mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-06 10:42:39 +00:00
Add and review more documentation for inference.py
This commit is contained in:
parent
ebfa8ad4fb
commit
62c3c5bb7e
4 changed files with 415 additions and 117 deletions
|
@ -4,11 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import collections
|
||||
import hashlib
|
||||
import ipaddress
|
||||
import typing
|
||||
from dataclasses import field, make_dataclass
|
||||
from dataclasses import make_dataclass
|
||||
from typing import Any, Dict, Set, Union
|
||||
|
||||
from ..strong_typing.core import JsonType
|
||||
|
|
|
@ -487,7 +487,7 @@
|
|||
"post": {
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "An array of embeddings, one for each content. Each embedding is a list of floats.",
|
||||
"description": "An array of embeddings, one for each content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
|
@ -2352,19 +2352,23 @@
|
|||
"role": {
|
||||
"type": "string",
|
||||
"const": "assistant",
|
||||
"default": "assistant"
|
||||
"default": "assistant",
|
||||
"description": "Must be \"assistant\" to identify this as the model's response"
|
||||
},
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
"$ref": "#/components/schemas/InterleavedContent",
|
||||
"description": "The content of the model's response"
|
||||
},
|
||||
"stop_reason": {
|
||||
"$ref": "#/components/schemas/StopReason"
|
||||
"$ref": "#/components/schemas/StopReason",
|
||||
"description": "Reason why the model stopped generating. Options are: - `StopReason.end_of_turn`: The model finished generating the entire response. - `StopReason.end_of_message`: The model finished generating but generated a partial response -- usually, a tool call. The user may call the tool and continue the conversation with the tool's response. - `StopReason.out_of_tokens`: The model ran out of token budget."
|
||||
},
|
||||
"tool_calls": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/ToolCall"
|
||||
}
|
||||
},
|
||||
"description": "List of tool calls. Each tool call is a ToolCall object."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -2373,7 +2377,8 @@
|
|||
"content",
|
||||
"stop_reason",
|
||||
"tool_calls"
|
||||
]
|
||||
],
|
||||
"title": "A message containing the model's (assistant) response in a chat conversation."
|
||||
},
|
||||
"GrammarResponseFormat": {
|
||||
"type": "object",
|
||||
|
@ -2381,7 +2386,8 @@
|
|||
"type": {
|
||||
"type": "string",
|
||||
"const": "grammar",
|
||||
"default": "grammar"
|
||||
"default": "grammar",
|
||||
"description": "Must be \"grammar\" to identify this format type"
|
||||
},
|
||||
"bnf": {
|
||||
"type": "object",
|
||||
|
@ -2406,14 +2412,16 @@
|
|||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"description": "The BNF grammar specification the response should conform to"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"type",
|
||||
"bnf"
|
||||
]
|
||||
],
|
||||
"title": "Configuration for grammar-guided response generation."
|
||||
},
|
||||
"GreedySamplingStrategy": {
|
||||
"type": "object",
|
||||
|
@ -2496,7 +2504,8 @@
|
|||
"type": {
|
||||
"type": "string",
|
||||
"const": "json_schema",
|
||||
"default": "json_schema"
|
||||
"default": "json_schema",
|
||||
"description": "Must be \"json_schema\" to identify this format type"
|
||||
},
|
||||
"json_schema": {
|
||||
"type": "object",
|
||||
|
@ -2521,14 +2530,16 @@
|
|||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"description": "The JSON schema the response should conform to. In a Python SDK, this is often a `pydantic` model."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"type",
|
||||
"json_schema"
|
||||
]
|
||||
],
|
||||
"title": "Configuration for JSON schema-guided response generation."
|
||||
},
|
||||
"Message": {
|
||||
"oneOf": [
|
||||
|
@ -2624,17 +2635,20 @@
|
|||
"role": {
|
||||
"type": "string",
|
||||
"const": "system",
|
||||
"default": "system"
|
||||
"default": "system",
|
||||
"description": "Must be \"system\" to identify this as a system message"
|
||||
},
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
"$ref": "#/components/schemas/InterleavedContent",
|
||||
"description": "The content of the \"system prompt\". If multiple system messages are provided, they are concatenated. The underlying Llama Stack code may also add other system messages (for example, for formatting tool definitions)."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"role",
|
||||
"content"
|
||||
]
|
||||
],
|
||||
"title": "A system message providing instructions or context to the model."
|
||||
},
|
||||
"TextContentItem": {
|
||||
"type": "object",
|
||||
|
@ -2749,7 +2763,8 @@
|
|||
"enum": [
|
||||
"auto",
|
||||
"required"
|
||||
]
|
||||
],
|
||||
"title": "Whether tool use is required or automatic. This is a hint to the model which may not be followed. It depends on the Instruction Following capabilities of the model."
|
||||
},
|
||||
"ToolDefinition": {
|
||||
"type": "object",
|
||||
|
@ -2836,10 +2851,12 @@
|
|||
"role": {
|
||||
"type": "string",
|
||||
"const": "tool",
|
||||
"default": "tool"
|
||||
"default": "tool",
|
||||
"description": "Must be \"tool\" to identify this as a tool response"
|
||||
},
|
||||
"call_id": {
|
||||
"type": "string"
|
||||
"type": "string",
|
||||
"description": "Unique identifier for the tool call this response is for"
|
||||
},
|
||||
"tool_name": {
|
||||
"oneOf": [
|
||||
|
@ -2849,10 +2866,12 @@
|
|||
{
|
||||
"type": "string"
|
||||
}
|
||||
]
|
||||
],
|
||||
"description": "Name of the tool that was called"
|
||||
},
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
"$ref": "#/components/schemas/InterleavedContent",
|
||||
"description": "The response content from the tool"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -2861,7 +2880,8 @@
|
|||
"call_id",
|
||||
"tool_name",
|
||||
"content"
|
||||
]
|
||||
],
|
||||
"title": "A message representing the result of a tool invocation."
|
||||
},
|
||||
"TopKSamplingStrategy": {
|
||||
"type": "object",
|
||||
|
@ -2920,20 +2940,24 @@
|
|||
"role": {
|
||||
"type": "string",
|
||||
"const": "user",
|
||||
"default": "user"
|
||||
"default": "user",
|
||||
"description": "Must be \"user\" to identify this as a user message"
|
||||
},
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
"$ref": "#/components/schemas/InterleavedContent",
|
||||
"description": "The content of the message, which can include text and other media"
|
||||
},
|
||||
"context": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
"$ref": "#/components/schemas/InterleavedContent",
|
||||
"description": "(Optional) This field is used internally by Llama Stack to pass RAG context. This field may be removed in the API in the future."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"role",
|
||||
"content"
|
||||
]
|
||||
],
|
||||
"title": "A message from the user in a chat conversation."
|
||||
},
|
||||
"BatchChatCompletionRequest": {
|
||||
"type": "object",
|
||||
|
@ -2973,7 +2997,8 @@
|
|||
"properties": {
|
||||
"top_k": {
|
||||
"type": "integer",
|
||||
"default": 0
|
||||
"default": 0,
|
||||
"description": "How many tokens (for each position) to return log probabilities for."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false
|
||||
|
@ -3004,19 +3029,22 @@
|
|||
"type": "object",
|
||||
"properties": {
|
||||
"completion_message": {
|
||||
"$ref": "#/components/schemas/CompletionMessage"
|
||||
"$ref": "#/components/schemas/CompletionMessage",
|
||||
"description": "The complete response message"
|
||||
},
|
||||
"logprobs": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/TokenLogProbs"
|
||||
}
|
||||
},
|
||||
"description": "Optional log probabilities for generated tokens"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"completion_message"
|
||||
]
|
||||
],
|
||||
"title": "Response from a chat completion request."
|
||||
},
|
||||
"TokenLogProbs": {
|
||||
"type": "object",
|
||||
|
@ -3025,13 +3053,15 @@
|
|||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"type": "number"
|
||||
}
|
||||
},
|
||||
"description": "Dictionary mapping tokens to their log probabilities"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"logprobs_by_token"
|
||||
]
|
||||
],
|
||||
"title": "Log probabilities for generated tokens."
|
||||
},
|
||||
"BatchCompletionRequest": {
|
||||
"type": "object",
|
||||
|
@ -3056,7 +3086,8 @@
|
|||
"properties": {
|
||||
"top_k": {
|
||||
"type": "integer",
|
||||
"default": 0
|
||||
"default": 0,
|
||||
"description": "How many tokens (for each position) to return log probabilities for."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false
|
||||
|
@ -3087,16 +3118,19 @@
|
|||
"type": "object",
|
||||
"properties": {
|
||||
"content": {
|
||||
"type": "string"
|
||||
"type": "string",
|
||||
"description": "The generated completion text"
|
||||
},
|
||||
"stop_reason": {
|
||||
"$ref": "#/components/schemas/StopReason"
|
||||
"$ref": "#/components/schemas/StopReason",
|
||||
"description": "Reason why generation stopped"
|
||||
},
|
||||
"logprobs": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/TokenLogProbs"
|
||||
}
|
||||
},
|
||||
"description": "Optional log probabilities for generated tokens"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -3104,7 +3138,7 @@
|
|||
"content",
|
||||
"stop_reason"
|
||||
],
|
||||
"title": "Completion response."
|
||||
"title": "Response from a completion request."
|
||||
},
|
||||
"CancelTrainingJobRequest": {
|
||||
"type": "object",
|
||||
|
@ -3123,7 +3157,7 @@
|
|||
"properties": {
|
||||
"model_id": {
|
||||
"type": "string",
|
||||
"description": "The identifier of the model to use"
|
||||
"description": "The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint."
|
||||
},
|
||||
"messages": {
|
||||
"type": "array",
|
||||
|
@ -3149,11 +3183,11 @@
|
|||
},
|
||||
"tool_prompt_format": {
|
||||
"$ref": "#/components/schemas/ToolPromptFormat",
|
||||
"description": "(Optional) Specifies how tool definitions are formatted when presenting to the model"
|
||||
"description": "(Optional) Instructs the model how to format tool calls. By default, Llama Stack will attempt to use a format that is best adapted to the model. - `ToolPromptFormat.json`: The tool calls are formatted as a JSON object. - `ToolPromptFormat.function_tag`: The tool calls are enclosed in a <function=function_name> tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python syntax -- a list of function calls."
|
||||
},
|
||||
"response_format": {
|
||||
"$ref": "#/components/schemas/ResponseFormat",
|
||||
"description": "(Optional) Grammar specification for guided (structured) decoding"
|
||||
"description": "(Optional) Grammar specification for guided (structured) decoding. There are two options: - `ResponseFormat.json_schema`: The grammar is a JSON schema. Most providers support this format. - `ResponseFormat.grammar`: The grammar is a BNF grammar. This format is more flexible, but not all providers support it."
|
||||
},
|
||||
"stream": {
|
||||
"type": "boolean",
|
||||
|
@ -3164,7 +3198,8 @@
|
|||
"properties": {
|
||||
"top_k": {
|
||||
"type": "integer",
|
||||
"default": 0
|
||||
"default": 0,
|
||||
"description": "How many tokens (for each position) to return log probabilities for."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -3181,19 +3216,23 @@
|
|||
"type": "object",
|
||||
"properties": {
|
||||
"event_type": {
|
||||
"$ref": "#/components/schemas/ChatCompletionResponseEventType"
|
||||
"$ref": "#/components/schemas/ChatCompletionResponseEventType",
|
||||
"description": "Type of the event"
|
||||
},
|
||||
"delta": {
|
||||
"$ref": "#/components/schemas/ContentDelta"
|
||||
"$ref": "#/components/schemas/ContentDelta",
|
||||
"description": "Content generated since last event. This can be one or more tokens, or a tool call."
|
||||
},
|
||||
"logprobs": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/TokenLogProbs"
|
||||
}
|
||||
},
|
||||
"description": "Optional log probabilities for generated tokens"
|
||||
},
|
||||
"stop_reason": {
|
||||
"$ref": "#/components/schemas/StopReason"
|
||||
"$ref": "#/components/schemas/StopReason",
|
||||
"description": "Optional reason why generation stopped, if complete"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -3201,7 +3240,7 @@
|
|||
"event_type",
|
||||
"delta"
|
||||
],
|
||||
"title": "Chat completion response event."
|
||||
"title": "An event during chat completion generation."
|
||||
},
|
||||
"ChatCompletionResponseEventType": {
|
||||
"type": "string",
|
||||
|
@ -3209,19 +3248,22 @@
|
|||
"start",
|
||||
"complete",
|
||||
"progress"
|
||||
]
|
||||
],
|
||||
"title": "Types of events that can occur during chat completion."
|
||||
},
|
||||
"ChatCompletionResponseStreamChunk": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"event": {
|
||||
"$ref": "#/components/schemas/ChatCompletionResponseEvent"
|
||||
"$ref": "#/components/schemas/ChatCompletionResponseEvent",
|
||||
"description": "The event containing the new content"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"event"
|
||||
]
|
||||
],
|
||||
"title": "A chunk of a streamed chat completion response."
|
||||
},
|
||||
"ContentDelta": {
|
||||
"oneOf": [
|
||||
|
@ -3324,7 +3366,7 @@
|
|||
"properties": {
|
||||
"model_id": {
|
||||
"type": "string",
|
||||
"description": "The identifier of the model to use"
|
||||
"description": "The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint."
|
||||
},
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent",
|
||||
|
@ -3347,7 +3389,8 @@
|
|||
"properties": {
|
||||
"top_k": {
|
||||
"type": "integer",
|
||||
"default": 0
|
||||
"default": 0,
|
||||
"description": "How many tokens (for each position) to return log probabilities for."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -3364,23 +3407,26 @@
|
|||
"type": "object",
|
||||
"properties": {
|
||||
"delta": {
|
||||
"type": "string"
|
||||
"type": "string",
|
||||
"description": "New content generated since last chunk. This can be one or more tokens."
|
||||
},
|
||||
"stop_reason": {
|
||||
"$ref": "#/components/schemas/StopReason"
|
||||
"$ref": "#/components/schemas/StopReason",
|
||||
"description": "Optional reason why generation stopped, if complete"
|
||||
},
|
||||
"logprobs": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/TokenLogProbs"
|
||||
}
|
||||
},
|
||||
"description": "Optional log probabilities for generated tokens"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"delta"
|
||||
],
|
||||
"title": "streamed completion response."
|
||||
"title": "A chunk of a streamed completion response."
|
||||
},
|
||||
"AgentConfig": {
|
||||
"type": "object",
|
||||
|
@ -4264,14 +4310,14 @@
|
|||
"properties": {
|
||||
"model_id": {
|
||||
"type": "string",
|
||||
"description": "The identifier of the model to use"
|
||||
"description": "The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint."
|
||||
},
|
||||
"contents": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
},
|
||||
"description": "List of contents to generate embeddings for. Note that content can be multimodal."
|
||||
"description": "List of contents to generate embeddings for. Note that content can be multimodal. The behavior depends on the model and provider. Some models may only support text."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -4290,13 +4336,15 @@
|
|||
"items": {
|
||||
"type": "number"
|
||||
}
|
||||
}
|
||||
},
|
||||
"description": "List of embedding vectors, one per input content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"embeddings"
|
||||
]
|
||||
],
|
||||
"title": "Response containing generated embeddings."
|
||||
},
|
||||
"AgentCandidate": {
|
||||
"type": "object",
|
||||
|
@ -7887,19 +7935,19 @@
|
|||
},
|
||||
{
|
||||
"name": "ChatCompletionResponse",
|
||||
"description": ""
|
||||
"description": "Response from a chat completion request."
|
||||
},
|
||||
{
|
||||
"name": "ChatCompletionResponseEvent",
|
||||
"description": "Chat completion response event."
|
||||
"description": "An event during chat completion generation."
|
||||
},
|
||||
{
|
||||
"name": "ChatCompletionResponseEventType",
|
||||
"description": ""
|
||||
"description": "Types of events that can occur during chat completion."
|
||||
},
|
||||
{
|
||||
"name": "ChatCompletionResponseStreamChunk",
|
||||
"description": ""
|
||||
"description": "A chunk of a streamed chat completion response."
|
||||
},
|
||||
{
|
||||
"name": "Checkpoint",
|
||||
|
@ -7911,7 +7959,7 @@
|
|||
},
|
||||
{
|
||||
"name": "CompletionMessage",
|
||||
"description": ""
|
||||
"description": "A message containing the model's (assistant) response in a chat conversation."
|
||||
},
|
||||
{
|
||||
"name": "CompletionRequest",
|
||||
|
@ -7919,11 +7967,11 @@
|
|||
},
|
||||
{
|
||||
"name": "CompletionResponse",
|
||||
"description": "Completion response."
|
||||
"description": "Response from a completion request."
|
||||
},
|
||||
{
|
||||
"name": "CompletionResponseStreamChunk",
|
||||
"description": "streamed completion response."
|
||||
"description": "A chunk of a streamed completion response."
|
||||
},
|
||||
{
|
||||
"name": "ContentDelta",
|
||||
|
@ -7977,7 +8025,7 @@
|
|||
},
|
||||
{
|
||||
"name": "EmbeddingsResponse",
|
||||
"description": ""
|
||||
"description": "Response containing generated embeddings."
|
||||
},
|
||||
{
|
||||
"name": "Eval"
|
||||
|
@ -8011,7 +8059,7 @@
|
|||
},
|
||||
{
|
||||
"name": "GrammarResponseFormat",
|
||||
"description": ""
|
||||
"description": "Configuration for grammar-guided response generation."
|
||||
},
|
||||
{
|
||||
"name": "GreedySamplingStrategy",
|
||||
|
@ -8069,7 +8117,7 @@
|
|||
},
|
||||
{
|
||||
"name": "JsonSchemaResponseFormat",
|
||||
"description": ""
|
||||
"description": "Configuration for JSON schema-guided response generation."
|
||||
},
|
||||
{
|
||||
"name": "JsonType",
|
||||
|
@ -8434,7 +8482,7 @@
|
|||
},
|
||||
{
|
||||
"name": "SystemMessage",
|
||||
"description": ""
|
||||
"description": "A system message providing instructions or context to the model."
|
||||
},
|
||||
{
|
||||
"name": "Telemetry"
|
||||
|
@ -8449,7 +8497,7 @@
|
|||
},
|
||||
{
|
||||
"name": "TokenLogProbs",
|
||||
"description": ""
|
||||
"description": "Log probabilities for generated tokens."
|
||||
},
|
||||
{
|
||||
"name": "Tool",
|
||||
|
@ -8469,7 +8517,7 @@
|
|||
},
|
||||
{
|
||||
"name": "ToolChoice",
|
||||
"description": ""
|
||||
"description": "Whether tool use is required or automatic. This is a hint to the model which may not be followed. It depends on the Instruction Following capabilities of the model."
|
||||
},
|
||||
{
|
||||
"name": "ToolDef",
|
||||
|
@ -8516,7 +8564,7 @@
|
|||
},
|
||||
{
|
||||
"name": "ToolResponseMessage",
|
||||
"description": ""
|
||||
"description": "A message representing the result of a tool invocation."
|
||||
},
|
||||
{
|
||||
"name": "ToolRuntime"
|
||||
|
@ -8555,7 +8603,7 @@
|
|||
},
|
||||
{
|
||||
"name": "UserMessage",
|
||||
"description": ""
|
||||
"description": "A message from the user in a chat conversation."
|
||||
},
|
||||
{
|
||||
"name": "VectorDB",
|
||||
|
|
|
@ -291,7 +291,8 @@ paths:
|
|||
'200':
|
||||
description: >-
|
||||
An array of embeddings, one for each content. Each embedding is a list
|
||||
of floats.
|
||||
of floats. The dimensionality of the embedding is model-specific; you
|
||||
can check model metadata using /models/{model_id}
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
|
@ -1396,20 +1397,34 @@ components:
|
|||
type: string
|
||||
const: assistant
|
||||
default: assistant
|
||||
description: >-
|
||||
Must be "assistant" to identify this as the model's response
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: The content of the model's response
|
||||
stop_reason:
|
||||
$ref: '#/components/schemas/StopReason'
|
||||
description: >-
|
||||
Reason why the model stopped generating. Options are: - `StopReason.end_of_turn`:
|
||||
The model finished generating the entire response. - `StopReason.end_of_message`:
|
||||
The model finished generating but generated a partial response -- usually,
|
||||
a tool call. The user may call the tool and continue the conversation
|
||||
with the tool's response. - `StopReason.out_of_tokens`: The model ran
|
||||
out of token budget.
|
||||
tool_calls:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/ToolCall'
|
||||
description: >-
|
||||
List of tool calls. Each tool call is a ToolCall object.
|
||||
additionalProperties: false
|
||||
required:
|
||||
- role
|
||||
- content
|
||||
- stop_reason
|
||||
- tool_calls
|
||||
title: >-
|
||||
A message containing the model's (assistant) response in a chat conversation.
|
||||
GrammarResponseFormat:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1417,6 +1432,8 @@ components:
|
|||
type: string
|
||||
const: grammar
|
||||
default: grammar
|
||||
description: >-
|
||||
Must be "grammar" to identify this format type
|
||||
bnf:
|
||||
type: object
|
||||
additionalProperties:
|
||||
|
@ -1427,10 +1444,14 @@ components:
|
|||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
The BNF grammar specification the response should conform to
|
||||
additionalProperties: false
|
||||
required:
|
||||
- type
|
||||
- bnf
|
||||
title: >-
|
||||
Configuration for grammar-guided response generation.
|
||||
GreedySamplingStrategy:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1484,6 +1505,8 @@ components:
|
|||
type: string
|
||||
const: json_schema
|
||||
default: json_schema
|
||||
description: >-
|
||||
Must be "json_schema" to identify this format type
|
||||
json_schema:
|
||||
type: object
|
||||
additionalProperties:
|
||||
|
@ -1494,10 +1517,15 @@ components:
|
|||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
The JSON schema the response should conform to. In a Python SDK, this
|
||||
is often a `pydantic` model.
|
||||
additionalProperties: false
|
||||
required:
|
||||
- type
|
||||
- json_schema
|
||||
title: >-
|
||||
Configuration for JSON schema-guided response generation.
|
||||
Message:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/UserMessage'
|
||||
|
@ -1556,12 +1584,20 @@ components:
|
|||
type: string
|
||||
const: system
|
||||
default: system
|
||||
description: >-
|
||||
Must be "system" to identify this as a system message
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: >-
|
||||
The content of the "system prompt". If multiple system messages are provided,
|
||||
they are concatenated. The underlying Llama Stack code may also add other
|
||||
system messages (for example, for formatting tool definitions).
|
||||
additionalProperties: false
|
||||
required:
|
||||
- role
|
||||
- content
|
||||
title: >-
|
||||
A system message providing instructions or context to the model.
|
||||
TextContentItem:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1619,6 +1655,10 @@ components:
|
|||
enum:
|
||||
- auto
|
||||
- required
|
||||
title: >-
|
||||
Whether tool use is required or automatic. This is a hint to the model which
|
||||
may not be followed. It depends on the Instruction Following capabilities
|
||||
of the model.
|
||||
ToolDefinition:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1691,20 +1731,28 @@ components:
|
|||
type: string
|
||||
const: tool
|
||||
default: tool
|
||||
description: >-
|
||||
Must be "tool" to identify this as a tool response
|
||||
call_id:
|
||||
type: string
|
||||
description: >-
|
||||
Unique identifier for the tool call this response is for
|
||||
tool_name:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/BuiltinTool'
|
||||
- type: string
|
||||
description: Name of the tool that was called
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: The response content from the tool
|
||||
additionalProperties: false
|
||||
required:
|
||||
- role
|
||||
- call_id
|
||||
- tool_name
|
||||
- content
|
||||
title: >-
|
||||
A message representing the result of a tool invocation.
|
||||
TopKSamplingStrategy:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1748,14 +1796,23 @@ components:
|
|||
type: string
|
||||
const: user
|
||||
default: user
|
||||
description: >-
|
||||
Must be "user" to identify this as a user message
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: >-
|
||||
The content of the message, which can include text and other media
|
||||
context:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: >-
|
||||
(Optional) This field is used internally by Llama Stack to pass RAG context.
|
||||
This field may be removed in the API in the future.
|
||||
additionalProperties: false
|
||||
required:
|
||||
- role
|
||||
- content
|
||||
title: >-
|
||||
A message from the user in a chat conversation.
|
||||
BatchChatCompletionRequest:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1785,6 +1842,8 @@ components:
|
|||
top_k:
|
||||
type: integer
|
||||
default: 0
|
||||
description: >-
|
||||
How many tokens (for each position) to return log probabilities for.
|
||||
additionalProperties: false
|
||||
additionalProperties: false
|
||||
required:
|
||||
|
@ -1805,13 +1864,17 @@ components:
|
|||
properties:
|
||||
completion_message:
|
||||
$ref: '#/components/schemas/CompletionMessage'
|
||||
description: The complete response message
|
||||
logprobs:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TokenLogProbs'
|
||||
description: >-
|
||||
Optional log probabilities for generated tokens
|
||||
additionalProperties: false
|
||||
required:
|
||||
- completion_message
|
||||
title: Response from a chat completion request.
|
||||
TokenLogProbs:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1819,9 +1882,12 @@ components:
|
|||
type: object
|
||||
additionalProperties:
|
||||
type: number
|
||||
description: >-
|
||||
Dictionary mapping tokens to their log probabilities
|
||||
additionalProperties: false
|
||||
required:
|
||||
- logprobs_by_token
|
||||
title: Log probabilities for generated tokens.
|
||||
BatchCompletionRequest:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1841,6 +1907,8 @@ components:
|
|||
top_k:
|
||||
type: integer
|
||||
default: 0
|
||||
description: >-
|
||||
How many tokens (for each position) to return log probabilities for.
|
||||
additionalProperties: false
|
||||
additionalProperties: false
|
||||
required:
|
||||
|
@ -1861,17 +1929,21 @@ components:
|
|||
properties:
|
||||
content:
|
||||
type: string
|
||||
description: The generated completion text
|
||||
stop_reason:
|
||||
$ref: '#/components/schemas/StopReason'
|
||||
description: Reason why generation stopped
|
||||
logprobs:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TokenLogProbs'
|
||||
description: >-
|
||||
Optional log probabilities for generated tokens
|
||||
additionalProperties: false
|
||||
required:
|
||||
- content
|
||||
- stop_reason
|
||||
title: Completion response.
|
||||
title: Response from a completion request.
|
||||
CancelTrainingJobRequest:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -1885,7 +1957,9 @@ components:
|
|||
properties:
|
||||
model_id:
|
||||
type: string
|
||||
description: The identifier of the model to use
|
||||
description: >-
|
||||
The identifier of the model to use. The model must be registered with
|
||||
Llama Stack and available via the /models endpoint.
|
||||
messages:
|
||||
type: array
|
||||
items:
|
||||
|
@ -1908,12 +1982,20 @@ components:
|
|||
tool_prompt_format:
|
||||
$ref: '#/components/schemas/ToolPromptFormat'
|
||||
description: >-
|
||||
(Optional) Specifies how tool definitions are formatted when presenting
|
||||
to the model
|
||||
(Optional) Instructs the model how to format tool calls. By default, Llama
|
||||
Stack will attempt to use a format that is best adapted to the model.
|
||||
- `ToolPromptFormat.json`: The tool calls are formatted as a JSON object.
|
||||
- `ToolPromptFormat.function_tag`: The tool calls are enclosed in a <function=function_name>
|
||||
tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python
|
||||
syntax -- a list of function calls.
|
||||
response_format:
|
||||
$ref: '#/components/schemas/ResponseFormat'
|
||||
description: >-
|
||||
(Optional) Grammar specification for guided (structured) decoding
|
||||
(Optional) Grammar specification for guided (structured) decoding. There
|
||||
are two options: - `ResponseFormat.json_schema`: The grammar is a JSON
|
||||
schema. Most providers support this format. - `ResponseFormat.grammar`:
|
||||
The grammar is a BNF grammar. This format is more flexible, but not all
|
||||
providers support it.
|
||||
stream:
|
||||
type: boolean
|
||||
description: >-
|
||||
|
@ -1925,6 +2007,8 @@ components:
|
|||
top_k:
|
||||
type: integer
|
||||
default: 0
|
||||
description: >-
|
||||
How many tokens (for each position) to return log probabilities for.
|
||||
additionalProperties: false
|
||||
description: >-
|
||||
(Optional) If specified, log probabilities for each token position will
|
||||
|
@ -1938,33 +2022,47 @@ components:
|
|||
properties:
|
||||
event_type:
|
||||
$ref: '#/components/schemas/ChatCompletionResponseEventType'
|
||||
description: Type of the event
|
||||
delta:
|
||||
$ref: '#/components/schemas/ContentDelta'
|
||||
description: >-
|
||||
Content generated since last event. This can be one or more tokens, or
|
||||
a tool call.
|
||||
logprobs:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TokenLogProbs'
|
||||
description: >-
|
||||
Optional log probabilities for generated tokens
|
||||
stop_reason:
|
||||
$ref: '#/components/schemas/StopReason'
|
||||
description: >-
|
||||
Optional reason why generation stopped, if complete
|
||||
additionalProperties: false
|
||||
required:
|
||||
- event_type
|
||||
- delta
|
||||
title: Chat completion response event.
|
||||
title: >-
|
||||
An event during chat completion generation.
|
||||
ChatCompletionResponseEventType:
|
||||
type: string
|
||||
enum:
|
||||
- start
|
||||
- complete
|
||||
- progress
|
||||
title: >-
|
||||
Types of events that can occur during chat completion.
|
||||
ChatCompletionResponseStreamChunk:
|
||||
type: object
|
||||
properties:
|
||||
event:
|
||||
$ref: '#/components/schemas/ChatCompletionResponseEvent'
|
||||
description: The event containing the new content
|
||||
additionalProperties: false
|
||||
required:
|
||||
- event
|
||||
title: >-
|
||||
A chunk of a streamed chat completion response.
|
||||
ContentDelta:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/TextDelta'
|
||||
|
@ -2033,7 +2131,9 @@ components:
|
|||
properties:
|
||||
model_id:
|
||||
type: string
|
||||
description: The identifier of the model to use
|
||||
description: >-
|
||||
The identifier of the model to use. The model must be registered with
|
||||
Llama Stack and available via the /models endpoint.
