feat: add (openai, anthropic, gemini) providers via litellm (#1267)

# What does this PR do?

This PR introduces more non-llama model support to llama stack.
Providers introduced: openai, anthropic and gemini. All of these
providers use essentially the same piece of code -- the implementation
works via the `litellm` library.

We will expose only specific models for providers we enable making sure
they all work well and pass tests. This setup (instead of automatically
enabling _all_ providers and models allowed by LiteLLM) ensures we can
also perform any needed prompt tuning on a per-model basis as needed
(just like we do it for llama models.)

## Test Plan

```bash
#!/bin/bash

args=("$@")
for model in openai/gpt-4o anthropic/claude-3-5-sonnet-latest gemini/gemini-1.5-flash; do
    LLAMA_STACK_CONFIG=dev pytest -s -v tests/client-sdk/inference/test_text_inference.py \
        --embedding-model=all-MiniLM-L6-v2 \
        --vision-inference-model="" \
        --inference-model=$model "${args[@]}"
done
```
This commit is contained in:
Ashwin Bharambe 2025-02-25 22:07:33 -08:00 committed by GitHub
parent b0310af177
commit 63e6acd0c3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
25 changed files with 1048 additions and 33 deletions

View file

@ -0,0 +1,36 @@
version: '2'
distribution_spec:
description: Distribution for running e2e tests in CI
providers:
inference:
- remote::openai
- remote::fireworks
- remote::anthropic
- remote::gemini
- inline::sentence-transformers
vector_io:
- inline::sqlite-vec
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::code-interpreter
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda