feat(providers): sambanova safety provider (#2221)

# What does this PR do?

Includes SambaNova safety adaptor to use the sambanova cloud served
Meta-Llama-Guard-3-8B
minor updates in sambanova docs

## Test Plan
pytest -s -v tests/integration/safety/test_safety.py
--stack-config=sambanova --safety-shield=sambanova/Meta-Llama-Guard-3-8B
This commit is contained in:
Jorge Piedrahita Ortiz 2025-05-21 17:33:02 -05:00 committed by GitHub
parent 02e5e8a633
commit 633bb9c5b3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 222 additions and 22 deletions

View file

@ -1,6 +1,6 @@
version: '2'
distribution_spec:
description: Use SambaNova for running LLM inference
description: Use SambaNova for running LLM inference and safety
providers:
inference:
- remote::sambanova
@ -10,7 +10,7 @@ distribution_spec:
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
- remote::sambanova
agents:
- inline::meta-reference
telemetry:

View file

@ -37,33 +37,44 @@ The following models are available by default:
### Prerequisite: API Keys
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](https://sambanova.ai/).
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](http://cloud.sambanova.ai?utm_source=llamastack&utm_medium=external&utm_campaign=cloud_signup).
## Running Llama Stack with SambaNova
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
### Via Docker
```bash
LLAMA_STACK_PORT=8321
llama stack build --template sambanova --image-type container
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-{{ name }} \
-v ~/.llama:/root/.llama \
distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Venv
```bash
llama stack build --template sambanova --image-type venv
llama stack run --image-type venv ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Conda
```bash
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
llama stack run --image-type conda ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```

View file

@ -38,10 +38,11 @@ providers:
user: ${env.PGVECTOR_USER:}
password: ${env.PGVECTOR_PASSWORD:}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
- provider_id: sambanova
provider_type: remote::sambanova
config:
excluded_categories: []
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
@ -189,6 +190,9 @@ models:
model_type: embedding
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
provider_shield_id: sambanova/Meta-Llama-Guard-3-8B
- shield_id: sambanova/Meta-Llama-Guard-3-8B
provider_shield_id: sambanova/Meta-Llama-Guard-3-8B
vector_dbs: []
datasets: []
scoring_fns: []

View file

@ -34,7 +34,7 @@ def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::sambanova", "inline::sentence-transformers"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"safety": ["remote::sambanova"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"tool_runtime": [
@ -110,7 +110,7 @@ def get_distribution_template() -> DistributionTemplate:
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use SambaNova for running LLM inference",
description="Use SambaNova for running LLM inference and safety",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
@ -122,7 +122,15 @@ def get_distribution_template() -> DistributionTemplate:
"vector_io": vector_io_providers,
},
default_models=default_models + [embedding_model],
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
default_shields=[
ShieldInput(
shield_id="meta-llama/Llama-Guard-3-8B", provider_shield_id="sambanova/Meta-Llama-Guard-3-8B"
),
ShieldInput(
shield_id="sambanova/Meta-Llama-Guard-3-8B",
provider_shield_id="sambanova/Meta-Llama-Guard-3-8B",
),
],
default_tool_groups=default_tool_groups,
),
},