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: The content to generate a completion for
|
||||
|
@ -2056,6 +2156,8 @@ components:
|
|||
top_k:
|
||||
type: integer
|
||||
default: 0
|
||||
description: >-
|
||||
How many tokens (for each position) to return log probabilities for.
|
||||
additionalProperties: false
|
||||
description: >-
|
||||
(Optional) If specified, log probabilities for each token position will
|
||||
|
@ -2069,16 +2171,23 @@ components:
|
|||
properties:
|
||||
delta:
|
||||
type: string
|
||||
description: >-
|
||||
New content generated since last chunk. This can be one or more tokens.
|
||||
stop_reason:
|
||||
$ref: '#/components/schemas/StopReason'
|
||||
description: >-
|
||||
Optional reason why generation stopped, if complete
|
||||
logprobs:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/TokenLogProbs'
|
||||
description: >-
|
||||
Optional log probabilities for generated tokens
|
||||
additionalProperties: false
|
||||
required:
|
||||
- delta
|
||||
title: streamed completion response.
|
||||
title: >-
|
||||
A chunk of a streamed completion response.
|
||||
AgentConfig:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -2633,14 +2742,17 @@ components:
|
|||
properties:
|
||||
model_id:
|
||||
type: string
|
||||
description: The identifier of the model to use
|
||||
description: >-
|
||||
The identifier of the model to use. The model must be an embedding model
|
||||
registered with Llama Stack and available via the /models endpoint.
|
||||
contents:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: >-
|
||||
List of contents to generate embeddings for. Note that content can be
|
||||
multimodal.
|
||||
multimodal. The behavior depends on the model and provider. Some models
|
||||
may only support text.
|
||||
additionalProperties: false
|
||||
required:
|
||||
- model_id
|
||||
|
@ -2654,9 +2766,15 @@ components:
|
|||
type: array
|
||||
items:
|
||||
type: number
|
||||
description: >-
|
||||
List of embedding vectors, one per input content. Each embedding is a
|
||||
list of floats. The dimensionality of the embedding is model-specific;
|
||||
you can check model metadata using /models/{model_id}
|
||||
additionalProperties: false
|
||||
required:
|
||||
- embeddings
|
||||
title: >-
|
||||
Response containing generated embeddings.
|
||||
AgentCandidate:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -4833,25 +4951,30 @@ tags:
|
|||
- name: ChatCompletionRequest
|
||||
description: ''
|
||||
- name: ChatCompletionResponse
|
||||
description: ''
|
||||
description: Response from a chat completion request.
|
||||
- name: ChatCompletionResponseEvent
|
||||
description: Chat completion response event.
|
||||
description: >-
|
||||
An event during chat completion generation.
|
||||
- name: ChatCompletionResponseEventType
|
||||
description: ''
|
||||
description: >-
|
||||
Types of events that can occur during chat completion.
|
||||
- name: ChatCompletionResponseStreamChunk
|
||||
description: ''
|
||||
description: >-
|
||||
A chunk of a streamed chat completion response.
|
||||
- name: Checkpoint
|
||||
description: Checkpoint created during training runs
|
||||
- name: CompletionInputType
|
||||
description: ''
|
||||
- name: CompletionMessage
|
||||
description: ''
|
||||
description: >-
|
||||
A message containing the model's (assistant) response in a chat conversation.
|
||||
- name: CompletionRequest
|
||||
description: ''
|
||||
- name: CompletionResponse
|
||||
description: Completion response.
|
||||
description: Response from a completion request.
|
||||
- name: CompletionResponseStreamChunk
|
||||
description: streamed completion response.
|
||||
description: >-
|
||||
A chunk of a streamed completion response.
|
||||
- name: ContentDelta
|
||||
description: ''
|
||||
- name: CreateAgentRequest
|
||||
|
@ -4877,7 +5000,8 @@ tags:
|
|||
- name: EmbeddingsRequest
|
||||
description: ''
|
||||
- name: EmbeddingsResponse
|
||||
description: ''
|
||||
description: >-
|
||||
Response containing generated embeddings.
|
||||
- name: Eval
|
||||
- name: EvalCandidate
|
||||
description: ''
|
||||
|
@ -4893,7 +5017,8 @@ tags:
|
|||
- name: Event
|
||||
description: ''
|
||||
- name: GrammarResponseFormat
|
||||
description: ''
|
||||
description: >-
|
||||
Configuration for grammar-guided response generation.
|
||||
- name: GreedySamplingStrategy
|
||||
description: ''
|
||||
- name: HealthInfo
|
||||
|
@ -4921,7 +5046,8 @@ tags:
|
|||
- name: JobStatus
|
||||
description: ''
|
||||
- name: JsonSchemaResponseFormat
|
||||
description: ''
|
||||
description: >-
|
||||
Configuration for JSON schema-guided response generation.
|
||||
- name: JsonType
|
||||
description: ''
|
||||
- name: LLMAsJudgeScoringFnParams
|
||||
|
@ -5104,14 +5230,15 @@ tags:
|
|||
Response from the synthetic data generation. Batch of (prompt, response, score)
|
||||
tuples that pass the threshold.
|
||||
- name: SystemMessage
|
||||
description: ''
|
||||
description: >-
|
||||
A system message providing instructions or context to the model.
|
||||
- name: Telemetry
|
||||
- name: TextContentItem
|
||||
description: ''
|
||||
- name: TextDelta
|
||||
description: ''
|
||||
- name: TokenLogProbs
|
||||
description: ''
|
||||
description: Log probabilities for generated tokens.
|
||||
- name: Tool
|
||||
description: ''
|
||||
- name: ToolCall
|
||||
|
@ -5121,7 +5248,10 @@ tags:
|
|||
- name: ToolCallParseStatus
|
||||
description: ''
|
||||
- name: ToolChoice
|
||||
description: ''
|
||||
description: >-
|
||||
Whether tool use is required or automatic. This is a hint to the model which
|
||||
may not be followed. It depends on the Instruction Following capabilities of
|
||||
the model.
|
||||
- name: ToolDef
|
||||
description: ''
|
||||
- name: ToolDefinition
|
||||
|
@ -5166,7 +5296,8 @@ tags:
|
|||
- name: ToolResponse
|
||||
description: ''
|
||||
- name: ToolResponseMessage
|
||||
description: ''
|
||||
description: >-
|
||||
A message representing the result of a tool invocation.
|
||||
- name: ToolRuntime
|
||||
- name: TopKSamplingStrategy
|
||||
description: ''
|
||||
|
@ -5186,7 +5317,8 @@ tags:
|
|||
- name: UnstructuredLogEvent
|
||||
description: ''
|
||||
- name: UserMessage
|
||||
description: ''
|
||||
description: >-
|
||||
A message from the user in a chat conversation.
|
||||
- name: VectorDB
|
||||
description: ''
|
||||
- name: VectorDBs
|
||||
|
|
|
@ -35,11 +35,23 @@ from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
|||
|
||||
|
||||
class LogProbConfig(BaseModel):
|
||||
"""
|
||||
|
||||
:param top_k: How many tokens (for each position) to return log probabilities for.
