +68,7 @@ class Models(Protocol):
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
) -> Model: ...
@webmethod(route="/models/unregister", method="POST")

View file

@ -88,9 +88,10 @@ class InferenceRouter(Inference):
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
) -> None:
await self.routing_table.register_model(
model_id, provider_model_id, provider_id, metadata
model_id, provider_model_id, provider_id, metadata, model_type
)
async def chat_completion(
@ -105,6 +106,13 @@ class InferenceRouter(Inference):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.routing_table.get_model(model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
if model.model_type == ModelType.embedding_model:
raise ValueError(
f"Model '{model_id}' is an embedding model and does not support chat completions"
)
params = dict(
model_id=model_id,
messages=messages,
@ -131,6 +139,13 @@ class InferenceRouter(Inference):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.routing_table.get_model(model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
if model.model_type == ModelType.embedding_model:
raise ValueError(
f"Model '{model_id}' is an embedding model and does not support chat completions"
)
provider = self.routing_table.get_provider_impl(model_id)
params = dict(
model_id=model_id,
@ -150,6 +165,13 @@ class InferenceRouter(Inference):
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
model = await self.routing_table.get_model(model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
if model.model_type == ModelType.llm_model:
raise ValueError(
f"Model '{model_id}' is an LLM model and does not support embeddings"
)
return await self.routing_table.get_provider_impl(model_id).embeddings(
model_id=model_id,
contents=contents,

View file

@ -209,6 +209,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
) -> Model:
if provider_model_id is None:
provider_model_id = model_id
@ -222,11 +223,21 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
)
if metadata is None:
metadata = {}
if model_type is None:
model_type = ModelType.llm_model
if (
"embedding_dimension" not in metadata
and model_type == ModelType.embedding_model
):
raise ValueError(
"Embedding model must have an embedding dimension in its metadata"
)
model = Model(
identifier=model_id,
provider_resource_id=provider_model_id,
provider_id=provider_id,
metadata=metadata,
model_type=model_type,
)
registered_model = await self.register_object(model)
return registered_model
@ -298,16 +309,29 @@ class MemoryBanksRoutingTable(CommonRoutingTableImpl, MemoryBanks):
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
memory_bank = parse_obj_as(
MemoryBank,
{
model = await self.get_object_by_identifier("model", params.embedding_model)
if model is None:
raise ValueError(f"Model {params.embedding_model} not found")
if model.model_type != ModelType.embedding_model:
raise ValueError(
f"Model {params.embedding_model} is not an embedding model"
)
if "embedding_dimension" not in model.metadata:
raise ValueError(
f"Model {params.embedding_model} does not have an embedding dimension"
)
memory_bank_data = {
"identifier": memory_bank_id,
"type": ResourceType.memory_bank.value,
"provider_id": provider_id,
"provider_resource_id": provider_memory_bank_id,
**params.model_dump(),
},
)
}
if params.memory_bank_type == MemoryBankType.vector.value:
memory_bank_data["embedding_dimension"] = model.metadata[
"embedding_dimension"
]
memory_bank = parse_obj_as(MemoryBank, memory_bank_data)
await self.register_object(memory_bank)
return memory_bank

View file

@ -40,7 +40,7 @@ class DistributionRegistry(Protocol):
REGISTER_PREFIX = "distributions:registry"
KEY_VERSION = "v2"
KEY_VERSION = "v3"
KEY_FORMAT = f"{REGISTER_PREFIX}:{KEY_VERSION}::" + "{type}:{identifier}"

View file

@ -9,6 +9,7 @@ from typing import List, Optional
from llama_models.sku_list import all_registered_models
from llama_stack.apis.models.models import ModelType
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.providers.utils.inference import (
@ -77,7 +78,13 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
return None
async def register_model(self, model: Model) -> Model:
provider_resource_id = self.get_provider_model_id(model.provider_resource_id)
if model.model_type == ModelType.embedding_model:
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model
provider_resource_id = model.provider_resource_id
else:
provider_resource_id = self.get_provider_model_id(
model.provider_resource_id
)
if provider_resource_id:
model.provider_resource_id = provider_resource_id
else: