feat: add (openai, anthropic, gemini) providers via litellm (#1267)

# What does this PR do?

This PR introduces more non-llama model support to llama stack.
Providers introduced: openai, anthropic and gemini. All of these
providers use essentially the same piece of code -- the implementation
works via the `litellm` library.

We will expose only specific models for providers we enable making sure
they all work well and pass tests. This setup (instead of automatically
enabling _all_ providers and models allowed by LiteLLM) ensures we can
also perform any needed prompt tuning on a per-model basis as needed
(just like we do it for llama models.)

## Test Plan

```bash
#!/bin/bash

args=("$@")
for model in openai/gpt-4o anthropic/claude-3-5-sonnet-latest gemini/gemini-1.5-flash; do
    LLAMA_STACK_CONFIG=dev pytest -s -v tests/client-sdk/inference/test_text_inference.py \
        --embedding-model=all-MiniLM-L6-v2 \
        --vision-inference-model="" \
        --inference-model=$model "${args[@]}"
done
```
This commit is contained in:
Ashwin Bharambe 2025-02-25 22:07:33 -08:00 committed by GitHub
parent b0310af177
commit 63e6acd0c3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
25 changed files with 1048 additions and 33 deletions

View file

@ -207,6 +207,33 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.remote.inference.runpod.RunpodImplConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="openai",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.openai",
config_class="llama_stack.providers.remote.inference.openai.OpenAIConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="anthropic",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.anthropic",
config_class="llama_stack.providers.remote.inference.anthropic.AnthropicConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="gemini",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.gemini",
config_class="llama_stack.providers.remote.inference.gemini.GeminiConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(