|
||||
"""
|
||||
|
||||
top_k: Optional[int] = 0
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QuantizationType(Enum):
|
||||
"""Type of model quantization to run inference with.
|
||||
|
||||
:cvar bf16: BFloat16 typically this means _no_ quantization
|
||||
:cvar fp8: 8-bit floating point quantization
|
||||
:cvar int4: 4-bit integer quantization
|
||||
"""
|
||||
|
||||
bf16 = "bf16"
|
||||
fp8 = "fp8"
|
||||
int4 = "int4"
|
||||
|
@ -57,6 +69,12 @@ class Bf16QuantizationConfig(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class Int4QuantizationConfig(BaseModel):
|
||||
"""Configuration for 4-bit integer quantization.
|
||||
|
||||
:param type: Must be "int4" to identify this quantization type
|
||||
:param scheme: Quantization scheme to use. Defaults to "int4_weight_int8_dynamic_activation"
|
||||
"""
|
||||
|
||||
type: Literal["int4"] = "int4"
|
||||
scheme: Optional[str] = "int4_weight_int8_dynamic_activation"
|
||||
|
||||
|
@ -69,6 +87,13 @@ QuantizationConfig = Annotated[
|
|||
|
||||
@json_schema_type
|
||||
class UserMessage(BaseModel):
|
||||
"""A message from the user in a chat conversation.
|
||||
|
||||
:param role: Must be "user" to identify this as a user message
|
||||
:param content: The content of the message, which can include text and other media
|
||||
:param context: (Optional) This field is used internally by Llama Stack to pass RAG context. This field may be removed in the API in the future.
|
||||
"""
|
||||
|
||||
role: Literal["user"] = "user"
|
||||
content: InterleavedContent
|
||||
context: Optional[InterleavedContent] = None
|
||||
|
@ -76,15 +101,27 @@ class UserMessage(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class SystemMessage(BaseModel):
|
||||
"""A system message providing instructions or context to the model.
|
||||
|
||||
:param role: Must be "system" to identify this as a system message
|
||||
:param content: The content of the "system prompt". If multiple system messages are provided, they are concatenated. The underlying Llama Stack code may also add other system messages (for example, for formatting tool definitions).
|
||||
"""
|
||||
|
||||
role: Literal["system"] = "system"
|
||||
content: InterleavedContent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolResponseMessage(BaseModel):
|
||||
"""A message representing the result of a tool invocation.
|
||||
|
||||
:param role: Must be "tool" to identify this as a tool response
|
||||
:param call_id: Unique identifier for the tool call this response is for
|
||||
:param tool_name: Name of the tool that was called
|
||||
:param content: The response content from the tool
|
||||
"""
|
||||
|
||||
role: Literal["tool"] = "tool"
|
||||
# it was nice to re-use the ToolResponse type, but having all messages
|
||||
# have a `content` type makes things nicer too
|
||||
call_id: str
|
||||
tool_name: Union[BuiltinTool, str]
|
||||
content: InterleavedContent
|
||||
|
@ -92,6 +129,17 @@ class ToolResponseMessage(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class CompletionMessage(BaseModel):
|
||||
"""A message containing the model's (assistant) response in a chat conversation.
|
||||
|
||||
:param role: Must be "assistant" to identify this as the model's response
|
||||
:param content: The content of the model's response
|
||||
:param stop_reason: Reason why the model stopped generating. Options are:
|
||||
- `StopReason.end_of_turn`: The model finished generating the entire response.
|
||||
- `StopReason.end_of_message`: The model finished generating but generated a partial response -- usually, a tool call. The user may call the tool and continue the conversation with the tool's response.
|
||||
- `StopReason.out_of_tokens`: The model ran out of token budget.
|
||||
:param tool_calls: List of tool calls. Each tool call is a ToolCall object.
|
||||
"""
|
||||
|
||||
role: Literal["assistant"] = "assistant"
|
||||
content: InterleavedContent
|
||||
stop_reason: StopReason
|
||||
|
@ -131,17 +179,35 @@ class ToolResponse(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class ToolChoice(Enum):
|
||||
"""Whether tool use is required or automatic. This is a hint to the model which may not be followed. It depends on the Instruction Following capabilities of the model.
|
||||
|
||||
:cvar auto: The model may use tools if it determines that is appropriate.
|
||||
:cvar required: The model must use tools.
|
||||
"""
|
||||
|
||||
auto = "auto"
|
||||
required = "required"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TokenLogProbs(BaseModel):
|
||||
"""Log probabilities for generated tokens.
|
||||
|
||||
:param logprobs_by_token: Dictionary mapping tokens to their log probabilities
|
||||
"""
|
||||
|
||||
logprobs_by_token: Dict[str, float]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseEventType(Enum):
|
||||
"""Types of events that can occur during chat completion.
|
||||
|
||||
:cvar start: Inference has started
|
||||
:cvar complete: Inference is complete and a full response is available
|
||||
:cvar progress: Inference is in progress and a partial response is available
|
||||
"""
|
||||
|
||||
start = "start"
|
||||
complete = "complete"
|
||||
progress = "progress"
|
||||
|
@ -149,7 +215,13 @@ class ChatCompletionResponseEventType(Enum):
|
|||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseEvent(BaseModel):
|
||||
"""Chat completion response event."""
|
||||
"""An event during chat completion generation.
|
||||
|
||||
:param event_type: Type of the event
|
||||
:param delta: Content generated since last event. This can be one or more tokens, or a tool call.
|
||||
:param logprobs: Optional log probabilities for generated tokens
|
||||
:param stop_reason: Optional reason why generation stopped, if complete
|
||||
"""
|
||||
|
||||
event_type: ChatCompletionResponseEventType
|
||||
delta: ContentDelta
|
||||
|
@ -159,12 +231,24 @@ class ChatCompletionResponseEvent(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class ResponseFormatType(Enum):
|
||||
"""Types of formats for structured (guided) decoding.
|
||||
|
||||
:cvar json_schema: Response should conform to a JSON schema. In a Python SDK, this is often a `pydantic` model.
|
||||
:cvar grammar: Response should conform to a BNF grammar
|
||||
"""
|
||||
|
||||
json_schema = "json_schema"
|
||||
grammar = "grammar"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class JsonSchemaResponseFormat(BaseModel):
|
||||
"""Configuration for JSON schema-guided response generation.
|
||||
|
||||
:param type: Must be "json_schema" to identify this format type
|
||||
:param json_schema: The JSON schema the response should conform to. In a Python SDK, this is often a `pydantic` model.
|
||||
"""
|
||||
|
||||
type: Literal[ResponseFormatType.json_schema.value] = (
|
||||
ResponseFormatType.json_schema.value
|
||||
)
|
||||
|
@ -173,6 +257,12 @@ class JsonSchemaResponseFormat(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class GrammarResponseFormat(BaseModel):
|
||||
"""Configuration for grammar-guided response generation.
|
||||
|
||||
:param type: Must be "grammar" to identify this format type
|
||||
:param bnf: The BNF grammar specification the response should conform to
|
||||
"""
|
||||
|
||||
type: Literal[ResponseFormatType.grammar.value] = ResponseFormatType.grammar.value
|
||||
bnf: Dict[str, Any]
|
||||
|
||||
|
@ -186,19 +276,24 @@ ResponseFormat = register_schema(
|
|||
)
|
||||
|
||||
|
||||
# This is an internally used class
|
||||
class CompletionRequest(BaseModel):
|
||||
model: str
|
||||
content: InterleavedContent
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
response_format: Optional[ResponseFormat] = None
|
||||
|
||||
stream: Optional[bool] = False
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionResponse(BaseModel):
|
||||
"""Completion response."""
|
||||
"""Response from a completion request.
|
||||
|
||||
:param content: The generated completion text
|
||||
:param stop_reason: Reason why generation stopped
|
||||
:param logprobs: Optional log probabilities for generated tokens
|
||||
"""
|
||||
|
||||
content: str
|
||||
stop_reason: StopReason
|
||||
|
@ -207,41 +302,60 @@ class CompletionResponse(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class CompletionResponseStreamChunk(BaseModel):
|
||||
"""streamed completion response."""
|
||||
"""A chunk of a streamed completion response.
|
||||
|
||||
:param delta: New content generated since last chunk. This can be one or more tokens.
|
||||
:param stop_reason: Optional reason why generation stopped, if complete
|
||||
:param logprobs: Optional log probabilities for generated tokens
|
||||
"""
|
||||
|
||||
delta: str
|
||||
stop_reason: Optional[StopReason] = None
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
# This is an internally used class
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[Message]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
|
||||
# zero-shot tool definitions as input to the model
|
||||
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
||||
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = Field(default=None)
|
||||
response_format: Optional[ResponseFormat] = None
|
||||
|
||||
stream: Optional[bool] = False
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseStreamChunk(BaseModel):
|
||||
"""A chunk of a streamed chat completion response.
|
||||
|
||||
:param event: The event containing the new content
|
||||
"""
|
||||
|
||||
event: ChatCompletionResponseEvent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
"""Response from a chat completion request.
|
||||
|
||||
:param completion_message: The complete response message
|
||||
:param logprobs: Optional log probabilities for generated tokens
|
||||
"""
|
||||
|
||||
completion_message: CompletionMessage
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EmbeddingsResponse(BaseModel):
|
||||
"""Response containing generated embeddings.
|
||||
|
||||
:param embeddings: List of embedding vectors, one per input content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}
|
||||
"""
|
||||
|
||||
embeddings: List[List[float]]
|
||||
|
||||
|
||||
|
@ -266,7 +380,7 @@ class Inference(Protocol):
|
|||
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
|
||||
"""Generate a completion for the given content using the specified model.
|
||||
|
||||
:param model_id: The identifier of the model to use
|
||||
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param content: The content to generate a completion for
|
||||
:param sampling_params: (Optional) Parameters to control the sampling strategy
|
||||
:param response_format: (Optional) Grammar specification for guided (structured) decoding
|
||||
|
@ -294,13 +408,18 @@ class Inference(Protocol):
|
|||
]:
|
||||
"""Generate a chat completion for the given messages using the specified model.
|
||||
|
||||
:param model_id: The identifier of the model to use
|
||||
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param messages: List of messages in the conversation
|
||||
:param sampling_params: Parameters to control the sampling strategy
|
||||
:param tools: (Optional) List of tool definitions available to the model
|
||||
:param tool_choice: (Optional) Whether tool use is required or automatic. Defaults to ToolChoice.auto.
|
||||
:param tool_prompt_format: (Optional) Specifies how tool definitions are formatted when presenting to the model
|
||||
:param response_format: (Optional) Grammar specification for guided (structured) decoding
|
||||
:param tool_prompt_format: (Optional) Instructs the model how to format tool calls. By default, Llama Stack will attempt to use a format that is best adapted to the model.
|
||||
- `ToolPromptFormat.json`: The tool calls are formatted as a JSON object.
|
||||
- `ToolPromptFormat.function_tag`: The tool calls are enclosed in a <function=function_name> tag.
|
||||
- `ToolPromptFormat.python_list`: The tool calls are output as Python syntax -- a list of function calls.
|
||||
:param response_format: (Optional) Grammar specification for guided (structured) decoding. There are two options:
|
||||
- `ResponseFormat.json_schema`: The grammar is a JSON schema. Most providers support this format.
|
||||
- `ResponseFormat.grammar`: The grammar is a BNF grammar. This format is more flexible, but not all providers support it.
|
||||
:param stream: (Optional) If True, generate an SSE event stream of the response. Defaults to False.
|
||||
:param logprobs: (Optional) If specified, log probabilities for each token position will be returned.
|
||||
:returns: If stream=False, returns a ChatCompletionResponse with the full completion.
|
||||
|
@ -316,8 +435,8 @@ class Inference(Protocol):
|
|||
) -> EmbeddingsResponse:
|
||||
"""Generate embeddings for content pieces using the specified model.
|
||||
|
||||
:param model_id: The identifier of the model to use
|
||||
:param contents: List of contents to generate embeddings for. Note that content can be multimodal.
|
||||
:returns: An array of embeddings, one for each content. Each embedding is a list of floats.
|
||||
:param model_id: The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint.
|
||||
:param contents: List of contents to generate embeddings for. Note that content can be multimodal. The behavior depends on the model and provider. Some models may only support text.
|
||||
:returns: An array of embeddings, one for each content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}
|
||||
"""
|
||||
...
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue